MATH 351, FALL 2017

Assignment #3 Due: Oct. 20.

1. Let X be a non-empty set and recall the equivalence relations \approx and \sim on the space of metrics M(X) from the last assignment.

(a) Give an example of an X and d, ρ in M(X) with $d \not\approx \rho$ but with the property that a sequence $(x_n)_{n=1}^{\infty} \subset X$, is Cauchy in (X, d) if and only if it is Cauchy in (X, ρ) .

(b) Give an example of an X and d, ρ in M(X) with $d \sim \rho$, and there is a sequence $(x_n)_{n=1}^{\infty} \subset X$ which is Cauchy in one of (X, d) or (X, ρ) , but not the other.

[Consider some of the first example of metrics suggested, in lectures.]

2. Let (X, d_X) and (Y, d_Y) be complete metric spaces.

(a) A subset $F \subseteq X$ is closed in $(X, d) \Leftrightarrow$ the relativized metric space (F, d_F) is complete.

(b) Let A be a non-empty subset of X. A function $f : A \to Y$ is called *uniformly continuous*[†] if given $\varepsilon > 0$, there is $\delta > 0$ such that

 $d_Y(f(x), f(y)) < \varepsilon$, whenever $d_X(x, y) < \delta$ for x, y in A.

Show that if $f : A \to Y$ is uniformly continuous, then there is a unique continuous function $\overline{f} : \overline{A} \to Y$ such that $\overline{f}|_A = f$. Moreover, \overline{f} is uniformly continuous.

[†] The difference between this definition and that of "continuous" is that this holds uniformly for *all* choices of x, y within small distance of each other, rather than fixing one of x or y in advance.

3. Let (X, d) be a metric space. A subset $P \subseteq X$ is called *perfect* if P' = P, i.e. P is the set of accumulation points of itself.

(a) Verify whether or not the following sets below are perfect within the metric spaces suggested. Justify your reasoning.

- (i) [a, b] in $(\mathbb{R}, |\cdot|)$ (a < b in $\mathbb{R})$;
- (ii) $\{q \in \mathbb{Q} : 0 \le q \text{ and } q^2 < 2\}$ in $(\mathbb{Q}, |\cdot|)$ [you may take for granted that $\sqrt{2}$ is irrational];
- (iii) the Cantor set C in $(\mathbb{R}, |\cdot|)$ [see Appendix to this assignment];
- (iv) $\prod_{k=1}^{\infty} \{0, \frac{1}{2^k}\}$ in $(\ell_1, \|\cdot\|_1)$.

(b) Let P be a non-empty perfect set in a metric space (X, d). Verify that there are two points x_0, x_1 in P and an $r_1 > 0$ for which $B[x_0, r_1] \cap$ $B[x_1, r_1] = \emptyset$. Furthermore, for each b_1 in $\{0, 1\}$ there are points x_{b_10} and x_{b_11} in the punctured ball $B(x_{b_1}, r_1) \setminus \{x_{b_1}\}$ and $r_2 > 0$ for which

$$B[x_{b_1b_2}, r_2] \subset B(x_{b_1}, r_1) \setminus \{x_{b_1}\} \text{ for } b_2 \in \{0, 1\}$$

and $B[x_{b_10}, r_2] \cap B[x_{b_11}, r_2] = \emptyset.$

(c) Show that a non-empty perfect set P in a complete metric space (X, d) has $|P| \ge \mathfrak{c}$.

[Hint: iterate the procedure of (b). Consider, for each d in $\{0, 1\}^{\mathbb{N}}$, the sequence of points $(x_{b_1}, x_{b_1b_2}, x_{b_1b_2b_3}, \dots) \subset P$ thus created.]

(d) Does the conclusion of (c), above, hold if we do not assume that (X, d) is complete?

4. Let (X, d_X) and (Y, d_Y) be metric spaces. Given non-empty $B \subseteq Y$ we let diam_Y $(B) = \sup_{y_1, y_2 \in B} d_Y(y_1, y_2)$. Let

 $C_b(X,Y) = \{ f \in Y^X : f \text{ is continuous and } \operatorname{diam}_Y(f(X)) < \infty \}$ where $f(X) = \{ f(x)'x \in X \}$ is the range of f.

(a) Show that $d_C: C_b(X,Y) \times C_b(X,Y) \to [0,\infty)$ given by

$$d_C(f,g) = \sup_{x \in X} d_Y(f(x),g(x))$$

defines a metric on $C_b(X, Y)$. [Is it obvious that $d_C(f, g) < \infty$?]

(b) Show that if (Y, d_Y) is complete, then $(C_b(X, Y), d_C)$ is also complete.

Appendix: construction of the Cantor set. To establish consistent notation, let us recall construction of the Cantor set in \mathbb{R} .

Let I = [0, 1] and $J = (\frac{1}{3}, \frac{2}{3})$, and $C_1 = I \setminus J = I_0 \cup I_1$, where $I_0 = [0, \frac{1}{3}]$ and $I_1 = [\frac{2}{3}, 1]$.

We continue inductively.

Having constructed $C_n = \bigcup_{(b_1,...,b_n) \in \{0,1\}^n} I_{b_1...b_n}$, where each $I_{b_1...b_n}$ is a closed interval of length $\frac{1}{3^n}$, let $J_{b_1...b_n}$ be the open middle third of $I_{b_1...b_n}$ and let

$$C_{n+1} = C_n \setminus \bigcup_{(b_1, \dots, b_n) \in \{0,1\}^n} J_{b_1 \dots b_n} = \bigcup_{(b_1, \dots, b_n, b_{n+1}) \in \{0,1\}^{n+1}} I_{b_1 \dots b_n b_{n+1}}.$$

Here each $I_{b_1...b_n0}$ and $I_{b_1...b_n1}$ are the left and right closed thirds of $I_{b_1...b_n}$, each of length $\frac{1}{3^{n+1}}$.

We let $C = \bigcap_{n=1}^{\infty} C_n$, which is evidently closed. It follows the Nested Intervals Theorem that $C \neq \emptyset$. Indeed, $\emptyset \neq I_0 \cap I_{00} \cap I_{000} \cap \cdots \subset C$. We may see much more concretely that $C \neq \emptyset$. Indeed if $(t_k)_{k=1}^{\infty} \in \{0,2\}^{\mathbb{N}}$ then

$$\sum_{k=1}^{\infty} \frac{t_k}{3^k} = \lim_{n \to \infty} \sum_{k=1}^n \frac{t_k}{3^k} \in \bigcap_{n=1}^{\infty} I_{\frac{t_1}{2} \dots \frac{t_n}{2}}.$$

Indeed, each $\sum_{k=1}^{n} \frac{t_k}{3^k}$ is the left endpoint of $I_{\frac{t_1}{2}...\frac{t_n}{2}}$.