MATH 351, FALL 2017

Assignment \#1 Due: Sept. 22.

1. Consider the space of Cauchy sequences of rationals:
$X=\left\{\left(q_{n}\right)=\left(q_{n}\right)_{n=1}^{\infty} \in \mathbb{Q}^{\mathbb{N}}: \begin{array}{l}\text { for each } \varepsilon \text { in } \mathbb{Q}_{+}, \text {there is } n_{\varepsilon} \text { in } \mathbb{N} \text { such } \\ \text { that }\left|q_{m}-q_{n}\right|<\varepsilon \text { whenever } m, n \geq n_{\varepsilon}\end{array}\right\}$.
In X we let

$$
\begin{aligned}
& \left(q_{n}\right) \sim\left(r_{n}\right) \text { if for any } \varepsilon \text { in } \mathbb{Q}_{+}, \text {there is } n_{\varepsilon} \text { in } \mathbb{N} \text { for which } \\
& \quad\left|q_{n}-r_{n}\right|<\varepsilon \text { whenever } n \geq n_{\varepsilon} ; \\
& \left(q_{n}\right) \leq\left(r_{n}\right) \text { if for any } \varepsilon \text { in } \mathbb{Q}_{+}, \text {there is } n_{\varepsilon} \text { in } \mathbb{N} \text { for which } \\
& \quad q_{n} \leq r_{n}+\varepsilon \text {, in } \mathbb{Q} \text {, whenever } n \geq n_{\varepsilon} ; \text { and } \\
& \left(q_{n}\right)<\left(r_{n}\right) \text { if }\left(q_{n}\right) \leq\left(r_{n}\right) \text { and }\left(q_{n}\right) \nsim\left(r_{n}\right) .
\end{aligned}
$$

(a) Suppose $\left(q_{n}\right)<\left(r_{n}\right)$ in X. Show that there is q in \mathbb{Q} such that the constant sequence $(q)=(q, q, \ldots)$ satisfies $\left(q_{n}\right)<(q)<\left(r_{n}\right)$.
(b) Given $\left(q_{n}\right)$ in X, show that there is q in \mathbb{Q} such that $\left(q_{n}\right)<(q)$.
2. Let A be a non-empty set.
(a) Show that $\mathbb{N} \preceq A \Leftrightarrow A$ is partitionable into denumerable sets: i.e. there is a family $\left\{P_{i}\right\}_{i \in I} \subset \mathcal{P}(A)$ such that

- each P_{i} is denumerable,
- $P_{i} \cap P_{j}=\varnothing$ if $i \neq j$ in I, and
- $A=\bigcup_{i \in I} P_{i}$.
[Hint: the non-trivial direction requires Z.L.]
(b) Show that the following are equivalent:
(i) $\aleph_{0} \leq|A|$, i.e. A is infinite;
(ii) $|A|=n|A|$ for any $n \geq 2$ in \mathbb{N}; and
(iii) $|A|=\aleph_{0}|A|$.

Don't forget next page.
(c) Deduce that a pair of sets B, C, with at least one infinite, satisfies $|B|+|C|=\max \{|B|,|C|\}$.

Note that $\max \{|B|,|C|\}$ makes sense, thanks to the Comparison Lemma.
(d) Let B and C be non-empty sets. A map $\varphi: B \rightarrow C$ is countable-to-one if for every c in $C, \varphi^{-1}(\{c\})$ is countable. Show that if such a map exists then $|B| \leq \aleph_{0}|C|$.
3. Let A be an infinite set.
(a) Show that $|A|=|A|^{n}$ for any $n \geq 2$ in \mathbb{N}.
[Hint: Consider $n=2$, first. Adapt proof of comparison lemma, generally.]
(b) Deduce that a pair of non-empty sets B, C, with at least one infinite, satisfies $|B||C|=\max \{|B|,|C|\}$.
(c) Prove that the set $\mathcal{F}(A)$ of finite subsets of A satisfies $|\mathcal{F}(A)|=|A|$.
(d) Let V be a vector space over a field \mathbb{K} which admits an infinite linearly independent set. Show that any two bases B and B^{\prime} have the same cardinality.
[Hint: Apply q. 2 (d), above to $\mathcal{F}(B)$ and $\mathcal{F}\left(B^{\prime}\right)$.]
This cardinal above is called the dimension of V over \mathbb{K}, denoted $\operatorname{dim}_{\mathbb{K}} V$.
(e) Without appealing to the continuum hypothesis, determine $\operatorname{dim}_{\mathbb{Q}} \mathbb{R}$.

