PMATH 451/651, Winter 2019

Assignment \#5, Due Fri., Apr. 5.
We shall always let (X, \mathcal{M}, μ) denote a measure space.

1. (Containment relations of L^{p}-spaces.) Suppose $1 \leq p<q<\infty$.
(a) Show that $L^{p}(\mu) \not \subset L^{q}(\mu) \Leftrightarrow(X, \mathcal{M}, \mu)$ admits sets of arbitrary small positive measure.
(b) Show that $L^{q}(\mu) \not \subset L^{p}(\mu) \Leftrightarrow(X, \mathcal{M}, \mu)$ admits sets of arbitrary large finite measure.
2. (Geometry of L^{p} spaces.) Let $(L,\|\cdot\|)$ be a normed space. A point f in L with $\|f\|=1$ is called an extreme point of the unit ball if

$$
f=(1-t) f_{1}+t f_{2}, 0<t<1 \text { and }\left\|f_{1}\right\|,\left\|f_{2}\right\| \leq 1 \quad \Rightarrow \quad f_{1}=f_{2}
$$

i.e. f cannot be represented as a proper convex combination of other elements of the unit ball.
(a) Let $1<p<\infty$. Show that every norm 1 element of the unit ball of $L^{p}(\mu)$ is an extreme point.
(b) An atom for μ is a set A in \mathcal{M} such that $\mu(A)>0$ and any subset $E \subseteq A, E \in \mathcal{M}$ satisfies $\mu(E)=\mu(A)$ or $\mu(E)=0$.
Show that the unit ball of $L^{1}(\mu)$ admits an extreme point $\Leftrightarrow \mu$ admits an atom of finite measure.
3. (a) (Riemann-Stieltjes integration) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be non-decreasing and right continuous, and $f \in \mathcal{C}_{c}(\mathbb{R})$ Show that the sequence of F Riemann sums

$$
S_{n}(f)=\sum_{k=-n 2^{n}+1}^{n 2^{n}} f\left(\frac{k}{2^{n}}\right)\left[F\left(\frac{k}{2^{n}}\right)-F\left(\frac{k-1}{2^{n}}\right)\right]
$$

Is Cauchy, and hence converges to a quantity $I_{F}(f)$. Furthermore, $I_{F}: \mathcal{C}_{c}(\mathbb{R}) \rightarrow \mathbb{C}$ defines a positive linear functional.
(b) Determine the measure corresponding to I_{F}, as provided by Riesz representation theorem.
(c) (d-dimensional Riemann integration) Let $f \in \mathcal{C}_{c}\left(\mathbb{R}^{d}\right)$. Show that the sequence of Riemann sums

$$
S_{n}(f)=\frac{1}{2^{d n}} \sum_{k_{1}=-n 2^{n}+1}^{n 2^{n}} \ldots \sum_{k_{d}=-n 2^{n}+1}^{n 2^{n}} f\left(\frac{k_{1}}{2^{n}}, \ldots, \frac{k_{d}}{2^{n}}\right)
$$

converges to $\int_{\mathbb{R}^{d}} f d \lambda_{d}$ (integral with respect to d-dimensional Lebesgue mesure).
(d) Let $\mu: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{C}$ be a complex measure. Show that

$$
\mu_{n}=\sum_{k=-n 2^{n}+1}^{n 2^{n}} \mu\left(\left(\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]\right) \delta_{k / 2^{n}}
$$

converges weak* to μ in the sense that

$$
\lim _{n \rightarrow \infty} \int_{X} f d \mu_{n}=\int_{X} f d \mu \text { for } f \text { in } C_{0}(\mathbb{R})
$$

4. Let S be an uncountable set. Consider the metric d on $X=[0,1] \times S$ given by

$$
d((x, s),(y, t))= \begin{cases}|x-y| & \text { if } s=t \\ 1 & \text { if } s \neq t\end{cases}
$$

Observe that each set $[0,1] \times\{s\}$ is open. Let $I: C_{c}(X) \rightarrow \mathbb{C}$ be given by

$$
I(f)=\sum_{s \in S} \int_{0}^{1} f(x, s) d x \quad \text { (sum of Riemann integrals) }
$$

where we observe the above sum is finite since $\operatorname{supp}(f)$ is compact. Let $\mu: \mathcal{B}(X) \rightarrow[0, \infty]$ be the Radon measure for which $I(f)=\int_{X} f d \mu$.
(a) Let $E \in \mathcal{B}(X)$. Show that E is σ-finite with respect to μ if and only if $E \subseteq \bigcup_{k=1}^{\infty}\left([0,1] \times\left\{s_{k}\right\}\right)$ for some $\left\{s_{k}\right\}_{k=1}^{\infty} \subset S$ (i.e. E meets only countably many components of X). Moreover, such a set $E \in$ $\mathcal{B}([0,1]) \otimes \mathcal{P}(S)$ and we have $\mu(E)=\lambda \times \gamma(E)$ (product measure of Lebesgue and counting measures).
(b) Let $E=\{0\} \times S$. Show that E is Borel. Also show that E is not inner regular for μ. Moreover, show that $\lambda \times \gamma$ is locally finite on $\mathcal{B}([0,1]) \otimes \mathcal{P}(S)$ but not outer regular.
(Bonus) Determine whether or not $\mathcal{B}(X)=\mathcal{B}([0,1]) \otimes \mathcal{P}(S)$.

