PMATH 453/653 (AMATH 423), FALL 2019

Assignment #2 Due: October 4

- 1. Let \mathcal{X} be a \mathbb{R} -normed space.
 - (a) Let \mathcal{Y} a closed subspace f \mathcal{X} , and $x_0 \in \mathcal{X} \setminus \mathcal{Y}$. Show that there is $f \in \mathcal{X}^*$ such that $\mathcal{Y} \subseteq \ker f$ and $f(x_0) = \operatorname{dist}(x_0, \mathcal{Y})$.
 - (b) Show that if X^{*} is *separable*, i.e., there is a countable dense subset in X^{*}, then X must be separable too.
 - (c) If \mathcal{X} is separable, must \mathcal{X}^* also be separable? Prove your assertion.
- 2. Let $\ell_{\infty} = \ell_{\infty}^{\mathbb{R}}$, with uniform norm $\|\cdot\|_{\infty}$. This exercise describes Banach's generalised limits of bounded sequences.
 - (a) Show that if \mathcal{Y} is any subspace of ℓ_{∞} , then the functional $p : \ell_{\infty} \to \mathbb{R}$, $p(x) = \operatorname{dist}(x, \mathcal{Y})$, is sublinear, with $p(x) \leq ||x||_{\infty}$ for every x.
 - (b) Show that there exists a linear functional $L: \ell_{\infty} \to \mathbb{R}$ such that
 - (i) ||L|| = 1 and L(1) = 1, where $\mathbf{1} = (1, 1, ...)$, and (ii) $L(T_n x) = L(x)$, where $T_n x = (x_{n+1}, x_{n+2}, ...)$ if $x \in \ell_{\infty}, n \in \mathbb{N}$.

[Hint: consider $\mathcal{Y} = \operatorname{span}\{x - T_1 x : x \in \ell_\infty\}.$]

- (c) Show that $\liminf_{n \to \infty} x_n \le L(x) \le \limsup_{n \to \infty} x_n$. [Hint: first show $L|_{c_0} = 0$; $L(x) \ge 0$ if $x_n \ge 0$.]
- (d) Fix $m \in \mathbb{N}$ and let $x = (n/m \lfloor n/m \rfloor)_{n=1}^{\infty}$, where $\lfloor s \rfloor = \max\{k \in \mathbb{N} : k \leq s\}$ for s in \mathbb{R} . Compute L(x). [Hint: this sequence is periodic.]

If \mathcal{X} is a vector space over \mathbb{F} , a *Hamel basis* is any subset B which is:

• *linearly independant:* every finite subset of B is linearly independant;

3. Show that an infinite dimensional Banach space cannot have a countable Hamel basis. [Hint: Baire.]

[•] spanning: spanB, the space of finite linear combinations of elements from B, is all of \mathcal{X} .

- 4. Let $1 \leq p < \infty$.
 - (a) Show that $|\ell_p| = \mathfrak{c}$, i.e. the cardinality of ℓ_p is that of the continum.
 - (b) Show that there exists a family *F* of infinite subsets of N with the following properties:
 (i) if *E*, *F* ∈ *F* with *E* ≠ *F*, then *E* ∩ *F* is finite (or empty),
 (ii) |*F*| = c.
 [Hint: the solution seems irrational.]
 - (c) Show, without using the continuum hypothesis, that ℓ_p admits a Hamel basis of cardinality \mathfrak{c} .
 - (d) Show that any Hamel basis for ℓ_p must have cardinality \mathfrak{c} .

See the text, *Linear analysis*, p. 83, for a notion of countable bases on some Banach spaces. I will entertain submissions on q. 16 for bonus credit.

- 5. Let \mathcal{X} be an \mathbb{F} -vector space, and $\|\cdot\|$ and $\|\cdot\|$ each be norms under which \mathcal{X} is complete.
 - (a) Show that $\|\cdot\|$ and $\|\cdot\|$ are either *equivalent*, i.e. there are m, M > 0 such that

$$m \|x\| \le \|x\| \le M \|x\|$$
 for each x in \mathcal{X}

or their topologies satisfy

$$\tau_{\parallel \cdot \parallel} \not\subset \tau_{\parallel \cdot \parallel} \text{ and } \tau_{\parallel \cdot \parallel} \not\subset \tau_{\parallel \cdot \parallel}. \tag{(\clubsuit)}$$

- (b) Is it possible for (\clubsuit) to occur, with complete norms?
- 6. Let $1 < p, q < \infty$ (we do not suppose these to be conjugate). Suppose $A = [a_{ij}]_{i,j=1}^{\infty}$ is an infinite matrix with the property that

$$Ax = \left(\sum_{j=1}^{\infty} a_{1j}x_j, \sum_{j=1}^{\infty} a_{2j}x_j, \dots\right) \in \ell_q$$

for each $x = (x_1, x_2, ...)$ in ℓ_p . Show that A, i.e. $x \mapsto Ax$, is a bounded operator from ℓ_p to ℓ_q .

[Hint: you might want to warm-up by checking that the rows of A must be $\ell_{p'}$ -sequences, $\frac{1}{p} + \frac{1}{p'} = 1$.]