DUAL SPACE OF $C_0(X)$

We let (X, d) be a locally compact metric space. Recall that a Borel measure $\mu : \mathcal{B}(X) \to [0, \infty]$ is *Radon* if it is

- locally finite $[\mu(K) < \infty \text{ for compact } K]$,
- outer regular $[\mu(E) = \inf{\{\mu(U) : E \subseteq U, U \text{ open}\}}]$, and
- inner regular on open sets $[\mu(U) = \sup\{\mu(K) : K \subseteq U, K \text{ compact}\}].$

We saw in class that any Radon measure is in fact inner regular on all Borel sets finite for μ , hence on all sets σ -finite for μ . It may not be inner regular generally; see A5, Q4.

Proposition. Let $\mu : \mathcal{B}(X) \to \mathbb{C}$ be a complex measure. Then

 $|\nu|$ is Radon \Leftrightarrow each $\operatorname{Re}\nu^+$, $\operatorname{Re}\nu^-$, $\operatorname{Im}\nu^+$, $\operatorname{Im}\nu^-$ is Radon.

Proof. We observe, for a finite positive measure μ , that μ is Radon if and only if for ash Borel E, there are $K \subseteq E \subseteq U$, K compact, U open, such that $\mu(U \setminus K) < \varepsilon$. Hence the inequalities

$$\operatorname{Re}\nu^+, \operatorname{Re}\nu^-, \operatorname{Im}\nu^+, \operatorname{Im}\nu^- \le |\nu| \le \operatorname{Re}\nu^+ + \operatorname{Re}\nu^- + \operatorname{Im}\nu^+ + \operatorname{Im}\nu^-$$

give the result immediately.

We will call a complex measure ν Radon, if it satisfies either of the equivalences of the proposition, above. We denote the set of all such measures by M(X). It is straightforward to check that M(X) is vector space (i.e. $(\alpha\nu + \rho)(E) = \alpha\nu(E) + \rho(E)$), and, moreover, that $|\nu|(X)$ defines a norm on M(X). Indeed use any of the (implicit) definitions in A4 Q3 to verify

$$|\alpha\nu|(X) = |\alpha||\nu|(X), \ |\nu+\rho|(X) \le |\nu|(X)+|\rho|(X) \text{ and } |\nu|(X) = 0 \iff \mu = 0.$$

Let for $f \in C_c(X)$

$$||f||_{u} = \sup\{|f(x)| : x \in X\}.$$

(The notation $||f||_{\infty}$ is also common, but we wish not to confuse the present notation with the (local) essential supremum norm of L^{∞} .) We let

$$C_0(X) = \overline{C_c(X)}^{\|\cdot\|_u}.$$

We call these "functions vanishing at infinity". Being a closed subspace of $C_b(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous an bounded}\}, C_0(X)$ is complete with respect to $\|\cdot\|_u$. It is a simple exercise to show

$$f \in C_0(X) \quad \Leftrightarrow \quad \{x \in X : |f(x)| \ge \varepsilon\} \text{ is compact for each } \varepsilon > 0.$$

We shall not make direct use of this fact; it will be more important to use density by elements of $C_c(X)$ in $C_0(X)$. For purposes of the proof below we shall use the notations

$$C_0^{\mathbb{R}}(X) = \{ f \in C_0(X) : f(X) \subset \mathbb{R} \}, \ C_0^+(X) = \{ f \in C_0(X) : f(X) \subset [0,\infty) \}$$

Theorem. Let $I : C_0(X) \to \mathbb{C}$ be a bounded linear functional, i.e. $||I|| = \sup\{|I(f)| : ||f||_u \leq 1\} < \infty$. Then there is a complex Radon measure $\nu : \mathcal{B}(X) \to \mathbb{C}$ such that $I(f) = \int_X f \, d\nu$. Furthermore, $||I|| = |\nu|(X)$.

Proof. (I) We will construct a "Jordan decomposition" of I, and hence obtain Radon measures.

Let $J = \operatorname{Re} \circ I|_{C_0^{\mathbb{R}}(X)}$, so $J : C_0^{\mathbb{R}}(X) \to \mathbb{R}$ is \mathbb{R} -linear. Let for f in $C_0^+(X)$

$$J^{+}(f) = \sup\{J(h) : h \in C_{0}^{+}(X), h \le f\}.$$

Then for f, g in $C_0^+(X)$ and $c \ge 0$ we have

• $J^+(cf) = cJ^+(f) \ [0 \le h \le f \Leftrightarrow 0 \le ch \le cf]$, and

• $J^+(f+g) = J^+(f) + J^+(g) \ [0 \le h_1 \le f, \ 0 \le h_2 \le g \Rightarrow 0 \le h_1 + h_2 \le f + g;$ if $0 \le h \le f + g$ then $h_1 = \max\{f, h\}$ and $h_2 = h - h_1$ satisfy $0 \le h_1 \le f$ and $0 \le h_2 \le g$ (as can be verified pointwise)]. Now for f in $C_0^{\mathbb{R}}(X)$ let

$$J^{+}(f) = J^{+}(f^{+}) - J^{+}(f^{-}).$$

Just as with integrating real-valued functions, we find J^+ is real linear. For example, if $f, g \in C_0^{\mathbb{R}}(X)$, we have $(f+g)^+ - (f+g)^- = f + g = f^+ + g^+ - f^- - g^-$ and hence

$$J^{+}(f+g) = J^{+}((f+g)^{+}) - J^{+}((f+g)^{-})$$

= J^{+}(f^{+}) + J^{+}(g^{+}) - J^{+}(f^{-}) - J^{+}(g^{-}) = J^{+}(f) + J^{+}(g).

Scalar homogeneity is similar. Obviously

$$||J^+|| = \sup\{|J^+(f)| : f \in C_0^{\mathbb{R}}(X), ||f||_u \le 1\} \le ||I|| < \infty.$$

Now let $J^- = J - J^+$ and from the definition of J^+ is is immediate that J^- is positive, i.e. $J^-(C_0^+(X)) \subseteq [0,\infty)$. Also it is easy to see that $||J^-|| \leq ||J^+|| + ||J|| = 2 ||J|| < \infty$.

Write $I|_{C_0^{\mathbb{R}}(X)} = J + iK$ where $K = \text{Im} \circ I|_{C_0^{\mathbb{R}}(X)}$. Again $K = K^+ - K^$ where each K^{\pm} is positive. We define for $L = J^{\pm}, K^{\pm} \widetilde{L} : C_0(\mathbb{R}) \to \mathbb{C}$ by

$$\widetilde{L}(f) = L(\operatorname{Re} f) + iL(\operatorname{Im} f)$$

and we see that \widetilde{L} is clearly \mathbb{R} -linear, and if $x = x + iy \in \mathbb{C}$ we have

$$\widetilde{L}(zf) = \widetilde{L}(x\operatorname{Re} f - y\operatorname{Im} f + i[x\operatorname{Im} f + y\operatorname{Re} f])$$

= $xL(\operatorname{Re} f) - yL(\operatorname{Im} f) + i[xL(\operatorname{Im} f) + yL(\operatorname{Re} f)] = z\widetilde{L}(f)$

and hence is \mathbb{C} -linear. Furthermore, each $\widetilde{J^+}, \ldots, \widetilde{K^-}$ are evidently positive.

(II) The Riesz Representation Theorem now provides measures μ_1, \ldots, μ_4 for which

$$\widetilde{J^{+}}(f) = \int_{X} f \, d\mu_1, \dots, \widetilde{K^{-}}(f) = \int_{X} f \, d\mu_4 \tag{\heartsuit}$$

for f in $C_c^{\mathbb{R}}(X)$. Then we have

$$\mu_1(X) = \sup\{\mu_1(K) : K \subset X, K \text{ compact}\}$$
$$\leq \sup\{J^+(f) : f \prec X\} \leq ||J^+|| < \infty$$

and likewise for each μ_2, μ_3 and μ_4 . Using (\heartsuit) , we find for f in $C_c(X)$ that the measure $\nu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ satisifies

$$I(f) = \widetilde{J^+}(f) - \widetilde{J^-}(f) + i\left[\widetilde{K^+}(f) - \widetilde{K^-}(f)\right]$$
$$= \int f \, d\mu_1 - \int f \, d\mu_2 + i\left[\int f \, d\mu_3 - \int f \, d\mu_4\right] = \int f \, d\nu$$

By continuity of I, and LDCT [if $\lim_{n\to\infty} ||f - f_n||_u = 0$, use $(\sup_{n\in\mathbb{N}} ||f_n||_u)$ 1 as a majorant], the equality above holds for f in $C_0(X)$, as well.

[Note: though we haven't proved it, it can be shown that $\nu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ is the Jordan decomposition of μ . We don't require this to finish the proof.]

(III) We show that $||I|| = |\nu|(X)$.

First, we recall that $\nu \ll |\nu|$ and $|\frac{d\nu}{d|\nu|}| = 1 |\nu|$ -a.e. Hence if $||f||_u \le 1$ we have

$$\left| \int f \, d\nu \right| = \left| \int f \frac{d\nu}{d|\nu|} \, d|\nu| \right| \le \int \left| f \frac{d\nu}{d|\nu|} \right| \, d|\nu| \le |\nu|(X)$$

so $||I|| \le |\nu|(X)|$.

Conversely, we recall that $C_c(X)/\sim_{\mu}$ is dense in $L^1(\mu)$. Thus there is a sequence $(f_n)_{n=1}^{\infty} \subset C_c(X)$ for which $\lim_{n\to\infty} f_n = \frac{d\nu}{d|\nu|}$ in $L^1(|\nu|)$. However, $L^1(|\nu|)$ convergnece implies convergence in measure, which, in turn, implies that there is a subsequence for which $\lim_{k\to\infty} f_{n_k} = \frac{d\nu}{d|\nu|} \nu$ -a.e. In particular, $\lim_{k\to\infty} |f_{n_k}| = 1 \nu$ -a.e., and we have

$$\lim_{k \to \infty} \frac{f_{n_k}}{\max\{|f_{n_k}|, 1\}} = \frac{d\nu}{d|\nu|} \quad \nu\text{-a.e.}$$

Hence if $\overline{g_k} = \frac{f_{n_k}}{\max\{|f_{n_k}|,1\}}$, then each $||g_k||_u \leq 1$, and by LDCT [with integrable majorant 1] we have

$$\|I\| \ge \lim_{k \to \infty} |I(g_k)| = \lim_{k \to \infty} \left| \int g_k \, d\nu \right| = \left| \int \overline{\frac{d\nu}{d|\nu|}} \, d\nu \right| = \int \left| \frac{d\nu}{d|\nu|} \right|^2 \, d|\nu| = |\nu|(X).$$

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 451/651 At University of Waterloo.