MATH 351, FALL 2017

Assignment \#5 Due: Nov. 15.

1. (a) Suppose $f:(0,1) \rightarrow \mathbb{R}$ is differentiable at every point. Show that f is Lipschitz \Leftrightarrow its derivative f^{\prime} is bounded: $\sup _{t \in(0,1)}\left|f^{\prime}(t)\right|<\infty$.
(b) Classify each $f_{k}:(0,1) \rightarrow \mathbb{R}$ as being Lipschitz, uniformly continuous, and/or continuous:

$$
f_{1}(t)=t \sin \left(\frac{1}{t}\right), \quad f_{2}(t)=\sin \left(\frac{1}{t}\right), \quad f_{3}(t)=t^{2} \sin \left(\frac{1}{t}\right) .
$$

(c) Let $M, \delta>0$ and

$$
F_{M, \delta}=\left\{f \in C[0,1]: \begin{array}{c}
\text { there is } x \text { in }[0,1] \text { so } \frac{|f(t)-f(x)|}{|t-x|} \leq M \\
\text { for } t \in[0,1] \cap[(x-\delta, x) \cup(x, x+\delta)]
\end{array}\right\} .
$$

(If $f \in F_{M, \delta}$, we say that f is "locally M-Lipschitz" at some x.) Show that $F_{M, \delta}$ is a closed subset of $C[0,1]$ in the topology given by $\|\cdot\|_{\infty}$. [Note: given uniformly converging $\left(f_{n}\right)_{n=1}^{\infty} \subset F_{M, \delta}$, there will be an associated sequence of points of local M-Lipschitzness, $\left(x_{n}\right)_{n=1}^{\infty} \subset[0,1]$.]
(d) Show that if f is differentiable at some point in $(0,1)$, then $f \in F_{M, \delta}$ for some $M, \delta>0$.
2. Let $\left(Y, d_{Y}\right)$ be a compact metric space.
(a) Show that $\left(Y, d_{Y}\right)$ is separable, i.e. there isa countable set $Z \subseteq Y$ so $\bar{Z}=Y$.
(b) We say that a metric space $\left(X, d_{X}\right)$ is totally disconnected if for any $x \neq y$ in X there are open U, V in X so

$$
x \in U, y \in V, \quad X=U \cup V \quad \text { and } U \cap V=\varnothing
$$

Show that the Cantor set (C, d) (d is relativized metric from \mathbb{R}) is totally disconnected.
[The following notation may be handy. In the notation of the appendix of A3, let $\left.U_{b_{1} \ldots b_{n}}=C \cap I_{b_{1} \ldots b_{n}}.\right]$
(c) (Universality of Cantor set amongst compact metric spaces.) Show that there exists a continuous surjection $f: C \rightarrow Y$.
[Hint: find f as the limit, in the metric of $\mathrm{A} 3, \mathrm{Q} 4$, of a sequence of continuous functions, each with finite range.]
(d) Show that if $\left(Y, d_{Y}\right)=([0,1], d)$ (usual metric), then f, above, cannot be bijective.
(e) (Generalized Peano curves.) Let $(V,\|\cdot\|)$ be a normed vector space. A non-empty $K \subseteq V$ is called convex if for any x, y in K, the line segment $\{x+t(y-x): t \in[0,1]\}$ is a subset of K.
Show that if $K \subset V$ is compact and convex, then there is a continuous surjection $g:[0,1] \rightarrow K$. (Hence $g([0,1])=K$ is a "space-filling curve".)
[Hint: if the elements $f_{n}: C \rightarrow K$, above, are built nicely, then one can build $g_{n}:[0,1] \rightarrow K$ as the piecewise affine extension of f. A function $h:[0,1] \rightarrow K$ is piecewise affine if there are $0=t_{0}<t_{1}<$ $\cdots<t_{n}=1$ and $x_{0}, x_{1}, \ldots, x_{n}$ (not necessarily distinct) in V so $h(t)=$ $x_{j-1}+\frac{t-t_{j-1}}{t_{j}-t_{j-1}}\left(x_{j}-x_{j-1}\right)$ for $\left.t \in\left[t_{j-1}, t_{j}\right].\right]$
3. (Newton's method.)
(a) Let I be closed interval in \mathbb{R}, and $f: I \rightarrow \mathbb{R}$ satisfy that
f is twice differentiable on some open interval containing I,

$$
f^{\prime}(t) \neq 0 \text { and }\left|f^{\prime \prime}(t) f(t)\right| \leq c\left|f^{\prime}(t)\right|^{2} \text { on } I, \text { for some } 0<c<1
$$

Show that the if the function $\gamma(t)=t-\frac{f(t)}{f^{\prime}(t)}$ satisfies $\gamma(I) \subseteq I$, then it admits a unique fixed point z, which satisfies $f(z)=0$.
(b) (Babylonian p th-root estimate.) Let $p \geq 2$ in \mathbb{N} and $a \geq 1$ in \mathbb{R}. Verify that the sequence given by $a_{0}=a$, then, inductively by

$$
a_{n}=\left(1-\frac{1}{p}\right) a_{n-1}+\frac{1}{p} \frac{a}{\left(a_{n-1}\right)^{p-1}}
$$

satisfies for each n that

$$
0 \leq a_{n}-\sqrt[p]{a} \leq\left(\frac{p-1}{p}\right)^{n}\left(a-\frac{1}{a^{p-2}}\right)
$$

[Hint: let $f(t)=t^{p}-a$ and γ be as above on $I=[\sqrt[p]{a}, \infty)$. Show that if $t \in I$, then $\gamma(t) \in I$ too; to get this, let $\alpha=t^{1-1 / p}$ and $\beta=\left(\frac{a}{t^{p-1}}\right)^{1 / p}$ and recall the lemma used to prove Hölder's inequlity.]
4. Show that $\Gamma: C[0,1] \rightarrow C[0,1]$ given for t in $[0,1]$ by

$$
\Gamma(f)(t)=t^{2}+\int_{0}^{t} s^{2} f(s) d s
$$

is a strict contraction. Starting at $f_{0}=0$, calculate a power series for the fixed point $f_{\text {sol }}$ of Γ.
[Hint: the technique is similar to the proof of the Picard-Lindelöf Theorem but with more control: show that $\int_{0}^{t} s^{2}|f(s)| d s \leq \frac{1}{3}\|f\|_{\infty}$.]

