
Dual Space of C0(X)

We let (X, d) be a locally compact metric space.
Recall that a Borel measure µ : B(X)→ [0,∞] is Radon if it is
• locally finite [µ(K) <∞ for compact K],
• outer regular [µ(E) = inf{µ(U) : E ⊆ U,U open}], and
• inner regular on open sets [µ(U) = sup{µ(K) : K ⊆ U,K compact}].

We saw in class that any Radon measure is in fact inner regular on all Borel
sets finite for µ, hence on all sets σ-finite for µ. It may not be inner regular
generally; see A5, Q4.

Proposition. Let µ : B(X)→ C be a complex measure. Then

|ν| is Radon ⇔ each Reν+, Reν−, Imν+, Imν− is Radon.

Proof. We observe, for a finite positive measure µ, that µ is Radon if and
only if for ash Borel E, there are K ⊆ E ⊆ U , K compact, U open, such
that µ(U \K) < ε. Hence the inequalities

Reν+,Reν−, Imν+, Imν− ≤ |ν| ≤ Reν+ + Reν− + Imν+ + Imν−

give the result immediately. �

We will call a complex measure ν Radon, if it satisfies either of the equiv-
alences of the proposition, above. We denote the set of all such measures
by M(X). It is straightforward to check that M(X) is vector space (i.e.
(αν+ ρ)(E) = αν(E) + ρ(E)), and, moreover, that |ν|(X) defines a norm on
M(X). Indeed use any of the (implicit) definitions in A4 Q3 to verify

|αν|(X) = |α||ν|(X), |ν+ρ|(X) ≤ |ν|(X)+|ρ|(X) and |ν|(X) = 0 ⇔ µ = 0.

Let for f ∈ Cc(X)

‖f‖u = sup{|f(x)| : x ∈ X}.

(The notation ‖f‖∞ is also common, but we wish not to confuse the present
notation withe the (local) essential supremum norm of L∞.) We let

C0(X) = Cc(X)
‖·‖u .
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We call these “functions vanishing at infinity”. Being a closed subspace of
Cb(X) = {f : X → C | f is continuous an bounded}, C0(X) is complete with
respect to ‖·‖u. It is a simple exercise to show

f ∈ C0(X) ⇔ {x ∈ X : |f(x)| ≥ ε} is compact for each ε > 0.

We shall not make direct use of this fact; it will be more important to use
density by elements of Cc(X) in C0(X). For purposes of the proof below we
shall use the notations

CR
0 (X) = {f ∈ C0(X) : f(X) ⊂ R}, C+

0 (X) = {f ∈ C0(X) : f(X) ⊂ [0,∞)}.

Theorem. Let I : C0(X) → C be a bounded linear functional, i.e. ‖I‖ =
sup{|I(f)| : ‖f‖u ≤ 1} < ∞. Then there is a complex Radon measure
ν : B(X)→ C such that I(f) =

∫
X
f dν. Furthermore, ‖I‖ = |ν|(X).

Proof. (I) We will construct a “Jordan decomposition” of I, and hence
obtain Radon measures.

Let J = Re ◦ I|CR
0 (X), so J : CR

0 (X)→ R is R-linear. Let for f in C+
0 (X)

J+(f) = sup{J(h) : h ∈ C+
0 (X), h ≤ f}.

Then for f, g in C+
0 (X) and c ≥ 0 we have

• J+(cf) = cJ+(f) [0 ≤ h ≤ f ⇔ 0 ≤ ch ≤ cf ], and
• J+(f + g) = J+(f) + J+(g) [0 ≤ h1 ≤ f , 0 ≤ h2 ≤ g ⇒ 0 ≤ h1 + h2 ≤

f + g; if 0 ≤ h ≤ f + g then h1 = max{f, h} and h2 = h − h1 satisfy
0 ≤ h1 ≤ f and 0 ≤ h2 ≤ g (as can be verified pointwise)].
Now for f in CR

0 (X) let

J+(f) = J+(f+)− J+(f−).

Just as with integrating real-valued functions, we find J+ is real linear. For
example, if f, g ∈ CR

0 (X), we have (f + g)+ − (f + g)− = f + g = f+ + g+ −
f− − g− and hence

J+(f + g) = J+((f + g)+)− J+((f + g)−)

= J+(f+) + J+(g+)− J+(f−)− J+(g−) = J+(f) + J+(g).

Scalar homogeneity is similar. Obviously∥∥J+
∥∥ = sup{|J+(f)| : f ∈ CR

0 (X), ‖f‖u ≤ 1} ≤ ‖I‖ <∞.

2



Now let J− = J − J+ and from the definition of J+ is is immediate that
J− is positive, i.e. J−(C+

0 (X)) ⊆ [0,∞). Also it is easy to see that ‖J−‖ ≤
‖J+‖+ ‖J‖ = 2 ‖J‖ <∞.

Write I|CR
0 (X) = J + iK where K = Im ◦ I|CR

0 (X). Again K = K+ −K−

where each K± is positive. We define forL = J±, K± L̃ : C0(R)→ C by

L̃(f) = L(Ref) + iL(Imf)

and we see that L̃ is clearly R-linear, and if x = x+ iy ∈ C we have

L̃(zf) = L̃(xRef − yImf + i[xImf + yRef ])

= xL(Ref)− yL(Imf) + i[xL(Imf) + yL(Ref)] = zL̃(f)

and hence is C-linear. Furthermore, each J̃+, . . . , K̃− are evidently positive.
(II) The Riesz Representation Theorem now provides measures µ1, . . . , µ4

for which

J̃+(f) =

∫
X

f dµ1, . . . , K̃−(f) =

∫
X

f dµ4 (♥)

for f in CR
c (X). Then we have

µ1(X) = sup{µ1(K) : K ⊂ X,K compact}
≤ sup{J+(f) : f ≺ X} ≤

∥∥J+
∥∥ <∞

and likewise for each µ2, µ3 and µ4. Using (♥), we find for f in Cc(X) that
the measure ν = µ1 − µ2 + i(µ3 − µ4) satisifes

I(f) = J̃+(f)− J̃−(f) + i
[
K̃+(f)− K̃−(f)

]
=

∫
f dµ1 −

∫
f dµ2 + i

[∫
f dµ3 −

∫
f dµ4

]
=

∫
f dν

By continuity of I, and LDCT [if limn→∞ ‖f − fn‖u = 0, use (supn∈N ‖fn‖u)1
as a majorant], the equality above holds for f in C0(X), as well.

[Note: though we haven’t proved it, it can be shown that ν = µ1 − µ2 +
i(µ3 − µ4) is the Jordan decomposition of µ. We don’t require this to finish
the proof.]
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(III) We show that ‖I‖ = |ν|(X).
First, we recall that ν << |ν| and | dν

d|ν| | = 1 |ν|-a.e. Hence if ‖f‖u ≤ 1 we
have ∣∣∣∣∫ f dν

∣∣∣∣ =

∣∣∣∣∫ f
dν

d|ν|
d|ν|

∣∣∣∣ ≤ ∫ ∣∣∣∣f dν

d|ν|

∣∣∣∣ d|ν| ≤ |ν|(X)

so ‖I‖ ≤ |ν|(X)|.
Conversely, we recall that Cc(X)/ ∼µ is dense in L1(µ). Thus there is a

sequence (fn)∞n=1 ⊂ Cc(X) for which limn→∞ fn = dν
d|ν| in L1(|ν|). However,

L1(|ν|) convergnece implies convergence in measure, which, in turn, implies
that there is a subsequence for which limk→∞ fnk

= dν
d|ν| ν-a.e. In particular,

limk→∞ |fnk
| = 1 ν-a.e., and we have

lim
k→∞

fnk

max{|fnk
|, 1}

=
dν

d|ν|
ν-a.e.

Hence if gk =
fnk

max{|fnk
|,1} , then each ‖gk‖u ≤ 1, and by LDCT [with integrable

majorant 1] we have

‖I‖ ≥ lim
k→∞
|I(gk)| = lim

k→∞

∣∣∣∣∫ gk dν

∣∣∣∣ =

∣∣∣∣∫ dν

d|ν|
dν

∣∣∣∣ =

∫ ∣∣∣∣ dνd|ν|
∣∣∣∣2 d|ν| = |ν|(X).
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