MATH 351, FALL 2017

Assignment #1 Due: Sept. 22.

1. Consider the space of Cauchy sequences of rationals:

$$X = \left\{ (q_n) = (q_n)_{n=1}^{\infty} \in \mathbb{Q}^{\mathbb{N}} : \text{ for each } \varepsilon \text{ in } \mathbb{Q}_+, \text{ there is } n_\varepsilon \text{ in } \mathbb{N} \text{ such } \right\}.$$

In X we let

 $(q_n) \sim (r_n)$ if for any ε in \mathbb{Q}_+ , there is n_{ε} in \mathbb{N} for which $|q_n - r_n| < \varepsilon$ whenever $n \ge n_{\varepsilon}$; $(q_n) \le (r_n)$ if for any ε in \mathbb{Q}_+ , there is n_{ε} in \mathbb{N} for which $q_n \le r_n + \varepsilon$, in \mathbb{Q} , whenever $n \ge n_{\varepsilon}$; and $(q_n) < (r_n)$ if $(q_n) \le (r_n)$ and $(q_n) \not\sim (r_n)$.

- (a) Suppose $(q_n) < (r_n)$ in X. Show that there is q in \mathbb{Q} such that the constant sequence $(q) = (q, q, \dots)$ satisfies $(q_n) < (q) < (r_n)$.
- (b) Given (q_n) in X, show that there is q in \mathbb{Q} such that $(q_n) < (q)$.
- 2. Let A be a non-empty set.
 - (a) Show that $\mathbb{N} \leq A \Leftrightarrow A$ is partitionable into denumerable sets: i.e. there is a family $\{P_i\}_{i\in I} \subset \mathcal{P}(A)$ such that
 - \bullet each P_i is denumerable,
 - $P_i \cap P_j = \emptyset$ if $i \neq j$ in I, and
 - $A = \bigcup_{i \in I} P_i$.

[Hint: the non-trivial direction requires Z.L.]

- (b) Show that the following are equivalent:
 - (i) $\aleph_0 \leq |A|$, i.e. A is infinite;
 - (ii) |A| = n|A| for any $n \ge 2$ in \mathbb{N} ; and
 - (iii) $|A| = \aleph_0 |A|$.

Don't forget next page.

(c) Deduce that a pair of sets B, C, with at least one infinite, satisfies $|B| + |C| = \max\{|B|, |C|\}.$

Note that $\max\{|B|, |C|\}$ makes sense, thanks to the Comparison Lemma.

- (d) Let B and C be non-empty sets. A map $\varphi: B \to C$ is countable-to-one if for every c in C, $\varphi^{-1}(\{c\})$ is countable. Show that if such a map exists then $|B| \leq \aleph_0 |C|$.
- 3. Let A be an infinite set.
 - (a) Show that $|A| = |A|^n$ for any $n \ge 2$ in \mathbb{N} .

[Hint: Consider n=2, first. Adapt proof of comparison lemma, generally.]

- (b) Deduce that a pair of non-empty sets B, C, with at least one infinite, satisfies $|B||C| = \max\{|B|, |C|\}$.
- (c) Prove that the set $\mathcal{F}(A)$ of finite subsets of A satisfies $|\mathcal{F}(A)| = |A|$.
- (d) Let V be a vector space over a field \mathbb{K} which admits an infinite linearly independent set. Show that any two bases B and B' have the same cardinality.

[Hint: Apply q. 2 (d), above to $\mathcal{F}(B)$ and $\mathcal{F}(B')$.]

This cardinal above is called the dimension of V over \mathbb{K} , denoted $\dim_{\mathbb{K}} V$.

(e) Without appealing to the continuum hypothesis, determine $\dim_{\mathbb{Q}} \mathbb{R}$.