PMATH 453/753, FALL 2019

Assignment #5 Due: December 2

1. Let \mathcal{X} and \mathcal{Y} be Banach spaces.

(a) $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called *adjointable* if $T^*f \in \mathcal{X}^*$ for each $f \in \mathcal{Y}^*$. Prove that T is adjointable only if it is bounded.

[Hint: Banach-Steinhaus.]

(b) Show that F in \mathcal{X}^{**} is w^* -continuous, i.e. as a function from \mathcal{X}^* to \mathbb{F} , if and only if $F = \hat{x}$ for some x in \mathcal{X} .

[Hint: look in proof of w^* -Separation Theorem.]

(c) Show that $S \in \mathcal{B}(\mathcal{Y}^*, \mathcal{X}^*)$ is w^*-w^* continuous if and only if $S = T^*$ for some T in $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.

2. Let \mathcal{X} be a Banach space and $T, S \in \mathcal{B}(\mathcal{X})$.

(a) Show that the series $\exp T := \sum_{n=0}^{\infty} \frac{1}{n!} T^n$ converges in norm.

(b) Show that if TS = ST, then $\exp S \exp T = \exp(S + T)$.

(c) Show that if \mathcal{H} is a complex Hilbert space, and H in $\mathcal{B}(\mathcal{H})$ is Hermitian, i.e. $H^* = H$, then $U = \exp(iH)$ is a unitary operator, i.e. $UU^* = I = U^*U$.

3. Let \mathcal{H} be a complex Hilbert space and $R, S, T \in \mathcal{B}(\mathcal{H})$ be so $R^*R = RR^*, T^*T = TT^*$ and RS = ST. Prove that $R^*S = ST^*$.

[Hint: expand $\exp(R^*-R)S\exp(T-T^*)$ to show that $\|\exp(R^*)S\exp(-T^*)\| \leq S$; then apply Liouville's Theorem to the entire function $F_f(z) = f\left(\exp(zR^*)S\exp(-zT^*)\right)$ for any $f \in \mathcal{B}(\mathcal{H})^*$ to deduce that $\exp(zR^*)S = S\exp(zT^*)$.]

- 4. Let \mathcal{H} be a Hilbert space and P in $\mathcal{B}(\mathcal{H})$ be an idempotent, i.e. $P^2 = P$. Show that the following are equivalent:
 - (i) *P* is an orthogonal projection
 - (ii) P is self-adjoint: $P^* = P$
 - (iii) P is normal: $P^*P = PP^*$
 - (iv) $(Px, x) = ||Px||^2$ for every x in \mathcal{H} .

5. (a) If \mathcal{X} is a complex Banach space and E in $\mathcal{B}(\mathcal{X})$ is an idempotent, $E^2 = E$ compute the spectrum $\sigma(E)$.

(b) Let $a = (a_n)_{n=1}^{\infty}$ in ℓ_{∞} . Let the multiplication operator $M_a : \ell_p \to \ell_p$ $(1 \le p < \infty)$ be given by $M_a(x_n)_{n=1}^{\infty} = (a_n x_n)_{n=1}^{\infty}$. Compute

 $||M_a||, \sigma_p(M_a) \text{ and } \sigma(M_a).$

(c) If K is a compact subset of \mathbb{C} , show that there is an operator $T \in \mathcal{B}(\ell_p)$ for which $\sigma(T) = K$.

(d) Show that M_a is compact on ℓ_p if and only if $a \in c_0$.

6. Let $q(t) = t^2 - 1$, $p_n = D^n[q^n]$ for n = 0, 1, 2..., where D is the differentiation operator and let $\tilde{p}_n = \frac{1}{\|p_n\|_2}p_n$, where $\|\cdot\|_2$ is the norm in the Hilbert space $L_2[-1, 1]$.

(a) Let

$$\mathcal{D} = \left\{ f \in L_2[-1,1] : \sum_{k=1}^{\infty} |k(k+1)(f,\tilde{p}_k)|^2 < \infty \right\}.$$

Show that the operator $L_0(p) = D[q Dp]$ on polynomials extends to an operator $L : \mathcal{D} \to L_2[-1, 1]$, with closed graph in $L_2[-1, 1] \oplus_2 L_2[-1, 1]$.

[Hint. First, find a new inner product on \mathcal{D} which makes \mathcal{D} a Hilbert space in which span $\{p_n\}_{n=1}^{\infty}$ is dense, and allows L to be viewed as a bounded operator.]

(b) Given $\varepsilon > 0$, show that there is a compact linear Hermitian operator K_{ε} on $L_2[-1, 1]$ for which ran $K = \mathcal{D}$ and

$$K_{\varepsilon}(L+\varepsilon I)f = f$$
 for f in \mathcal{D} , while $(L+\varepsilon I)K_{\varepsilon} = I$ on $L_2[-1,1]$.

[Hint: Notice that $(L + \varepsilon I)p_n = (n^2 + n + \varepsilon)p_n$. Consider Q5(d), above.]