PMATH 453/753

Primer on cardinal arithmetic

Definition/Notation. Let A, B be sets. We write

- $|A| \leq|B|$ if there is an injective map $f: A \rightarrow B$, and
- $|A|=|B|$ if there is a bijective map $f: A \rightarrow B$.

The equivalences classes of sets modulo the relation $|A|=|B|$ are called cardinal numbers.

Write $\aleph_{0}=|\mathbb{N}|$ and $\boldsymbol{c}=|\mathbb{R}|$. We know $\aleph_{0}<\boldsymbol{c}$ by Cantor's diagonal argument, i.e. $\aleph_{0} \leq \boldsymbol{c}$ but $\boldsymbol{c} \not \leq \aleph_{0}$. Also, see (vi) and (vii) below.

Cantor-Bernstein-Schröder Theorem. $|A| \leq|B|$ and $|B| \leq|A|$ implies $|A|=|B|$.

Proof. See almost any book on real analysis.
Continuum Hypothesis. There is no cardinal number \aleph such that $\aleph_{0}<$ $\aleph<c$.

Paul Cohen won the Fields medal for proving this is independent of ZFC axiom structure (the usual world analysits prefer to live in).

Cardinal arithmetic

Define

$$
|A|+|B|=|A \sqcup B| \text { (disjoint union), } \quad|A||B|=|A \times B| .
$$

It is easy to verify these operations are associative, commutative and there is even a distributive law: $|A|(|B|+|C|)=|A \times(B \sqcup C)|=|(A \times B) \sqcup(A \times C)|=$ $|A||B|+|A||C|$. Note that with n copies of A we have $|A|+\cdots+|A|=$ $|A \sqcup \cdots \sqcup A|=|\{1, \ldots, n\} \times A|$; we denote this cardinal $n|A|$. We let $A^{B}=\{f: B \rightarrow A \mid f$ is a function $\}$. We define

$$
|A|^{|B|}=\left|A^{B}\right| .
$$

Note that usual power rules apply: $\left(|A|^{|B|}\right)^{|C|}=\left|\left(A^{B}\right)^{C}\right|=\left|A^{B \times C}\right|=|A|^{|B||C|}$ and $|A|^{n}=\left|A^{\{1, \ldots, n\}}\right|=|A \times \cdots \times A|$ (n times $)$.

Exercises. (Try these yourself [with hints for the hard bits].)
(i) $|A| \geq \aleph_{0} \Longleftrightarrow$ there is $B \subsetneq A$ such that $|B|=|A|$. (We call these infinite cardinals. Finite cardinals - i.e. not infinite - will be identified with natural numbers; $|\varnothing|=0$.)
(ii) A is infinite $\Longleftrightarrow \aleph_{0}|A|=|A| \Longleftrightarrow|A|=n|A|$ for each n in \mathbb{N}.
[Use a Zorn argument to show A can be partitioned into infinte countable sets. Manually show that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$ to further partition each element of the partition into infinite countable sets.]
(iii) Given any two sets A, B either $|A| \leq|B|$ or $|B| \leq|A|$.
[Find a maximal pair (E, f) such that $E \subseteq A$ and $f: E \rightarrow B$ is injective, i.e. maximal w.r.t. $(E, f) \leq\left(E^{\prime}, f^{\prime}\right)$ iff $E \subseteq E^{\prime}$ and $\left.f^{\prime}\right|_{E}=f$. Verify that either $|E|=|A|$ or $|E|=|B|$.] (We remark that if any two cardinals are comparable, then through an ordinal-arithmetic idea called "Hartog's number", it can be proved that any set A is well-orderable. Thus it is impossible to prove (iii) without A of C.)
(iv) A is infinite $\Longleftrightarrow|A|^{n}=|A|$ for each n in \mathbb{N}.
[It suffices to show for $n=2$ (why?). Find a maximal pair $(B, f), B \subseteq A$ and $f: B \rightarrow B \times B$ bijection, same partial ordering as in (iii) above. If $|B|<|A|$ then $|A \backslash B|=|A|$ (why?). There would be $B^{\prime} \subset A \backslash B$ with $\left|B^{\prime}\right|=|B|$ and one could construct \tilde{f} for which $(B, f) \leq\left(B \cup B^{\prime}, \tilde{f}\right)$, which violates assumptions on (B, f).]
(v) A is infinite $\Longleftrightarrow|\mathcal{F}(A)|=|A|$, where $\mathcal{F}(A)=\{F \in \mathcal{P}(A):|F|<$ $\left.\aleph_{0}\right\}$.
(This might be useful for proving $\operatorname{dim} \mathcal{X}, \mathcal{X}$ a vector space, is well-defined.)
(vi) $2^{\aleph_{0}}=|\mathcal{P}(\mathbb{N})|=c, c^{\aleph_{0}}=c, \aleph_{0}^{\aleph_{0}}=c$.
[For the first, identify indicator functions with sets where $2=|\{0,1\}|$, then write all elements in the open unit interval in binary form. The latter statements just use arithmetic rules and CBS.]
(vii) $2^{|A|}=|\mathcal{P}(A)|>|A|$ for any set A.
[Use a Cantor diagonalisation argument. Given any map $f: A \rightarrow \mathcal{P}(A)$, let $E_{f}=\{x \in A: x \in f(x)\}$. Only one of E_{f} of $A \backslash E_{f}$ is in the range of f, so no surjection is possible.]

