PMATH 453/753, FALL 2019

Assignment #3 Due: October 28

Given a normed space \mathcal{X} with dual \mathcal{X}^* we always let the weak topology on \mathcal{X} be given by $w = \sigma(\mathcal{X}, \mathcal{X}^*)$, and the weak* topology on \mathcal{X}^* be given by $w^* = \sigma(\mathcal{X}^*, \widehat{\mathcal{X}})$. Recall that $B(\mathcal{X}) = \{x \in \mathcal{X} : ||x|| \le 1\}$ while $S(\mathcal{X}) = \{x \in \mathcal{X} : ||x|| = 1\}$.

- 1. Show that the followings sets are pairwise *homeomorphic*, i.e. there exists a continuous open bijection between any pair of them.
 - (i) $({\chi_E : E \in \mathcal{P}(\mathbb{N})}, w^*)$, in $\ell_{\infty} \cong \ell_1^*$.
 - (ii) $(\{0,1\}^{\mathbb{N}},\pi), \pi$ is the product topology.

(iii) (C, τ) , C is "middle thirds" Cantor set in [0, 1], τ the usual metric/order topology.

2. Show that if $(B(\mathcal{X}^*), w^*|_{B(\mathcal{X}^*)})$ is *metrisable* – i.e. there exists a metric on $B(\mathcal{X}^*)$ which gives realtivized weak* topology – then \mathcal{X} must be separable.

[Hint: If $w^*|_{B(\mathcal{X}^*)}$ is metrisable, then there must be a countable neighbourhood base at 0.]

- 3. Let \mathcal{X} be a normed space. Show that:
 - (a) If \mathcal{X} is infinite-dimensional, then $\overline{S(\mathcal{X})}^w = B(\mathcal{X})$. [Hint: Begin by showing that every neighbourhood of 0 contains a subspace. Consider various characterisations of the closure.]
 - (b) Deduce that \mathcal{X} is finite-dimensional $\Leftrightarrow w = \tau_{\parallel \cdot \parallel}$.
- 4. Let 1 .
 - (a) Let $(x^{(n)})_{n=1}^{\infty}$ be a sequence in ℓ_p and $x^{(0)} \in \ell_p$. Show that

$$w - \lim_{n \to \infty} x^{(n)} = x^{(0)} \quad \iff \quad \lim_{n \to \infty} x_i^{(n)} = x_i^{(0)} \text{ for each } i \\ \text{ and } \sup_{n \in \mathbb{N}} \left\| x^{(n)} \right\|_p < \infty.$$

(b) Must a weakly converging net in (x^(ν))_{ν∈N} in ℓ_p be cofinally bounded:
i.e. must there be a ν₀ for which sup_{ν≥ν0} ||x^(ν)||_p < ∞?
[Hint: you method for solving Q3 (a) may help.]

- 5. Let (X, τ) be a topological space. Show that the following are equivalent
 - (i) (X, τ) is compact;
 - (ii) every net in X admits a τ -cluster point; and
 - (iii) every ultranet in X admits a τ -limit point.

The next 2 questions address the inadequacy of sequences for judging if sets are compact or closed, in non-metrizable setings.

- 6. A topological space (X, τ) is called *sequentially compact* if for every sequence in X admits a τ -converging subsequence. Compact metric spaces are sequentially compact from PMATH 351.
 - (a) Let I = [0, 1] and consider (I^I, π) (product topology). Show that (I^I, π) is not sequentially compact.
 [Hint: consider x_t⁽ⁿ⁾ = 3ⁿt [3ⁿt].]
 - (b) Why does this not contradict Q5 (a)?
 - (c) (Bonus) Exhibit a cluster point of the sequence you used to prove part (a), above.
- 7. (a) Prove that if $(x^{(n)})_{n=1}^{\infty}$ is a sequence in ℓ_1 , which converges weakly to $x^{(0)}$ in ℓ_1 , then $\lim_{n\to\infty} \|x^{(n)} x^{(0)}\|_1 = 0$. [Hint: If $\sigma(\ell_1, \widehat{c_0})$ -lim $_{n\to\infty} x^{(n)} = 0$ but $\|x^{(n)}\|_1 \ge \varepsilon > 0$, then extract a subsequence $(x^{(n_k)})_{k=1}^{\infty}$ which does not converge weakly to 0.]
 - (b) Exhibit a net in S(l₁) which converges weakly to 0.
 [Hint: Q3 (a) tells us that such a net exists. The method of solution can help find one.]