PMATH 451/651, Winter 2018

Assignment #2 Due: Fri. Feb. 8

1. For this question, we consider the complete Lebesgue measure space $(\mathbb{R}, \mathcal{L}, \lambda)$. Our goal is to prove (e), below. In particular, $\mathcal{L} \subsetneq \mathcal{P}(\mathbb{R})$.

(a) Show that if $E \in \mathcal{L}$ with $0 < \lambda(E) < \infty$ and $0 < \alpha < 1$, then there is some interval $I \subset \mathbb{R}$ for which $\lambda(E \cap I) > \alpha \lambda(I)$. [Hint: obtain $\sum_{i=1}^{\infty} \lambda(I_i) < \frac{1}{\alpha} \lambda(E)$ while $\lambda(E) \leq \sum_{i=1}^{\infty} \lambda(E \cap I_i)$.]

(b) Show that if $E \in \mathcal{L}$ with $\lambda(E) > 0$, then $E - E = \{x - y : x, y \in E\}$ contains an interval.

[Let $\alpha = \frac{3}{4}$ and I be as in (a). Show for $x \in \left(-\frac{\lambda(I)}{2}, \frac{\lambda(I)}{2}\right)$ that $(x+E) \cap E \neq \emptyset$.]

(c) Fix an irrational number ξ . Let $A = \{m + n\xi : m, n \in \mathbb{Z}\}$. Prove that A is dense in \mathbb{R} . [Dirichlet's pigeonhole principle.]

(d) Consider the equivalence relation on \mathbb{R} given by

$$x \sim y \quad \Leftrightarrow \quad x - y \in A.$$

Let $T \subset \mathbb{R}$ be a complete set of representatives, one from each equivalence class of \sim . [The existence of T requires axiom of choice.] Let $B = \{2m + n\xi : m, n \in \mathbb{Z}\}$ and F = B + T.

Show that F - F contains no intervals. Also show that $\mathbb{R} \setminus F = F + 1$, and hence $(\mathbb{R} \setminus F) - (\mathbb{R} \setminus F)$ contains no intervals as well.

(e) Show that the set F from (d) satisfies the property that for every $S \in \mathcal{L}$ with $\lambda(S) > 0$, we have $S \cap F \notin \mathcal{L}$.

2. Construct a continuous function $F : \mathbb{R} \to \mathbb{R}$ such that $F^{-1}(\mathcal{L}) \not\subseteq \mathcal{L}$.

[Consider $x \mapsto \varphi(x) + x$, where φ is the Cantor staircase function. Why does this admit a continuous inverse?]

Recall: We call $f : \mathbb{R} \to \mathbb{R}$ Lebesgue-measurable if it is \mathcal{L} - $\mathcal{B}(\mathbb{R})$ -measurable. The example above indicates why it is desirable the only pull-back Borel sets.

3. Let (X, \mathcal{M}, μ) be a finite measure space. If $h : X \to \mathbb{R}$ is measurable, define the *distribution measure* (also known by probabilists as the *distribution law*) of h by

$$\lambda_h : \mathcal{B}(\mathbb{R}) \to [0, \mu(X)]$$
 by $\lambda_h = \mu \circ h^{-1}$.

(a) Show that λ_h is a finite Borel measure on \mathbb{R} , and hence is determined by its distribution function $F_h(x) = \lambda_h((-\infty, x])$. Also, show that $\mathbb{R} \setminus B$ is λ_h -null for any Borel set B containing the range h(X).

(b) Show the following change of variables formula: if $f : \mathbb{R} \to [0, \infty)$ is Borel measurable, then

$$\int_X f(h(x)) \, d\mu(x) = \int_{\mathbb{R}} f(t) \, d\lambda_h(t).$$

[Start with indicator functions $f = \chi_B$, then non-negative simple functions ...]

<u>Notation</u>. If (X, \mathcal{M}, μ) is a measure space, and $A \in \mathcal{M}$, we let the *restriction* of μ to A be given by $\mu|_A(E) = \mu(A \cap E)$ for E in \mathcal{M} . It is trivial to verify that $\mu|_A$ is a measure.

(c) Let $F : \mathbb{R} \to \mathbb{R}$ be non-decreasing continuous and bounded, consider the associated finite Borel measure $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_F)$, and let $\lambda_F = \mu_F \circ F^{-1}$, as above. Show that $\lambda_F|_{(F(-\infty),F(\infty)]} = \lambda|_{(F(-\infty),F(\infty)]}$, where $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ is the Lebesgue measure.

(d) Let $H_x = 1_{[x,\infty)}$ and δ_x denote the Dirac measure at x. Compute $\lambda_x = \delta_x \circ H_x^{-1}$ as a Borel measure on \mathbb{R} . [How important is the continuity assumption in (c), above?]

4. Let φ denote the Cantor ternary function and $\mu = \mu_{\varphi}$ the associated measure. Let λ denote the Lebesgue measure. Compute each of the following.

(a)
$$\int_{[0,1]} \varphi(t) \, d\mu(t)$$
 (b) $\int_{[0,1]} \varphi(t) \, d\lambda(t)$ (c) $\int_{[0,1]} t \, d\mu(t)$