PMATH 451/651, Winter 2019

Assignment #6, Not to be handed in.

1. Define, for a Borel set $E \subset \mathbb{R}^d$ and x in \mathbb{R}^d , the *upper* and *lower* densities

$$\overline{D}_E(x) = \limsup_{r \to 0^+} \frac{\lambda(E \cap B_r(x))}{\lambda(B_r(x))}, \ \underline{D}_E(x) = \liminf_{r \to 0^+} \frac{\lambda(E \cap Br(x))}{\lambda(B_r(x))}$$

where $\lambda = \lambda_d$ is the Lebesgue measure.

(a) Show that for λ -a.e. x in E we have $\overline{D}_E(x) = \underline{D}_E(x) = 1$, while for λ -a.e. x in $\mathbb{R}^d \setminus E$ we have $\overline{D}_E(x) = \underline{D}_E(x) = 0$.

(b) Construct, for any pair $0 < \alpha \leq \beta < 1$, a Borel set $E \subset \mathbb{R}^d$ and a point x for which $\underline{D}_E(x) = \alpha$ while $\overline{D}_E(x) = \beta$. [You may choose d = 1 or d = 2, if you wish.]

(Bonus) Obtain (b) as above, but with choices $0 = \alpha < \beta = 1$, $0 = \alpha < \beta < 1$ and $0 < \alpha < \beta = 1$.

2. Consider the following spaces of functions on \mathbb{R} :

 $Lip(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C} \mid |f(y) - f(x)| \le M | y - x| \text{ for } x, y \in \mathbb{R} \} \text{ (Lipschitz)} \\ AC(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C} \mid f \text{ is absolutely continuous} \} \\ UC(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C} \mid f \text{ is uniformly continuous} \} \\ BV(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C} \mid f \text{ is of bounded variation} \}$

Establish for each function below, which of the above spaces each function is an element.

- (a) $f(x) = 1_{[0,1]}(x)\sqrt{x} + 1_{(1,\infty)}$
- (b) $g(x) = 1_{(0,1/\pi]}(x)x\sin\left(\frac{1}{x}\right)$
- (c) $h(x) = 1_{(0,1/\pi]}(x)x^2 \sin\left(\frac{1}{x}\right)$
- (d) Cantor ternary function φ .

3. (a) Let (X, \mathcal{M}, ν) be a complex measure space for which $\{\{x\} : x \in X\} \subset \mathcal{M}$. Show that the set of *discrete points* $D_{\nu} = \{x \in X : \nu(\{x\}) \neq 0\}$ satisfies $\sum_{x \in D_{\nu}} |\nu(\{x\})| < \infty$. Hence show that $\nu_d = \sum_{x \in D_{\nu}} \nu(\{x\})\delta_x$ defines a complex measure, and that $\nu_d \perp \nu_c$, where $\nu_c = \nu - \nu_d$.

We call ν_d the discrete part and ν_c the continuous part of ν .

(b) Let $F \in BV_r(\mathbb{R})$. Show that the following decomposition holds: $F = F_d + F_{cs} + F_{ac}$, where

• $F_d = \sum_{a \in D_F} [F(a) - F(a^-)] H_a$ is a uniformly converging series of Heaviside functions $(H_a = \chi_{[a,\infty)})$ over the set D_F of discontinuities of F;

• F_{sc} is continuous, with $F'_{sc} = 0 \lambda$ -a.e. (the *singular-continuous* part); and

• F_{ac} is absolutely continuous.

Moreover, each $F_d, F_{sc}, F_{ac} \in BV_r$ with $T_F = T_{F_d} + T_{F_{sc}} + T_{F_{ac}}$.