PMATH 451/651, Winter 2018

Assignment #3 Due: Fri. Mar. 1 (new date).

For the purposes of this assignment let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ denote the Lebesgue measure space.

1. If $f \in L(\lambda)$ we write $\int_{(a,b)} f d\lambda = \int_a^b f(t) dt$. (a) Compute $\int_0^\infty t^n e^{-st} dt$ where s > 0.

[You may wish to differentiate $\int_0^\infty e^{-st} dt = \frac{1}{s}$; justify all steps.]

(b) Let $J_0(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (n!)^2} t^{2n}$. Show that $\int_0^{\infty} J_0(t) e^{-st} dt = (s^2 + 1)^{-1/2}$ for s > 1. You must justify any interchange of limit and integral.

[You may use Newton's binomial series $(x+1)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$ which is valid for |x| < 1, where ${\alpha \choose n} = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}$.]

- 2. Let $f(x) = \frac{1}{\sqrt{x}} \mathbb{1}_{(0,1]}(x)$ for x in \mathbb{R} and let $g(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x r_n)$ where
 - $\{r_n\}_{n=1}^{\infty}$ is an enumeration of \mathbb{Q} .
 - (a) Show that $g \in \overline{L^+}(\lambda)$, hence $g < \infty \lambda$ -a.e.
 - (b) Show that g is continuous at no point in $g^{-1}([0,\infty))$.
 - (c) Show that $\int_{[a,b]} g^2 d\lambda = \infty$ for a < b in \mathbb{R} .

Remark. There is no subinterval [a, b] on which g is Riemann integrable.

3. (a) (Lusin's Theorem/Littlewood's Third Principle) Let $\mu : \mathcal{B}([a, b]) \rightarrow [0, \infty)$ be a finite measure and suppose $f : [a, b] \rightarrow \mathbb{R}$ is measurable. Given $\varepsilon > 0$, show that there is a compact set $K \subseteq [a, b]$ for which

 $f|_K$ is continuous, and $\mu([a, b] \setminus K) < \varepsilon$.

[You probably want to use a few results from the lectures.]

(b) How does one reconcile Lusin's Theorem with q. 2 (b), above?

4. (Integral is area under the graph.) Let (X, \mathcal{M}, μ) be a σ -finite measure space and $f \in L^+(\mu)$. Show that

$$G_f = \{(x, y) \in X \times [0, \infty) : y \le f(x)\}.$$

Show that $G_f \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times \lambda(G_f) = \int_X f \, d\mu$.

[Try this with a simple function, first.]

5. (a) Consider the measurable space $(X, \mathcal{B}) = ([0, 1], \mathcal{B}([0, 1]))$, and let γ the counting measure on \mathcal{B} . Let $D = \{(x, x) : x \in X\} \subset X \times X$. Show that the iterated integrals satisfy

$$\int_X \int_X \mathbf{1}_D(x,y) \, d\lambda(x) \, d\gamma(y) \neq \int_X \int_X \mathbf{1}_D(x,y) \, d\gamma(y) \, d\lambda(x).$$

Why does this not contradict Tonelli's theorem?

(b) Consider the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and let γ denote the counting measure. Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be given by

$$f(m,n) = \begin{cases} 1 & \text{if } m = n \\ -1 & \text{if } n = m+1 \\ 0 & \text{otherwise.} \end{cases}$$

Show that the iterated integrals satisfy

$$\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) \, d\gamma(m) \, d\gamma(n) \neq \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) \, d\gamma(n) \, d\gamma(m).$$

Why does this not contradict Fubini's theorem?