MATH 351, FALL 2017

Assignment #4 Due: Oct. 27.

1. (On completions of normed vector spaces) Let $(V, \|\cdot\|_0)$ and $(W, \|\cdot\|_1)$ be normed vector spaces.

(a) Verify that $|||(v,w)||| = ||v||_0 + ||w||_1$ defines a norm on $V \times W$. Moreover, if $(\overline{V}, \overline{d}_0)$ is a completion of (V, d_0) $(d_0(v, x) = ||v - x||_0)$; and $(\overline{V}, \overline{d}_1)$ is a completion of (W, d_1) $(d_1(y, w) = ||y - w||_1)$; then

 $(\overline{V} \times \overline{W}, \overline{d})$ with $\overline{d}((\overline{x}, \overline{y}), (\overline{v}, \overline{w})) = \overline{d}_0(\overline{x}, \overline{v}) + \overline{d}_1(\overline{y}, \overline{w})$

is the completion of $(V \times W, d)$ where d((x, y), (v, w)) = |||(x, y) - (v, w)|||. [Recall that $V \times W$ is a \mathbb{R} -vector space with operations (x, y) + (v, w) = (x + v, y + w) and $\alpha(x, y) = (\alpha x, \alpha y)$.]

(b) Show that \overline{V} is a \mathbb{R} -vector space, and the norm $\|\cdot\|_0$ extends to a norm $\|\cdot\|$ on \overline{V} .

[Consider the functions $A: V \times V \to V$, A(v, w) = v + w; and $S_{\alpha}: V \to V$, $S_{\alpha}(v) = \alpha v$.]

2. (Distance from a set) Let (X, d) be a metric space an $\emptyset \neq A \subseteq X$. Define for x in X, the distance form x to A by

$$\operatorname{dist}(x, A) = \inf\{d(x, a) : a \in A\}.$$

(a) Show that dist(x, A) = 0 if and only if $x \in \overline{A}$ (closure).

(b) Show that $f: X \to \mathbb{R}$, $f(x) = \operatorname{dist}(x, A)$ is continuous.

(c) Show that there is a sequence U_1, U_2, \ldots of open subsets in (X, d) for which $\overline{A} = \bigcap_{n=1}^{\infty} U_n$.

(d) Let $\emptyset \neq K \subset X$ be a compact set with $K \cap \overline{A} = \emptyset$. Show that there is a continuous function $g: X \to [0, 1]$ such that g(x) = 0 for x in A and g(y) = 1 for y in K.

Don't forget the next question ...

3. (a) Let (X, d_X) and (Y, f_Y) be compact metric spaces. Show that if a map $f : X \to Y$ is both continuous and bijective, then its inverse $f^{-1}: Y \to X$ is also continuous.

(b) Let C be the Cantor set with relitivized metric from $(\mathbb{R}, |\cdot|)$, and $P = \prod_{k=1}^{\infty} \{0, \frac{1}{2^k}\}$ with relitivized metric from $(\ell_1, \|\cdot\|_1)$. Show that there exists a continuous bijection $f: C \to P$.

(c) Show that there is a continuous surjection $\varphi : C \to [0, 1]$. [Consider $\varphi = \|f(\cdot)\|_{1}$.]