MATH 351, FALL 2017

Assignment \#3 Due: Oct. 20.

1. Let X be a non-empty set and recall the equivalence relations \approx and \sim on the space of metrics $M(X)$ from the last assignment.
(a) Give an example of an X and d, ρ in $M(X)$ with $d \not \approx \rho$ but with the property that a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset X$, is Cauchy in (X, d) if and only if it is Cauchy in (X, ρ).
(b) Give an example of an X and d, ρ in $M(X)$ with $d \sim \rho$, and there is a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset X$ which is Cauchy in one of (X, d) or (X, ρ), but not the other.
[Consider some of the first example of metrics suggested, in lectures.]
2. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be complete metric spaces.
(a) A subset $F \subseteq X$ is closed in $(X, d) \Leftrightarrow$ the relativized metric space $\left(F, d_{F}\right)$ is complete.
(b) Let A be a non-empty subset of X. A function $f: A \rightarrow Y$ is called uniformly continuous ${ }^{\dagger}$ if given $\varepsilon>0$, there is $\delta>0$ such that

$$
d_{Y}(f(x), f(y))<\varepsilon, \text { whenever } d_{X}(x, y)<\delta \text { for } x, y \text { in } A .
$$

Show that if $f: A \rightarrow Y$ is uniformly continuous, then there is a unique continuous function $\bar{f}: \bar{A} \rightarrow Y$ such that $\left.\bar{f}\right|_{A}=f$. Moreover, \bar{f} is uniformly continuous.
\dagger The difference between this definition and that of "continuous" is that this holds uniformly for all choices of x, y within small distance of each other, rather than fixing one of x or y in advance.
3. Let (X, d) be a metric space. A subset $P \subseteq X$ is called perfect if $P^{\prime}=P$, i.e. P is the set of accumulation points of itself.
(a) Verify whether or not the following sets below are perfect within the metric spaces suggested. Justify your reasoning.
(i) $[a, b]$ in $(\mathbb{R},|\cdot|)(a<b$ in $\mathbb{R})$;
(ii) $\left\{q \in \mathbb{Q}: 0 \leq q\right.$ and $\left.q^{2}<2\right\}$ in $(\mathbb{Q},|\cdot|)$ [you may take for granted that $\sqrt{2}$ is irrational];
(iii) the Cantor set C in $(\mathbb{R},|\cdot|)$ [see Appendix to this assignment];
(iv) $\prod_{k=1}^{\infty}\left\{0, \frac{1}{2^{k}}\right\}$ in $\left(\ell_{1},\|\cdot\|_{1}\right)$.
(b) Let P be a non-empty perfect set in a metric space (X, d). Verify that there are two points x_{0}, x_{1} in P and an $r_{1}>0$ for which $B\left[x_{0}, r_{1}\right] \cap$ $B\left[x_{1}, r_{1}\right]=\varnothing$. Furthermore, for each b_{1} in $\{0,1\}$ there are points $x_{b_{1} 0}$ and $x_{b_{1} 1}$ in the punctured ball $B\left(x_{b_{1}}, r_{1}\right) \backslash\left\{x_{b_{1}}\right\}$ and $r_{2}>0$ for which

$$
\begin{aligned}
& B\left[x_{b_{1} b_{2}}, r_{2}\right] \subset B\left(x_{b_{1}}, r_{1}\right) \backslash\left\{x_{b_{1}}\right\} \text { for } b_{2} \in\{0,1\} \\
& \text { and } B\left[x_{b_{1}}, r_{2}\right] \cap B\left[x_{b_{1} 1}, r_{2}\right]=\varnothing
\end{aligned}
$$

(c) Show that a non-empty perfect set P in a complete metric space (X, d) has $|P| \geq \mathfrak{c}$.
[Hint: iterate the procedure of (b). Consider, for each d in $\{0,1\}^{\mathbb{N}}$, the sequence of points $\left(x_{b_{1}}, x_{b_{1} b_{2}}, x_{b_{1} b_{2} b_{3}}, \ldots\right) \subset P$ thus created.]
(d) Does the conclusion of (c), above, hold if we do not assume that (X, d) is complete?
4. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Given non-empty $B \subseteq Y$ we let $\operatorname{diam}_{Y}(B)=\sup _{y_{1}, y_{2} \in B} d_{Y}\left(y_{1}, y_{2}\right)$. Let

$$
C_{b}(X, Y)=\left\{f \in Y^{X}: f \text { is continuous and } \operatorname{diam}_{Y}(f(X))<\infty\right\}
$$

where $f(X)=\left\{f(x)^{\prime} x \in X\right\}$ is the range of f.
(a) Show that $d_{C}: C_{b}(X, Y) \times C_{b}(X, Y) \rightarrow[0, \infty)$ given by

$$
d_{C}(f, g)=\sup _{x \in X} d_{Y}(f(x), g(x))
$$

defines a metric on $C_{b}(X, Y)$. [Is it obvious that $d_{C}(f, g)<\infty$?]
(b) Show that if $\left(Y, d_{Y}\right)$ is complete, then $\left(C_{b}(X, Y), d_{C}\right)$ is also complete.

Appendix: construction of the Cantor set. To establish consistent notation, let us recall construction of the Cantor set in \mathbb{R}.
Let $I=[0,1]$ and $J=\left(\frac{1}{3}, \frac{2}{3}\right)$, and $C_{1}=I \backslash J=I_{0} \cup I_{1}$, where $I_{0}=\left[0, \frac{1}{3}\right]$ and $I_{1}=\left[\frac{2}{3}, 1\right]$.
We continue inductively.
Having constructed $C_{n}=\bigcup_{\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}} I_{b_{1} \ldots b_{n}}$, where each $I_{b_{1} \ldots b_{n}}$ is a closed interval of length $\frac{1}{3^{n}}$, let $J_{b_{1} \ldots b_{n}}$ be the open middle third of $I_{b_{1} \ldots b_{n}}$ and let

$$
C_{n+1}=C_{n} \backslash \bigcup_{\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}} J_{b_{1} \ldots b_{n}}=\bigcup_{\left(b_{1}, \ldots, b_{n}, b_{n+1}\right) \in\{0,1\}^{n+1}} I_{b_{1} \ldots b_{n} b_{n+1}}
$$

Here each $I_{b_{1} \ldots b_{n} 0}$ and $I_{b_{1} \ldots b_{n} 1}$ are the left and right closed thirds of $I_{b_{1} \ldots b_{n}}$, each of length $\frac{1}{3^{n+1}}$.
We let $C=\bigcap_{n=1}^{\infty} C_{n}$, which is evidently closed. It follows the Nested Intervals Theorem that $C \neq \varnothing$. Indeed, $\varnothing \neq I_{0} \cap I_{00} \cap I_{000} \cap \cdots \subset C$.
We may see much more concretely that $C \neq \varnothing$. Indeed if $\left(t_{k}\right)_{k=1}^{\infty} \in$ $\{0,2\}^{\mathbb{N}}$ then

$$
\sum_{k=1}^{\infty} \frac{t_{k}}{3^{k}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{t_{k}}{3^{k}} \in \bigcap_{n=1}^{\infty} I_{\frac{t_{1}}{2} \ldots \frac{t_{n}}{2}} .
$$

Indeed, each $\sum_{k=1}^{n} \frac{t_{k}}{3^{k}}$ is the left endpoint of $I_{\frac{t_{1}}{2} \ldots \frac{t_{n}}{2}}$.

