PMATH 453/753, FALL 2019

Assignment #4 Due: November 15

- 1. Compute the set of *extreme points* of the unit ball, $extB(\mathcal{X})$, for the following \mathbb{R} -Banach spaces \mathcal{X} , i.e. don't worry about the complex cases.
 - (a) $\mathcal{X} = L_1[0, 1]$ [Hint: show that $F(s) = \int_{[0,s]} |f|$ is continuous.]
 - (b) $\mathcal{X} = \ell_1$
 - (c) $\mathcal{X} = \ell_{\infty}$
 - (d) Show that $\operatorname{co} \operatorname{ext} B(\ell_1)$ is $\|\cdot\|_1$ -dense in $B(\ell_1)$.
- 2. Let $C = C^{\mathbb{R}}[0,1]$ and $P[0,1] = \{\mu \in B(C^*) : \mu(\mathbf{1}) = 1\}.$
 - (a) Show that

$$\overline{\text{co}} \operatorname{ext} P[0,1] = \left\{ \sum_{j=1}^{\infty} t_j \widehat{x}_j : \{x_j\}_{j=1}^{\infty} \subset [0,1], \text{ each } t_j \ge 0 \text{ and } \sum_{j=1}^{\infty} t_j = 1 \right\}.$$

(b) Let $\mu : \mathcal{C} \to \mathbb{R}$ be given by $\mu(f) = \int_0^1 f$ (Riemann integral). Show that $\mu \in P[0,1] \setminus \overline{\operatorname{co}} \operatorname{ext} P[0,1]$. Deduce that $\overline{\operatorname{co}} \operatorname{ext} P[0,1] \subsetneq \overline{\operatorname{co}}^{w*} \operatorname{ext} P[0,1]$.

[Hint: show for ν in $\overline{\operatorname{co}} \operatorname{ext} P[0, 1]$, that there is a sequence $(f_n)_{n=1}^{\infty} \subset S(\mathcal{C})$ such that $\mu(f_n) \to 0$ while $\nu(f_n)$ does not.]

3. Let $B_{\mathbb{R}} = B\left(\mathcal{C}^{\mathbb{R}}[0,1]\right)$ and $B_{\mathbb{C}} = B\left(\mathcal{C}^{\mathbb{C}}[0,1]\right)$.

(a) Show that $ext B_{\mathbb{R}} = \{-1, 1\}$ where 1 is the constant function with range 1.

(b) Deduce that $\mathcal{C}^{\mathbb{R}}[0,1]$ is not isometrically isomorphic to a dual space.

(c) Show that $\operatorname{ext} B_{\mathbb{C}} = \mathcal{C}^{\mathbb{S}}[0,1] := \{ f \in \mathcal{C}^{\mathbb{C}}[0,1] : |f(t)| = 1 \text{ for each } t \text{ in } [0,1] \}.$ (d) Show that $\operatorname{co} \mathcal{C}^{\mathbb{S}}[0,1]$ is $\|\cdot\|_{\infty}$ -dense in $B_{\mathbb{C}}$.

[Hint: if $z \in \mathbb{C}$, $0 < |z| \le 1$ then $z = \frac{1}{2} \operatorname{sgn} z(|z| + i\sqrt{1 - |z|^2} + |z| - i\sqrt{1 - |z|^2})$ – draw a picture with |z|, first, to see how one gets this. Thus if $f \in B_{\mathbb{C}}$, |f(t)| > 0 for all t, we can show that $f \in \operatorname{co} \mathcal{C}^{\mathbb{S}}[0, 1]$.] (e) (Bonus) Does $\mathcal{C}^{\mathbb{C}}[0, 1]$ admit an isometric predual? 4. A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space \mathcal{X} is called *null* if $\lim_{n\to\infty} x_n = 0$ (norm limit).

(a) Show that if $(x_n)_{n=1}^{\infty}$ is a null sequence, then its norm-closed convex hull $C = \overline{\operatorname{co}}\{x_n\}_{n=1}^{\infty}$ is norm-compact.

[From PMath 351, it suffices to show that C is totally bounded.]

(b) Show that a closed set K in a Banach space \mathcal{X} is norm-compact, if and only if there is a null sequence $\{x_n\}_{n=1}^{\infty}$ such that $K \subset \overline{\operatorname{co}}\{x_n\}_{n=1}^{\infty}$. Deduce that the norm-closed convex hull of a compact set in a Banach space is compact.

[Note that 2K is compact; cover with closed 1/2-balls, $y_i + \frac{1}{2}B(\mathcal{X})$. Do this again with $K_1 = \bigcup_{i=1}^n ([2K \cap (y_i + \frac{1}{2}B(\mathcal{X}))] - y_i)$. Continue.]

5. (a) Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ satisfy $P^2 = P$ and ||P|| = 1. Show that P is the orthogonal projection onto $\mathcal{M} = \operatorname{ran} P$. [Hint. First establish that $[\ker P]^{\perp} = [\operatorname{ran}(I - P)]^{\perp} \subseteq \mathcal{M}$. Then use uniqueness of orthogonal decomposition]

(b) Exhibit a Hilbert space \mathcal{H} and a projection $P = P^2$ in $\mathcal{B}(\mathcal{H})$ for which ||P|| > 1.

6. Let $q(t) = t^2 - 1$ and define the family of (non-normalised) Legendre polynomials by $p_n = D^n[q^n]$ where D is the differentiation operator.

(a) Show that $(p_n)_{n=0}^{\infty}$ is an orthogonal sequence in $L_2[-1,1]$. [Hint: integration by parts, $D^k[q^n](\pm 1) = 0$ if $0 \le k < n$.]

(b) Deduce that $(\tilde{p}_n)_{n=0}^{\infty}$, where each $\tilde{p}_n = \frac{1}{\|p_n\|_2} p_n$, is the ortho-normal sequence found by applying Gram-Schmdit orthogonalisation to the sequence of basic monomials $(m_n)_{n=0}^{\infty}$, $m_n(t) = t^n$; hence $(p_n)_{n=0}^{\infty}$ is a *complete* orthogonal set, i.e. its linear span is dense.

(c) Show that p_n satisfies $(t^2 - 1)p''(t) + 2tp'(t) = n(n+1)p(t)$, the *n*th Legendre equation. [Hint: $D[q Dp_n] \perp p_k$ for k < n.]

(d) Let $\mathcal{D} = \{f \in L_2[-1,1] : \sum_{k=1}^{\infty} |k(k+1)(f,\tilde{p}_k)|^2 < \infty\}$. Show that the operator $L_0(p) = [q D^2 + 2m_1 D]p$ on polynomials extends to an operator $L : \mathcal{D} \to L_2[-1,1]$, with closed graph in $L_2[-1,1] \oplus_2 L_2[-1,1]$. [Hint. First, find a new inner product on \mathcal{D} which makes \mathcal{D} a Hilbert space in which span $\{p_n\}_{n=1}^{\infty}$ is dense, and allows L to be viewed as a

bounded operator.