PMATH 451/651, Winter 2018

Assignment \#3 Due: Fri. Mar. 1 (new date).
For the purposes of this assignment let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ denote the Lebesgue measure space.

1. If $f \in L(\lambda)$ we write $\int_{(a, b)} f d \lambda=\int_{a}^{b} f(t) d t$.
(a) Compute $\int_{0}^{\infty} t^{n} e^{-s t} d t$ where $s>0$.
[You may wish to differentiate $\int_{0}^{\infty} e^{-s t} d t=\frac{1}{s}$; justify all steps.]
(b) Let $J_{0}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}(n!)^{2}} t^{2 n}$. Show that $\int_{0}^{\infty} J_{0}(t) e^{-s t} d t=\left(s^{2}+1\right)^{-1 / 2}$ for $s>1$. You must justify any interchange of limit and integral.
[You may use Newton's binomial series $(x+1)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$ which is valid for $|x|<1$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.]
2. Let $f(x)=\frac{1}{\sqrt{x}} 1_{(0,1]}(x)$ for x in \mathbb{R} and let $g(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x-r_{n}\right)$ where $\left\{r_{n}\right\}_{n=1}^{\infty}$ is an enumeration of \mathbb{Q}.
(a) Show that $g \in \overline{L^{+}}(\lambda)$, hence $g<\infty \lambda$-a.e.
(b) Show that g is continuous at no point in $g^{-1}([0, \infty))$.
(c) Show that $\int_{[a, b]} g^{2} d \lambda=\infty$ for $a<b$ in \mathbb{R}.

Remark. There is no subinterval $[a, b]$ on which g is Riemann integrable.
3. (a) (Lusin's Theorem/Littlewood's Third Principle) Let $\mu: \mathcal{B}([a, b]) \rightarrow$ $[0, \infty)$ be a finite measure and suppose $f:[a, b] \rightarrow \mathbb{R}$ is measurable. Given $\varepsilon>0$, show that there is a compact set $K \subseteq[a, b]$ for which

$$
\left.f\right|_{K} \text { is continuous, and } \mu([a, b] \backslash K)<\varepsilon .
$$

[You probably want to use a few results from the lectures.]
(b) How does one reconcile Lusin's Theorem with q. 2 (b), above?
4. (Integral is area under the graph.) Let (X, \mathcal{M}, μ) be a σ-finite measure space and $f \in L^{+}(\mu)$. Show that

$$
G_{f}=\{(x, y) \in X \times[0, \infty): y \leq f(x)\}
$$

Show that $G_{f} \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times \lambda\left(G_{f}\right)=\int_{X} f d \mu$.
[Try this with a simple function, first.]
5. (a) Consider the measurable space $(X, \mathcal{B})=([0,1], \mathcal{B}([0,1]))$, and let γ the counting measure on \mathcal{B}. Let $D=\{(x, x): x \in X\} \subset X \times X$. Show that the iterated integrals satisfy

$$
\int_{X} \int_{X} 1_{D}(x, y) d \lambda(x) d \gamma(y) \neq \int_{X} \int_{X} 1_{D}(x, y) d \gamma(y) d \lambda(x) .
$$

Why does this not contradict Tonelli's theorem?
(b) Consider the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and let γ denote the counting measure. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ be given by

$$
f(m, n)= \begin{cases}1 & \text { if } m=n \\ -1 & \text { if } n=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

Show that the iterated integrals satisfy

$$
\int_{\mathbb{N}} \int_{\mathbb{N}} f(m, n) d \gamma(m) d \gamma(n) \neq \int_{\mathbb{N}} \int_{\mathbb{N}} f(m, n) d \gamma(n) d \gamma(m) .
$$

Why does this not contradict Fubini's theorem?

