MATH 351, FALL 2017

Assignment #5 Due: Nov. 15.

1. (a) Suppose $f:(0,1) \to \mathbb{R}$ is differentiable at every point. Show that

f is Lipschitz \Leftrightarrow its derivative f' is bounded: $\sup_{t \in (0,1)} |f'(t)| < \infty$.

(b) Classify each $f_k : (0,1) \to \mathbb{R}$ as being Lipschitz, uniformly continuous, and/or continuous:

$$f_1(t) = t \sin\left(\frac{1}{t}\right), \qquad f_2(t) = \sin\left(\frac{1}{t}\right), \qquad f_3(t) = t^2 \sin\left(\frac{1}{t}\right).$$

(c) Let $M, \delta > 0$ and

$$F_{M,\delta} = \left\{ f \in C[0,1] : \begin{array}{l} \text{there is } x \text{ in } [0,1] \text{ so } \frac{|f(t) - f(x)|}{|t-x|} \leq M \\ \text{for } t \in [0,1] \cap [(x-\delta,x) \cup (x,x+\delta)] \end{array} \right\}.$$

(If $f \in F_{M,\delta}$, we say that f is "locally M-Lipschitz" at some x.) Show that $F_{M,\delta}$ is a closed subset of C[0,1] in the topology given by $\|\cdot\|_{\infty}$. [Note: given uniformly converging $(f_n)_{n=1}^{\infty} \subset F_{M,\delta}$, there will be an associated sequence of points of local M-Lipschitzness, $(x_n)_{n=1}^{\infty} \subset [0,1]$.] (d) Show that if f is differentiable at some point in (0,1), then $f \in F_{M,\delta}$ for some $M, \delta > 0$.

2. Let (Y, d_Y) be a compact metric space.

(a) Show that (Y, d_Y) is separable, i.e. there is a countable set $Z \subseteq Y$ so $\overline{Z} = Y$.

(b) We say that a metric space (X, d_X) is totally disconnected if for any $x \neq y$ in X there are open U, V in X so

$$x \in U, y \in V, \quad X = U \cup V \text{ and } U \cap V = \emptyset.$$

Show that the Cantor set (C, d) (d is relativized metric from \mathbb{R}) is totally disconnected.

[The following notation may be handy. In the notation of the appendix of A3, let $U_{b_1...b_n} = C \cap I_{b_1...b_n}$.]

(c) (Universality of Cantor set amongst compact metric spaces.) Show that there exists a continuous surjection $f: C \to Y$.

[Hint: find f as the limit, in the metric of A3, Q4, of a sequence of continuous functions, each with finite range.]

(d) Show that if $(Y, d_Y) = ([0, 1], d)$ (usual metric), then f, above, cannot be bijective.

(e) (Generalized Peano curves.) Let $(V, \|\cdot\|)$ be a normed vector space. A non-empty $K \subseteq V$ is called *convex* if for any x, y in K, the line segment $\{x + t(y - x) : t \in [0, 1]\}$ is a subset of K.

Show that if $K \subset V$ is compact and convex, then there is a continuous surjection $g : [0,1] \to K$. (Hence g([0,1]) = K is a "space-filling curve".)

[Hint: if the elements $f_n : C \to K$, above, are built nicely, then one can build $g_n : [0,1] \to K$ as the piecewise affine extension of f. A function $h : [0,1] \to K$ is piecewise affine if there are $0 = t_0 < t_1 < \cdots < t_n = 1$ and x_0, x_1, \ldots, x_n (not necessarily distinct) in V so $h(t) = x_{j-1} + \frac{t-t_{j-1}}{t_j-t_{j-1}}(x_j - x_{j-1})$ for $t \in [t_{j-1}, t_j]$.]

- 3. (Newton's method.)
 - (a) Let I be closed interval in \mathbb{R} , and $f: I \to \mathbb{R}$ satisfy that

f is twice differentiable on some open interval containing I, $f'(t) \neq 0$ and $|f''(t)f(t)| \leq c|f'(t)|^2$ on I, for some 0 < c < 1.

Show that the if the function $\gamma(t) = t - \frac{f(t)}{f'(t)}$ satisfies $\gamma(I) \subseteq I$, then it admits a unique fixed point z, which satisfies f(z) = 0.

(b) (Babylonian *p*th-root estimate.) Let $p \ge 2$ in \mathbb{N} and $a \ge 1$ in \mathbb{R} . Verify that the sequence given by $a_0 = a$, then, inductively by

$$a_n = \left(1 - \frac{1}{p}\right)a_{n-1} + \frac{1}{p}\frac{a}{(a_{n-1})^{p-1}}$$

satisfies for each n that

$$0 \le a_n - \sqrt[p]{a} \le \left(\frac{p-1}{p}\right)^n \left(a - \frac{1}{a^{p-2}}\right).$$

[Hint: let $f(t) = t^p - a$ and γ be as above on $I = [\sqrt[p]{a}, \infty)$. Show that if $t \in I$, then $\gamma(t) \in I$ too; to get this, let $\alpha = t^{1-1/p}$ and $\beta = (\frac{a}{t^{p-1}})^{1/p}$ and recall the lemma used to prove Hölder's inequility.]

4. Show that $\Gamma: C[0,1] \to C[0,1]$ given for t in [0,1] by

$$\Gamma(f)(t) = t^2 + \int_0^t s^2 f(s) \, ds$$

is a strict contraction. Starting at $f_0 = 0$, calculate a power series for the fixed point f_{sol} of Γ .

[Hint: the technique is similar to the proof of the Picard-Lindelöf Theorem but with more control: show that $\int_0^t s^2 |f(s)| \, ds \leq \frac{1}{3} \|f\|_{\infty}$.]