PMATH 453/753, FALL 2019

Assignment \#1 Due: September 20

1. Let (X, σ) and (Y, τ) be topological spaces and $f: X \rightarrow Y$ be a function. For any subset E of Y we let $f^{-1}(E)=\{x \in X: f(x) \in E\}$; thus $f^{-1}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is a set function.
As with metric topology, we define a subset E of X to be σ-closed, or simply closed, if $X \backslash E \in \sigma$, i.e., its compliment is open.
Show that the following are equivalent:
(i) f is $\sigma-\tau$ continuous at every point in X.
(ii) $f^{-1}(V)$ is open for each open subset V of Y.
(iii) $f^{-1}(F)$ is closed for each closed subset F of Y.
2. Let $p, q>1$ be so $\frac{1}{p}+\frac{1}{q}=1 ; \mathbb{F}$ denote either \mathbb{R} or \mathbb{C}. Exercises (a) and (b) show that there is a linear isometric isomorphism: $\ell_{p}{ }^{*} \cong \ell_{q}$.
(a) Show that if $b=\left(b_{j}\right)_{j=1}^{\infty} \in \ell_{q}$, then the map $f_{b}: \ell_{p} \rightarrow \mathbb{F}$ given by

$$
f_{b}\left(\left(x_{j}\right)_{j=1}^{\infty}\right)=\sum_{j=1}^{\infty} x_{j} b_{j}
$$

defines a linear functional which is bounded with $\left\|f_{b}\right\|=\|b\|_{q}$.
(b) Show that every bounded linear functional on ℓ_{p} arises as in (a), above.
(c) Deduce that $\left(\ell_{p},\|\cdot\|_{p}\right)$ is complete.
(d) Determine which sequence space (if any) isometrically describes $\ell_{1}{ }^{*}$. Prove your assertion.
3. Let (X, d) be a metric space. Recall that
$\operatorname{Lip}(X, d)=\left\{f: X \rightarrow \mathbb{F} \mid f\right.$ is bounded $\left.\& L(f)=\sup _{\substack{x, y \in X \\ x \neq y}} \frac{|f(x)-f(y)|}{d(x, y)}<\infty\right\}$
with norm $\|f\|_{\text {Lip }}=\|f\|_{\infty}+L(f)$.
(a) If $z \in X$, let $f_{z}: X \rightarrow \mathbb{F}$ be given by $f_{z}(x)=\min \{d(x, z), 1\}$. Show that $f_{z} \in \operatorname{Lip}(X, d)$ with $\left\|f_{z}\right\|_{\text {Lip }} \leq 2$.
(b) Let for x in $X, e_{x}: \operatorname{Lip}(X, d) \rightarrow \mathbb{F}$ be given by $e_{x}(f)=f(x)$. Verify that $e_{x} \in \operatorname{Lip}(X, d)^{*}$, and show that if (X, d) has bounded diameter, i.e. $\sup _{x, y \in X} d(x, y)<\infty$, then there is $c>0$ such that

$$
c d(x, y) \leq\left\|e_{x}-e_{y}\right\| \leq d(x, y) \text { for } x, y \text { in } X
$$

Hence, $d^{\prime}(x, y)=\left\|e_{x}-e_{y}\right\|$ defines a metric on X which is equivalent to d.
(b') Show, without the assumption of bounded diameter, that the topology generated by the metric d^{\prime} above is the same as that generated by d, i.e. $\tau_{d^{\prime}}=\tau_{d}$.

In other words, the Banach space $\left(\operatorname{Lip}(X, d),\|\cdot\|_{\text {Lip }}\right)$ remembers information about the metric on X.
On the other hand, $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$ does not do such a good job at remembering the metric.
(c) Now let for x in $X, e_{x}: \mathcal{C}_{b}(X) \rightarrow \mathbb{F}$ be given by $e_{x}(f)=f(x)$. Show, in this context, that

$$
\left\|e_{x}-e_{y}\right\|=2 \text { if } x \neq y \text { in } X
$$

Notice that $\rho(x, y)=\left\|e_{x}-e_{y}\right\|$ is always (equivalent to) the discrete metric in this setting.

Don't forget problem $4 \ldots$
4. This exercise is concerned with computing the dual of space of the bounded sequences, $\ell_{\infty}=\left\{x \in \mathbb{F}^{\mathbb{N}}\left|\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\right| x_{n} \mid<\infty\right\}$.
(a) If $E \subset \mathbb{N}$, let χ_{E} denote the sequence with $\chi_{E, i}=1$ if $i \in E$, and $\chi_{E, i}=0$ otherwise. Show that the space of simple sequences, $\mathcal{S}=\operatorname{span}\left\{\chi_{E}: E \subseteq \mathbb{N}\right\}$, is dense in ℓ_{∞}.
[For any set \mathcal{E} in a vector space \mathcal{X}, we let span \mathcal{E} denote the smallest subspace which contains \mathcal{E}.]
(b) Let $\mathcal{F A}(\mathbb{N})$ denote the space of all functions $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{F}$ which satisfy
(i) finite additivity: $\mu(E \cup F)=\mu(E)+\mu(F)$ if $E \cap F=\varnothing$, and (ii) bounded variation:

$$
\|\mu\|_{\mathrm{var}}=\sup \left\{\sum_{j=1}^{n}\left|\mu\left(E_{j}\right)\right|: \begin{array}{l}
E_{1}, \ldots, E_{n} \subseteq \mathbb{N} \text { and } \\
E_{j} \cap E_{k}=\varnothing \text { if } j \neq k
\end{array}\right\}<\infty
$$

Show that each μ in $\mathcal{F A}(\mathbb{N})$ determines a well-defined linear functional $f_{\mu}: \mathcal{S} \rightarrow \mathbb{F}$ by

$$
f_{\mu}(x)=\sum_{j=1}^{n} \alpha_{j} \mu\left(E_{j}\right) \quad \text { whenever } \quad \begin{gathered}
x=\sum_{j=1}^{n} \alpha_{j} \chi_{E_{j}} \text { and } \\
E_{j} \cap E_{k}=\varnothing \Leftrightarrow j \neq k .
\end{gathered}
$$

Moreover, this functional is bounded on the normed vector space $\left(\mathcal{S},\|\cdot\|_{\infty}\right)$ with $\left\|f_{\mu}\right\|=\|\mu\|_{\text {var }}$.

Thus, by uniform continuity, the functional f_{μ} extends uniquely to a bounded linear functional on ℓ_{∞}. [We hence readily deduce that $\mathcal{F A}(\mathbb{N})$ is a normed vector space with pointwise operations: $(\mu+\alpha \nu)(E)=$ $\mu(E)+\alpha \nu(E)$, for μ, ν in $\mathcal{F A}(\mathbb{N}), \alpha$ in \mathbb{F} and $E \subseteq \mathbb{N}$; and the norm $\|\cdot\|_{\text {var }}$.]
(c) Show that every bounded linear functional on ℓ_{∞} arises as above. Hence there is a linear isometric isomorphism: $\ell_{\infty}{ }^{*} \cong \mathcal{F A}(\mathbb{N})$.
(d) (Bonus question) Is every element of $\mathcal{F A}(\mathbb{N})$ of the form $\mu(E)=$ $\sum_{j \in E} \mu_{j}$ with $\sum_{j=1}^{\infty}\left|\mu_{j}\right|<\infty$? You must prove your assertion.

