
MATH 351, FALL 2017

Assignment #5 Due: Nov. 15.

1. (a) Suppose f : (0, 1)→ R is differentiable at every point. Show that

f is Lipschitz ⇔ its derivative f ′ is bounded: sup
t∈(0,1)

|f ′(t)| <∞.

(b) Classify each fk : (0, 1)→ R as being Lipschitz, uniformly contin-
uous, and/or continuous:

f1(t) = t sin
(
1
t

)
, f2(t) = sin

(
1
t

)
, f3(t) = t2 sin

(
1
t

)
.

(c) Let M, δ > 0 and

FM,δ =

{
f ∈ C[0, 1] :

there is x in [0, 1] so |f(t)−f(x)||t−x| ≤M

for t ∈ [0, 1] ∩ [(x− δ, x) ∪ (x, x+ δ)]

}
.

(If f ∈ FM,δ, we say that f is “locally M -Lipschitz” at some x.) Show
that FM,δ is a closed subset of C[0, 1] in the topology given by ‖ · ‖∞.

[Note: given uniformly converging (fn)∞n=1 ⊂ FM,δ, there will be an as-
sociated sequence of points of local M -Lipschitzness, (xn)∞n=1 ⊂ [0, 1].]

(d) Show that if f is differentiable at some point in (0, 1), then f ∈ FM,δ

for some M, δ > 0.

2. Let (Y, dY ) be a compact metric space.

(a) Show that (Y, dY ) is separable, i.e. there isa countable set Z ⊆ Y
so Z = Y .

(b) We say that a metric space (X, dX) is totally disconnected if for
any x 6= y in X there are open U, V in X so

x ∈ U, y ∈ V, X = U ∪ V and U ∩ V = ∅.

Show that the Cantor set (C, d) (d is relativized metric from R) is
totally disconnected.

[The following notation may be handy. In the notation of the appendix
of A3, let Ub1...bn = C ∩ Ib1...bn .]
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(c) (Universality of Cantor set amongst compact metric spaces.) Show
that there exists a continuous surjection f : C → Y .

[Hint: find f as the limit, in the metric of A3, Q4, of a sequence of
continuous functions, each with finite range.]

(d) Show that if (Y, dY ) = ([0, 1], d) (usual metric), then f , above,
cannot be bijective.

(e) (Generalized Peano curves.) Let (V, ‖ · ‖) be a normed vector
space. A non-empty K ⊆ V is called convex if for any x, y in K, the
line segment {x+ t(y − x) : t ∈ [0, 1]} is a subset of K.

Show that if K ⊂ V is compact and convex, then there is a continuous
surjection g : [0, 1] → K. (Hence g([0, 1]) = K is a “space-filling
curve”.)

[Hint: if the elements fn : C → K, above, are built nicely, then one
can build gn : [0, 1] → K as the piecewise affine extension of f . A
function h : [0, 1] → K is piecewise affine if there are 0 = t0 < t1 <
· · · < tn = 1 and x0, x1, . . . , xn (not necessarily distinct) in V so h(t) =
xj−1 +

t−tj−1

tj−tj−1
(xj − xj−1) for t ∈ [tj−1, tj].]

3. (Newton’s method.)

(a) Let I be closed interval in R, and f : I → R satisfy that

f is twice differentiable on some open interval containing I,

f ′(t) 6= 0 and |f ′′(t)f(t)| ≤ c|f ′(t)|2 on I, for some 0 < c < 1.

Show that the if the function γ(t) = t − f(t)

f ′(t)
satisfies γ(I) ⊆ I, then

it admits a unique fixed point z, which satisfies f(z) = 0.

(b) (Babylonian pth-root estimate.) Let p ≥ 2 in N and a ≥ 1 in R.
Verify that the sequence given by a0 = a, then, inductively by

an =

(
1− 1

p

)
an−1 +

1

p

a

(an−1)p−1

satisfies for each n that

0 ≤ an − p
√
a ≤

(
p− 1

p

)n(
a− 1

ap−2

)
.
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[Hint: let f(t) = tp − a and γ be as above on I = [ p
√
a,∞). Show that

if t ∈ I, then γ(t) ∈ I too; to get this, let α = t1−1/p and β = ( a
tp−1 )1/p

and recall the lemma used to prove Hölder’s inequlity.]

4. Show that Γ : C[0, 1]→ C[0, 1] given for t in [0, 1] by

Γ(f)(t) = t2 +

∫ t

0

s2f(s) ds

is a strict contraction. Starting at f0 = 0, calculate a power series for
the fixed point fsol of Γ.

[Hint: the technique is similar to the proof of the Picard-Lindelöf The-
orem but with more control: show that

∫ t
0
s2|f(s)| ds ≤ 1

3
‖f‖∞.]
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