PMATH 451/651, Winter 2019

Assignment \#4 Due: Fri., Mar. 15.
For the purposes of this assignment let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ denote the Lebesgue measure space.

1. (An infinite product measure.) Consider the infinite product set, $X=$ $\{0,1\}^{\mathbb{N}}=\{0,1\} \times\{0,1\} \times \ldots$.
(a) Show that the metric space (X, d), with d given by $d(x, y)=$ $\sum_{i=1}^{\infty} \frac{\left|x_{i}-y_{i}\right|}{2^{i}}\left(\right.$ where $\left.x=\left(x_{i}\right)_{i=1}^{\infty}, y=\left(y_{i}\right)_{i=1}^{\infty} \in X\right)$, is compact.
(b) Show that the algebra \mathcal{A} on X generated by the family of elementary sets
$\mathcal{E}=\left\{E_{1} \times \cdots \times E_{n} \times\{0,1\} \times\{0,1\} \times \cdots: n \in \mathbb{N}, E_{1}, \ldots, E_{n} \subseteq\{0,1\}\right\}$
is exactly the family of simultaneously closed and open ("clopen") subsets of X. Deduce that each element of \mathcal{A} is a pairwise disjoint union

$$
A=\bigcup_{j=1}^{m}\left(E_{j 1} \times \cdots \times E_{j n} \times\{0,1\} \times\{0,1\} \times \ldots\right)
$$

where $m, n \in \mathbb{N}$ and each $E_{j i} \subseteq\{0,1\}$. [Hint: first study open balls $B_{r}(x), r>0$; compactness is our friend.]
(c) Show that $\mu_{0}: \mathcal{A} \rightarrow[0,1]$, given on set A, as in (\dagger), by

$$
\mu_{0}(A)=\sum_{j=1}^{m} \frac{1}{2^{n}}\left|E_{j 1}\right| \ldots\left|E_{j n}\right|
$$

is well-defined, satisfies $\mu_{0}(\varnothing)=0, \mu_{0}(A \cup B)=\mu_{0}(A)+\mu_{0}(B)$ if $A, B \in \mathcal{A}$ with $A \cap B=\varnothing$. [Can be done very similarly to constructing the product pre-measure, in class.]
(d) Deduce that μ_{0} is a pre-measure. Further deduce that μ_{0} extends uniquely to a probability measure $\mu: \mathcal{B}(X) \rightarrow[0,1]$, where $\mathcal{B}(X)$ is the Borel σ-algebra on X. Finally, show that each "box set" $B=\prod_{i=1}^{\infty} E_{i} \in$ $\mathcal{B}(X)$, with $\mu(B)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \prod_{i=1}^{n}\left|E_{i}\right|$, [i.e. μ is the infinite product of normalized counting measure $\frac{1}{2} \gamma$ on $\{0,1\}$; write $\mu=\left(\frac{1}{2} \gamma\right)^{\times \mathbb{N}}$.
2. (Not every measure on a product space is a product measure.) Define $r:[0,2 \pi) \rightarrow \mathbb{R}^{2}$ by $r(t)=(\cos t, \sin t)$ so the image of r is a circle C. Define a measure $\rho: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0, \infty]$ by $\rho(E)=\lambda\left(r^{-1}(E \cap C)\right)$. Verify that there exist no measures $\mu, \nu: \mathcal{B}(\mathbb{R}) \rightarrow[0, \infty]$ for which $\rho=\mu \times \nu$.
3. (Total variation for a complex measure.) Let (X, \mathcal{M}, ν) be a complex measure space. If $E \in \mathcal{M}$, a finite \mathcal{M}-partition of E is a finite sequence E_{1}, \ldots, E_{n} in \mathcal{M} for which $E_{i} \cap E_{j}=\varnothing$ for $i \neq j$ and $E=\bigcup_{j=1}^{n} E_{j}$.
Show that $|\nu|(E)=\sup \left\{\sum_{j=1}^{n}\left|\nu\left(E_{j}\right)\right|: E_{1}, \ldots, E_{n}\right.$ is a finite \mathcal{M}-partition of $\left.E\right\}$
defines a finite measure on \mathcal{M}. [Hint: define
$\mu_{1}(E)=\sup \left\{\sum_{j=1}^{\infty}\left|\nu\left(E_{j}\right)\right|: E_{1}, E_{2}, \ldots\right.$ is a countable \mathcal{M}-partition of $\left.E\right\}$
$\mu_{2}(E)=\sup \left\{\left|\int_{E} f d \nu\right|: f \in M(X, \mathcal{M}),|f| \leq 1\right\}$.
Show that μ_{1} is σ-subadditive, μ_{2} is σ-superadditive and $|\nu| \leq \mu_{1} \leq$ $\mu_{2} \leq|\nu|$. For finiteness, recall in \mathbb{C} that $|x+i y| \leq|x|+|y|$.]
4. (On absolute continuity.) On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ define a measure $\nu(E)=\int_{E} \frac{d x}{|x|}$ (integral with respect to Lebesgue measure).
(a) Verify that ν is σ-finite but neither locally finite, nor outer regular. [Outer regularity is the condition that for any E in $\mathcal{B}(\mathbb{R})$ that $\nu(E)=$ $\inf \{\nu(U): E \subseteq U, U$ open $\}$.]
(b) Determine which of the following holds for the pair (ν, λ) :
(AC) $\nu \ll \lambda$, i.e. $\nu(E)=0$ whenever $\lambda(E)=0$;
(AC') for every $\varepsilon>0$ there is $\delta>0$, so $\nu(E)<\varepsilon$ whenever $\lambda(E)<\delta$.
5. (Limitations of Radon-Nikodym Theorem.) Let $\gamma: \mathcal{B}([0,1]) \rightarrow[0, \infty]$ denote the counting measure. Verify that $\lambda \ll \gamma$, but there is no Borel measurable $f:[0,1] \rightarrow[0, \infty]$ for which $\lambda=f \cdot \gamma$ on $\mathcal{B}([0,1])$.
6. Let (X, \mathcal{M}, ν) be a complex measure space, and $|\nu|: \mathcal{M} \rightarrow[0, \infty)$ its total variation, defined in Question 3.
(a) Let $\mu: \mathcal{M} \rightarrow[0, \infty]$ be a σ-finite measure. Show that $\nu \ll \mu$ if and only if $|\nu| \ll \mu$. Moreover, $\frac{d|\nu|}{d \mu}=\left|\frac{d \nu}{d \mu}\right|$, μ-a.e.
(b) Deduce that $\nu \ll|\nu|$ with $\left|\frac{d \nu}{d|\nu|}\right|=1$, ν-a.e. [Why are $|\nu|$-null sets ν-null?]
7. (Conditional expectations.) Consider a probability space (X, \mathcal{M}, μ). Let $\mathcal{N} \subset \mathcal{M}$ be a σ-subalgebra. If $f \in L(\mu)$, then $\left.\left.(f \cdot \mu)\right|_{\mathcal{N}} \ll \mu\right|_{\mathcal{N}}$ (why?). Then we let

$$
\mathbb{E}(f \mid \mathcal{N})=\frac{\left.d(f \cdot \mu)\right|_{\mathcal{N}}}{\left.d \mu\right|_{\mathcal{N}}} \text { in } L^{1}\left(X, \mathcal{N},\left.\mu\right|_{\mathcal{N}}\right) \subseteq L^{1}(N, \mathcal{M}, \mu)
$$

We let $(X, \mathcal{B}(X), \mu)$ denote the probability measure space from Question 1 , and let $f \in L(\mu)$
(a) Let

$$
\mathcal{N}_{n}=\sigma\left\langle\left\{E_{1} \times \cdots \times E_{n} \times\{0,1\} \times\{0,1\} \times \ldots\right\}\right\rangle \subset \mathcal{B}(X) .
$$

Given f in $L(\mu)$, compute $\mathbb{E}\left(f \mid \mathcal{N}_{n}\right)$.
(b) Show that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f-\mathbb{E}\left(f \mid \mathcal{N}_{n}\right)\right| d \mu=0
$$

