MATH 351, FALL 2017

Assignment \#4 Due: Oct. 27.

1. (On completions of normed vector spaces) Let $\left(V,\|\cdot\|_{0}\right)$ and $\left(W,\|\cdot\|_{1}\right)$ be normed vector spaces.
(a) Verify that $\|(v, w)\|=\|v\|_{0}+\|w\|_{1}$ defines a norm on $V \times W$. Moreover, if $\left(\bar{V}, \bar{d}_{0}\right)$ is a completion of $\left(V, d_{0}\right)\left(d_{0}(v, x)=\|v-x\|_{0}\right)$; and $\left(\bar{V}, \bar{d}_{1}\right)$ is a completion of $\left(W, d_{1}\right)\left(d_{1}(y, w)=\|y-w\|_{1}\right)$; then

$$
(\bar{V} \times \bar{W}, \bar{d}) \text { with } \bar{d}((\bar{x}, \bar{y}),(\bar{v}, \bar{w}))=\bar{d}_{0}(\bar{x}, \bar{v})+\bar{d}_{1}(\bar{y}, \bar{w})
$$

is the completion of $(V \times W, d)$ where $d((x, y),(v, w))=\|(x, y)-(v, w)\|$.
[Recall that $V \times W$ is a \mathbb{R}-vector space with operations $(x, y)+(v, w)=$ $(x+v, y+w)$ and $\alpha(x, y)=(\alpha x, \alpha y)$.]
(b) Show that \bar{V} is a \mathbb{R}-vector space, and the norm $\|\cdot\|_{0}$ extends to a norm $\|\cdot\|$ on \bar{V}.
[Consider the functions $A: V \times V \rightarrow V, A(v, w)=v+w$; and S_{α} : $\left.V \rightarrow V, S_{\alpha}(v)=\alpha v.\right]$
2. (Distance from a set) Let (X, d) be a metric space an $\varnothing \neq A \subseteq X$. Define for x in X, the distance form x to A by

$$
\operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\}
$$

(a) Show that $\operatorname{dist}(x, A)=0$ if and only if $x \in \bar{A}$ (closure).
(b) Show that $f: X \rightarrow \mathbb{R}, f(x)=\operatorname{dist}(x, A)$ is continuous.
(c) Show that there is a sequence U_{1}, U_{2}, \ldots of open subsets in (X, d) for which $\bar{A}=\bigcap_{n=1}^{\infty} U_{n}$.
(d) Let $\varnothing \neq K \subset X$ be a compact set with $K \cap \bar{A}=\varnothing$. Show that there is a continuous function $g: X \rightarrow[0,1]$ such that $g(x)=0$ for x in A and $g(y)=1$ for y in K.
3. (a) Let $\left(X, d_{X}\right)$ and $\left(Y, f_{Y}\right)$ be compact metric spaces. Show that if a map $f: X \rightarrow Y$ is both continuous and bijective, then its inverse $f^{-1}: Y \rightarrow X$ is also continuous.
(b) Let C be the Cantor set with relitivized metric from $(\mathbb{R},|\cdot|)$, and $P=\prod_{k=1}^{\infty}\left\{0, \frac{1}{2^{k}}\right\}$ with relitivized metric from $\left(\ell_{1},\|\cdot\|_{1}\right)$. Show that there exists a continuous bijection $f: C \rightarrow P$.
(c) Show that there is a continuous surjection $\varphi: C \rightarrow[0,1]$. [Consider $\varphi=\|f(\cdot)\|_{1}$.]

