MATH 351, FALL 2017

Assignment #2 Due: Oct. 6.

1. (On equivalence of norms) On a \mathbb{R} -vector space, an $\|\cdot\|$ and $\|\cdot\|$ be two norms defined on V. We let

$$\|\cdot\| \approx \|\cdot\| \iff \qquad \text{there are } m, M > 0 \text{ for which} \\ m\|x\| \le \|x\| \le M\|x\| \text{ for all } x \text{ in } V.$$

(a) Verify that \approx is an equivalence relation on the set N(V) of norms on V.

(b) Consider the vector space \mathbb{R}^n . Show that for 1 that

 $||x||_{\infty} \le ||x||_{r} \le ||x||_{p} \le ||x||_{1} \le n ||x||_{\infty}$ for x in \mathbb{R}^{n}

and deduce that these norms are all equivalent.

[Hint: for the hardest of these inequilities, if $x \neq 0$, first divide $||x||_r^r$ by $||x||_{\infty}^r$, notice that $t^r \leq t^p$ if $0 \leq t \leq 1$.]

(c) Show that for x in \mathbb{R}^n we have $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.

(d) Show that for $1 \leq p < r < \infty$ we have a proper containment relations

$$\ell_p \subsetneq \ell_r \subsetneq c_0.$$

[The integral test for series convergnece is your friend.]

(e) Show that for $1 \le p < r \le \infty$, $\|\cdot\|_p \not\approx \|\cdot\|_r$ on ℓ_1 . (Recall, from above, that $\ell_1 \subset \ell_p$ for each $1 \le p \le \infty$.)

2. (On equivalence of metrics)

Let X be a non-empty set and $M(X) \subset [0,\infty)^{X \times X}$ denote the set of all metrics on X. For d, ρ in M(X) let

$$d \approx \rho \quad \Leftrightarrow \quad \begin{cases} \text{there are } m, M > 0 \text{ for which} \\ md(x, y) \leq \rho(x, y) \leq Md(x, y) \text{ for all } x, y \text{ in } X; \text{ and.} \end{cases}$$
$$d \sim \rho \quad \Leftrightarrow \quad \begin{cases} \lim_{n \to \infty} x_n = x \text{ in } (X, d) \Leftrightarrow \lim_{n \to \infty} x_n = x \text{ in } (X, \rho) \\ \text{for any sequence } (x_n)_{n=1}^{\infty} \subseteq X \text{ and any } x \text{ in } X \end{cases}$$

(a) Verify that \approx and \sim are equivalence relations on M(X).

(b) Show that $d \approx \rho$ in M(X) implies that $d \sim \rho$

(c) Show that $d \sim \rho$ in $M(X) \Leftrightarrow (X, d)$ and (X, ρ) admit the same open sets.

(d) Let $d \in M(X)$ and $f : [0, \infty) \to [0, \infty)$ satisfy that

f(0) = 0 and f is strictly increasing, subadditive and continuous. (\heartsuit)

Show that $d_f: X \times X \to [0, \infty), d_f(x, y) = f(d(x, y))$ defines a metic with $d_f \sim d$. Furthermore, show that $f(s) = \frac{s}{s+1}$ satisfies (\heartsuit).

(e) Does $d \sim \rho$ in M(X) imply that $d \approx \rho$? Prove this, or supply a counterexample.

3. We say that a metric space (X, d) is *separable* if there is a countable set $Z = \{z_k\}_{k=1}^{\infty} \subseteq X$ with closure $\overline{Z} = X$.

(a) Show that if (X, d) is separable, then it cardinality satisfies $|X| \leq \mathfrak{c}$. [Hint: this has aspects similar to our construction of \mathbb{R} from \mathbb{Q} .]

(b) Show that for $1 \le p < \infty$ that ℓ_p is separable.

(c) Let $C(\mathbb{R}) = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is continuous} \}$. Show that $|C(\mathbb{R})| = \mathfrak{c}$.

[Hint: a continuous function is determined by its behaviour on \mathbb{Q} .]

(d) Show that ℓ_{∞} is not separable.

[Hint: find a subset of X elements which is uncountbale and $\|\chi - \chi'\|_{\infty} \ge 1$ for $\chi \neq \chi'$ in X.]

(e) Show that $|\ell_{\infty}| = \mathfrak{c}$.

[Hint: find an injection $\ell_{\infty} \hookrightarrow C(\mathbb{R})$.]