PMATH 453/653 (AMATH 423), FALL 2019

Assignment \#2 Due: October 4

1. Let \mathcal{X} be a \mathbb{R}-normed space.
(a) Let \mathcal{Y} a closed subspaceof \mathcal{X}, and $x_{0} \in \mathcal{X} \backslash \mathcal{Y}$. Show that there is $f \in \mathcal{X}^{*}$ such that $\mathcal{Y} \subseteq \operatorname{ker} f$ and $f\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, \mathcal{Y}\right)$.
(b) Show that if \mathcal{X}^{*} is separable, i.e., there is a countable dense subset in \mathcal{X}^{*}, then \mathcal{X} must be separable too.
(c) If \mathcal{X} is separable, must \mathcal{X}^{*} also be separable? Prove your assertion.
2. Let $\ell_{\infty}=\ell_{\infty}^{\mathbb{R}}$, with uniform norm $\|\cdot\|_{\infty}$. This exercise describes Banach's generalised limits of bounded sequences.
(a) Show that if \mathcal{Y} is any subspace of ℓ_{∞}, then the functional $p: \ell_{\infty} \rightarrow$ $\mathbb{R}, p(x)=\operatorname{dist}(x, \mathcal{Y})$, is sublinear, with $p(x) \leq\|x\|_{\infty}$ for every x.
(b) Show that there exists a linear functional $L: \ell_{\infty} \rightarrow \mathbb{R}$ such that
(i) $\|L\|=1$ and $L(\mathbf{1})=1$, where $\mathbf{1}=(1,1, \ldots)$, and
(ii) $L\left(T_{n} x\right)=L(x)$, where $T_{n} x=\left(x_{n+1}, x_{n+2}, \ldots\right)$ if $x \in \ell_{\infty}, n \in \mathbb{N}$.
[Hint: consider $\mathcal{Y}=\operatorname{span}\left\{x-T_{1} x: x \in \ell_{\infty}\right\}$.]
(c) Show that $\liminf _{n \rightarrow \infty} x_{n} \leq L(x) \leq \limsup _{n \rightarrow \infty} x_{n}$.
[Hint: first show $\left.L\right|_{c_{0}}=0 ; L(x) \geq 0$ if $x_{n} \geq 0$.]
(d) Fix $m \in \mathbb{N}$ and let $x=(n / m-\lfloor n / m\rfloor)_{n=1}^{\infty}$, where $\lfloor s\rfloor=\max \{k \in$ $\mathbb{N}: k \leq s\}$ for s in \mathbb{R}. Compute $L(x)$. [Hint: this sequence is periodic.]

If \mathcal{X} is a vector space over \mathbb{F}, a Hamel basis is any subset B which is:

- linearly independant: every finite subset of B is linearly independant;
- spanning: span B, the space of finite linear combinations of elements from B, is all of \mathcal{X}.

3. Show that an infinite dimensional Banach space cannot have a countable Hamel basis. [Hint: Baire.]
4. Let $1 \leq p<\infty$.
(a) Show that $\left|\ell_{p}\right|=\mathfrak{c}$, i.e. the cardinality of ℓ_{p} is that of the contiuum.
(b) Show that there exists a family \mathcal{F} of infinite subsets of \mathbb{N} with the following properties:
(i) if $E, F \in \mathcal{F}$ with $E \neq F$, then $E \cap F$ is finite (or empty), (ii) $|\mathcal{F}|=\mathfrak{c}$.
[Hint: the solution seems irrational.]
(c) Show, without using the continuum hypothesis, that ℓ_{p} admits a Hamel basis of cardinality \mathfrak{c}.
(d) Show that any Hamel basis for ℓ_{p} must have cardinality \mathfrak{c}.

See the text, Linear analysis, p. 83, for a notion of countable bases on some Banach spaces. I will entertain submissions on q. 16 for bonus credit.
5. Let \mathcal{X} be an \mathbb{F}-vector space, and $\|\cdot\|$ and $\|\cdot\|$ each be norms under which \mathcal{X} is complete.
(a) Show that $\|\cdot\|$ and $\|\cdot\|$ are either equivalent, i.e. there are $m, M>0$ such that

$$
m\|x\| \leq\|x\| \leq M\|x\| \quad \text { for each } x \text { in } \mathcal{X}
$$

or their topologies satisfy

$$
\tau_{\|\cdot\|} \not \subset \tau_{\|\cdot\|} \text { and } \tau_{\|\cdot\|} \not \subset \tau_{\|\cdot\|} .
$$

(b) Is it possible for ($\boldsymbol{\&}$) to occur, with complete norms?
6. Let $1<p, q<\infty$ (we do not suppose these to be conjugate). Suppose $A=\left[a_{i j}\right]_{i, j=1}^{\infty}$ is an infinite matrix with the property that

$$
A x=\left(\sum_{j=1}^{\infty} a_{1 j} x_{j}, \sum_{j=1}^{\infty} a_{2 j} x_{j}, \ldots\right) \in \ell_{q}
$$

for each $x=\left(x_{1}, x_{2}, \ldots\right)$ in ℓ_{p}. Show that A, i.e. $x \mapsto A x$, is a bounded operator from ℓ_{p} to ℓ_{q}.
[Hint: you might want to warm-up by checking that the rows of A must be $\ell_{p^{\prime}}$-sequences, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.]

