PMATH 451/651, Winter 2019

Assignment #1 Due: Jan. 25.

1. Let X be a set and $\{E_n\}_{n=1}^{\infty}$ a sequence of subsets of X. We denote

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \text{ and } \liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k.$$

Hence $\limsup_{n\to\infty} E_n$ is the set of points which are in infinitley many of the sets E_n , while $\liminf_{n\to\infty} E_n$ is the set of points which are eventually in every E_n , for sufficiently large n. Suppose now that (\mathcal{M}, μ) is a measure on X and each E_n , above, is in \mathcal{M} .

(a) Show that $\mu(\liminf_{n\to\infty} E_n) \leq \liminf_{n\to\infty} \mu(E_n)$.

(b) Show that $\mu(\limsup_{n\to\infty} E_n) \ge \limsup_{n\to\infty} \mu(E_n)$, provided that $\mu(\bigcup_{k=n}^{\infty} E_k) < \infty$ for some n.

(c) Create examples of sequences of sets $\{E_n\}_{n=1}^{\infty}$ and measure spaces (X, \mathcal{M}, μ) for which strict inequalities hold in (a) and (b), and for which the inequality of (b) fails when we drop the assumption that $\mu(\bigcup_{k=n}^{\infty} E_k) < \infty$ for some n. [This can be done with measures on $\mathcal{P}(\mathbb{N})$; or, if you prefer, with Lebesgue measure on \mathbb{R} .]

(d) Show that if $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, then $\mu(\limsup_{n \to \infty} E_n) = 0$.

2. Let X be a set. For subsets $E, F \subset X$ we define their symmetric difference by

$$E \triangle F = (E \setminus F) \cup (F \setminus E).$$

Let (\mathcal{M}, μ) be a non-zero finite measure on X.

(a) Show that the relation on \mathcal{M} , $E \sim F \Leftrightarrow \mu(E \triangle F) = 0$, is an equivalence relation.

(b) Show that the function $\rho : \mathcal{M} \times \mathcal{M} \to [0, \infty]$, given by $\rho(E, F) = \mu(E \triangle F)$, satisfies $\rho(E, F) \leq \rho(E, G) + \rho(G, F)$. Deduce that ρ induces a metric d on the set of equivalence classes $M = \{[E] : E \in \mathcal{M}\}$: $d([E], [F]) = \rho(E, F)$.

(c) Show that the metric space (M, d), defined in (b) above, is complete (in the sense of metric spaces). [For a candidate limit for a Cauchy sequence, take a hint from Q. 1.]

- 3. Show that if a measure space (X, M, μ) is semi-finite, then for any E in M, μ(E) = sup{μ(F) : F ⊆ E, F ∈ M and μ(F) < ∞}.
 [Hint: if μ(E) = ∞ it is best to proceed by a contradiction argument.]
- 4. Let (X, \mathcal{A}, μ_0) be a premeasure space, μ^* be the induced outer measure, \mathcal{M} be the σ -algebra of μ^* -measurable sets, and $\mu = \mu^*|_{\mathcal{M}}$. For any family $\mathcal{E} \subset \mathcal{P}(X)$ we let

$$\mathcal{E}_{\sigma} = \left\{ E \subseteq X : E = \bigcup_{n=1}^{\infty} F_n \text{ for some } \{F_k\}_{k=1}^{\infty} \subseteq \mathcal{E} \right\},\$$
$$\mathcal{E}_{\delta} = \left\{ E \subseteq X : E = \bigcap_{n=1}^{\infty} F_n \text{ for some } \{F_k\}_{k=1}^{\infty} \subseteq \mathcal{E} \right\},\$$

and $\mathcal{E}_{\sigma\delta} = (\mathcal{E}_{\sigma})_{\delta}$.

(a) Suppose $E \subseteq X$ satisfies $\mu^*(E) < \infty$. Show that there is $B \in \mathcal{A}_{\sigma\delta}$ such that $E \subseteq B$ and $\mu^*(E) = \mu^*(B)$.

(b) Deduce that E as in (a) is μ^* -measurable if and only if there is $B \in \mathcal{A}_{\sigma\delta}$ such that $E \subseteq B$ and $\mu^*(B \setminus E) = 0$.

(c) Show that if μ is σ -finite, then the equivalence of (b) remains true without the assumption that $\mu^*(E) < \infty$.

- 5. (Semifiniteness is neccessary for uniqueness of extension of a premeasure.) Let $\mathcal{A} \subset \mathcal{P}(\mathbb{Q})$ be the algebra generated by sets $\mathbb{Q} \cap (a, b]$, where $a, b \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$.
 - (a) Show that $\mu_0 : \mathcal{A} \to [0, \infty]$ given by

$$\mu_0(A) = \begin{cases} 0 & \text{if } A = \emptyset\\ \infty & \text{otherwise} \end{cases}$$

is a premeasure on \mathcal{A} . Also, show that the σ -algebra generated by $\mathcal{A}, \sigma \langle \mathcal{A} \rangle$, is $\mathcal{P}(\mathbb{Q})$, and compute the measure μ on $\mathcal{P}(\mathbb{Q})$ arising from the cannonical pre-measure/outer measure/measure construction on $(\mathbb{Q}, \mathcal{A}, \mu_0)$.

(b) Show that are infinitely many measures, $\nu : \mathcal{P}(\mathbb{Q}) \to [0, \infty]$ such that $\nu|_{\mathcal{A}} = \mu_0$.