
PMATH 351, Real Analysis

Brian E. Forrest

August 23, 2017



Contents

1 Axiom of Choice, Zorn’s Lemma and Cardinality 2
1.0 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Products and the Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Relations and Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Equivalence Relations and Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Cardinal Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Sums of Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Products of Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Exponentiation of Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Metric Spaces 19
2.0 Basic Concepts and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Topology of Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Boundaries, Interiors and Closures of a set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Convergence of Sequences and Topology in a Metric Space . . . . . . . . . . . . . . . . . . . . 32
2.4 Induced Metric and the Relative Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Complete Metric Spaces: Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Completeness of R, Rn and lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Completeness of (Cb(X), ‖·‖∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9 Characterizations of Complete Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Completions of Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 Banach Contractive Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Baire’s Category Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.13 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.14 Compactness and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.15 Finite Dimensional Normed Linear Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 The Space (C(X), ‖·‖∞) 68
3.1 Weierstrass Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Stone-Weierstrass Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Compactness in (C(X), ‖·‖∞) and the Ascoli-Arzela Theorem . . . . . . . . . . . . . . . . . . 76

1



Chapter 1

Axiom of Choice, Zorn’s Lemma and
Cardinality

1.0 Notation

We will introduce some basic material that will be used throughout the rest of the course.
We will use the following notation:

• N will denote the set of natural numbers {1, 2, 3, . . .}.

• Z will denote the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.

• Q will denote the set of rational numbers
{
a
b : a ∈ Z, b ∈ N

}
.

• R will denote the set of real numbers.

We will use the notation A ⊂ B and A ⊆ B interchangeably to mean that A is a subset of B with the
possibility that A = B though when we explicitly wish to emphasize that A = B is a possibility, we will
generally use A ⊆ B. When we wish to express that A is a proper subset of B, then we can either specify
further that A 6= B, or we can use the notation A ( B.

Definition 1.0.1. Given a set X, we let

P(X) = {A | A ⊂ X}.

We call P(X) the Power Set of X. In this case, we call X the universal set.

The union of A and B is the set

A ∪B = {x | x ∈ A or x ∈ B}.

More generally, if for each α ∈ I, Aα ⊆ X, then⋃
α∈I

Aα = {x | x ∈ Aα for some α ∈ I}.

The intersection of A and B is the set

A ∩B = {x | x ∈ A and x ∈ B}.

More generally, if for each α ∈ I, Aα ⊆ X, then⋂
α∈I

Aα = {x | x ∈ Aα for all α ∈ I}.
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Problem 1. What would we mean by
⋃
α∈I

Aα if I = ∅?

Let A,B ⊂ X. We will let
B \A = {x ∈ B | x 6∈ A}.

In the special case, when B = X, we also call the set X \ A the complement of A in X and denote this set
by Ac. Observe that for any sets A,B ⊆ X, we have that (Ac)c = A and also Ac = Bc if and only if A = B.
.

Theorem 1.0.2. (DeMorgan’s Laws)

1. (
⋃
α∈I

Aα)c =
⋂
α∈I

(Acα).

2. (
⋂
α∈I

Aα)c =
⋃
α∈I

(Acα).

Proof. 1. This follows since x ∈ (
⋃
α∈I

Aα)c if and only if x 6∈
⋃
α∈I

Aα. In turn this happens if and only if

x ∈ Acα for each α ∈ I, and hence if and only if x ∈
⋂
α∈I

(Acα).

2. This can be seen to be exactly the same statement as in 1. if we simply replace Aα by Acα and apply
the complementation operation to both sides of the equality.

1.1 Products and the Axiom of Choice

Definition 1.1.1. Given two sets X,Y , define the product of X and Y by

X × Y = {(x, y) | x ∈ X and y ∈ Y }.

In this case, x is called the x-coordinate of (x, y) and y is called the y-coordinate of (x, y).
Given n sets {X1, X2, X3, · · · , Xn}, define the product of {X1, X2, X3, · · · , Xn} by

X1 ×X2 × · · · ×Xn =

n∏
i=1

Xi = {(x1, x2, x3, · · · , xn) | xi ∈ Xi}.

(x1, x2, · · · , xn) ∈
n∏
i=1

Xi is called an n-tuple and xi is called the ith coordinate.

If Xi = X for all i, we write Xn for
n∏
i=1

Xi.

Notation: Given a finite set X, let | X | be the number of elements in X. | X | is called the cardinality
of X.

The following theorem is clear.

Theorem 1.1.2. Let {X1, X2, · · · , Xn} be a finite collection of finite sets. Then

|
n∏
i=1

Xi |=
n∏
i=1

| Xi | .

In particular, if Xi = X for all i, then

|
n∏
i=1

Xi |=| X |n .
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Problem 2. How do we define the product of an arbitrary collection of sets?

Note: Each (x1, x2, · · · , xn) ∈
n∏
i=1

Xi determines a function

f(x1,x2,··· ,xn)(i) : {1, 2, · · · , n} →
n⋃
i=1

Xi

by
f(x1,x2,··· ,xn)(i) = xi.

Given f : {1, 2, · · · , n} →
n⋃
i=1

Xi with f(i) ∈ Xi, define (x1, x2, · · · , xn) ∈
n∏
i=1

Xi, by

xi = f(i).

Fact:

n∏
i=1

Xi
∼= {f : {1, 2, · · · , n} →

n⋃
i=1

Xi | f(i) ∈ Xi}.

f is called a choice function.

Definition 1.1.3. Given a collection {Xα}α∈I of sets define∏
α∈I

Xα = {f : I →
⋃
α∈I

Xα | f(α) ∈ Xα}.

If Xα = X for all α ∈ I,
∏
α∈I

Xα is written as XI .

Fundamental Problem:

Given a non-empty collection {Xα}α∈I of non-empty sets is∏
α∈I

Xα 6= ∅?

Axiom 1.1.4 [Zermelo’s Axiom of Choice]. Given a non-empty collection {Xα}α∈I of non-empty sets∏
α∈I

Xα 6= ∅.

Note: The following statement is equivalent to the Axiom of Choice:

Axiom 1.1.5 [Axiom of Choice]. Given a non-empty set X there exists a function

f : P(X) \ {∅} → X

such that for every A ⊂ X with A 6= ∅, we have f(A) ∈ A.
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1.2 Relations and Zorn’s Lemma

Definition 1.2.1. A relation is a subset R of X×Y . We generally will write xRy if (x, y) ∈ R. R is often
called the graph of the relation.

In the case, that X = Y we say that R determines a relation on X.

Example 1.1. A function f : X → Y can be viewed as a relation R with the property that for each x ∈ X
there exists exactly one y ∈ Y such that xRy. In this case, we have:

f(x) = y if and only if xRy.

Definition 1.2.2. A relation R on X is

1. reflexive if xRx for every x ∈ X.

2. symmetric if xRy ⇒ yRx.

3. anti-symmetric if xRy and yRx implies x = y.

4. transitive if xRy and yRz implies xRz.

Example 1.2. Let X = R. Then we can define a relation R on R by

xRy if and only if x ≤ y.

In this case, the relation is easily seen to be refelxive, transitive, and anti-symmetric.

Example 1.3. Let X be any set. Then we can define a relation R on P(X) by

ARB if and only if A ⊆ B.

This relation is easily seen to be reflexive, transitive, and anti-symmetric. In this case, we say that ⊆ orders
P(X) by inclusion.

We can define a second relation R∗ on P(X) by

AR∗B if and only if B ⊆ A or A ⊇ B.

Again, this relation is easily seen to be reflexive, transitive, and anti-symmetric. In this case, we say that ⊇
orders P(X) by containment.

Remark 1.2.3. Note that when we use the relation ≤ to order the elements of R, then for any two elements
x, y ∈ R we have either x ≤ y or y ≤ x. As such we say that ≤ totally orders R.

In general, for a set X, if we use ⊆ to order P(X) it is not possible to compare every pair of sets A and
B. As such we say that ⊆ partially orders P(X).

Definition 1.2.4. A relation R on a set X is called a partial order if it is

1. reflexive

2. anti-symmetric

3. transitive
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We call the pair (X,R) a partially ordered set or a poset for short.

If for any x, y ∈ X, either xRy or yRx, we call R a total order on X. In this case, we call (X,R) a
totally ordered set or a chain for short.

Because (R,≤) is the fundamental example of a partially ordered set we will often use the symbol ≤ or
the stylized � to denote the relation on on a parially ordered set.

Definition 1.2.5. Let (X,≤) be a partially ordered set. Let A ⊆ X.
We say that x ∈ X is an upper bound for A if y ≤ x for every y ∈ A. We say that A is bounded above if

it has an upper bound.

We say that x ∈ X is the least upper bound (or the supremum) for A if

1. x is an upper bound of A.

2. if y is an upper bound of A, then x ≤ y.

If A has a least upper bound, we denote it by lub (A) or sup(A). If x = lub (A) and x ∈ A, then we call x
the maximum of A and denote this by max(A).

We say that x ∈ X is a lower bound for A if x ≤ y for every y ∈ A. We say that A is bounded below if
it has a lower bound.

We say that x ∈ X is the greatest lower bound (or the infimum) for A if

1. x is a lower bound of A.

2. if y is a lower bound of A, then y ≤ x.

If A has a greatest lower bound, we denote it by glb (A) or inf(A). If x = glb (A) and x ∈ A, then we call x
the minimum of A and denote this by min(A).

Example 1.4. 1. [Least Upper Bound Axiom for R] Consider R with the usual order. Let A be a
non-empty subset if R. If A is bounded above, then A has a least upper bound.

2. Consider (P(X),⊆). Then if {Aα}α∈I be any non=empty collection of subsets of X. Then X is an
upper bound for {Aα}α∈I and ∅ is a lower bound for {Aα}α∈I . Moreover,⋃

α∈I
Aα = lub ({Aα}α∈I)

and ⋂
α∈I

Aα = glb ({Aα}α∈I).

3. Consider (P(X),⊇). Then if {Aα}α∈I be any non-empty collection of subsets of X. Then ∅ is an
upper bound for {Aα}α∈I and X is a lower bound for {Aα}α∈I . Moreover,⋂

α∈I
Aα = lub ({Aα}α∈I)

and ⋃
α∈I

Aα = glb ({Aα}α∈I).

Definition 1.2.6. Let (X,≤) be a partially ordered set. A element x ∈ X is said to be maximal if x ≤ y
implies that x = y.
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Example 1.5. 1. Consider R with the usual order. Then R has no maximal element.

2. Consider (P(X),⊆). Then X is maximal.

3. Consider (P(X),⊇). Then ∅ is maximal.

Proposition 1.2.7. Every finite, non-empty poset (X,≤) has a maximal element.

The proof of the previous Proposition can be obtained by induction on the number of elements in X and
is is left as an exercise.

We have already seen that there are posets without maximal elements. The next result is a fundamental
tool in much of mathematics.

Axiom 1.2.8 [Zorn’s Lemma]. Let (X,≤) be a non-empty partially ordered set. If every totally ordered
subset C of X has an upper bound, then (X,≤) has a maximal element.

Remark 1.2.9. Fundamental Fact: Zorn’s Lemma is logically equivalent to the Axiom of Choice.

Definition 1.2.10. Let V be a non-zero vector space. Let L = {A ⊂ V | A is linearly independent}. We
can order L by inclusion ⊆. A basis B for V is a maximal element in (L,⊆).

Theorem 1.2.11. Every non-zero vector space has a basis.

Proof. Order L by inclusion. Let C = {Aα | α ∈ I} be a chain in L. Let

A =
⋃
α∈I

Aα.

We claim thatA is linearly independent. To see why assume that {x1, x2, . . . , xn} ⊂ A and that {β1, β2, . . . , βn} ⊂
R are such that

β1x1 + β2x2 + · · ·βnxn = 0.

For each i = 1, 2, . . . , n, we can find an Aαi ∈ C such that xi ∈ Aαi . We can also assume that

Aα1 ⊆ Aα2 ⊆ · · · ⊆ Aαn

since C is a chain. Consequently, {x1, x2, . . . , xn} ⊂ Aαn . But since Aαn is linearly independent, we have
βi = 0 for each i = 1, 2, . . . , n.

We have seen that every chain has an upper bound. It now follows from Zorn’s Lemma that L has a
maximal element.

Remark 1.2.12. Observe that the above proof can be modified to show that given any linearly independent
set A ⊂ V , there exists a basis B for V with A ⊆ B.

Definition 1.2.13. A poset (X,≤) is said to be well ordered if every non-empty subset A has a least element.

Example 1.6. 1. Consider (N,≤), the natural numbers with the usual order. It follows from the Principle
of Mathematical Induction that (N,≤) is well ordered.
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2. Let X = Q =
{
n
m : n ∈ Z,m ∈ N, gcd(n,m) = 1

}
. Then Q is not well ordered with respect to the usual

order. However, we can still construct a well order on Q.

Define φ : Q→ N by

φ(
n

m
) :=


2n3m if n > 0,

1 if n = 0

5−n7m if n < 0.

Then φ is 1− 1. We can use this to define an order � on Q by

n

m
� p

q
if and only if φ(

n

m
) ≤ φ(

p

q
).

Axiom 1.2.14 [Well Ordering Principle]. Given any set X there exists a partial order ≤ such that
(X,≤) is well ordered.

Theorem 1.2.15. The following are equivalent:

1. The Axiom of Choice

2. Zorn’s Lemma

3. Well Ordering Principle

Proof. 3) ⇒ 1) : Assume that X is non-empty. By the Well ordering Principle there exists and order ≤ on
X that makes (X,≤) a well ordered set. Define f : P(X) \ {∅} → X by

f(A) = the least element of A.

1.3 Equivalence Relations and Cardinality

Definition 1.3.1. A relation ∼ on a set X is called an equivalnce relation if it is:

1. reflexive

2. symmetric

3. transitive

Given x ∈ X we let
[x] = {y ∈ X : x ∼ y}.

[x] is called the equivalence class of x.

The following imprortant observation is easily proved.

Proposition 1.3.2. Let ∼ be an equivalnce relation on X.

1. For each x ∈ X we have x ∈ [x] so [x] 6= ∅.

2. For each x, y ∈ X either [x] = [y] or [x] ∩ [y] = ∅.

3. X =
⋃
x∈X

[x].
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Definition 1.3.3. Given a set X, a partition of X is a collection

P = {Aα ⊆ X : α ∈ I}

such that:

1. for each α ∈ I we have Aα 6= ∅.

2. if α, β ∈ I with α 6= β we have Aα ∩Aβ = ∅.

3. X =
⋃
α∈I

Aα.

Remark 1.3.4. Observe that the previous proposition implies that every equivalence relation ∼ on a set X
induces a partition on X consisting of the distinct equivalence classes of ∼. Conversely, given a partition
P = {Aα ⊆ X : α ∈ I} there is an equivalence realtion ∼ on X such that P is precisely the set of equivalence
classes of ∼. In particular, we say that x ∼ y if and only if there exists an α ∈ I such that x, y ∈ Aα.

Example 1.7. Let X be any set. Define a relation ∼ on P(X) by A ∼ B if and only if there exists a 1− 1
and onto function f : A→ B. Then we claim that ∼ is an equivalence relation on X.

1. Reflexivity: For each A ∈ P(X) define idA : A→ A by

idA(x) = x

for all x ∈ A. (In case, A = ∅, idA is the empty function.)

2. Symmetry: Assume that A ∼ B and that f : A → B is 1 − 1 and onto. Then f is invertible with
inverse g. Since g : B → A is 1− 1 and onto, we have B ∼ A.

3. Transitivity: Assume that A ∼ B and B ∼ C with f : A → B and g : B → C being 1 − 1 and onto.
Then g ◦ f : A→ C is also 1− 1 and onto. Hence A ∼ C.

In essence, we can view two subsets A and B of X to be equivalent as above if they have the same number
of elements, in the sense that there is a 1− 1 correspondence bewteen the elements of the two sets.

Definition 1.3.5. We say that two sets X and Y are equivalent if there exists a 1 − 1 and onto function
f : X → Y . In this case, we write X ∼ Y . In this case, we also say that the two sets have the same
cardinality and write | X |=| Y |.

We say that a set X is finite if X = ∅ or if X ∼ {1, 2, 3, . . . , n} for some n ∈ N. In this case, we say
that X has cardinality n and write | X |= n. Otherwise, we say that X is infinite.

Problem 3. Can a set X be equivalent to both {1, 2, 3, . . . , n} and {1, 2, 3, . . . ,m} if n 6= m?
If such a set exits then we can show that {1, 2, 3, . . . , n} ∼ {1, 2, 3, . . . ,m}. We may also assume WLOG

that n < m so that {1, 2, 3, . . . , n} ( {1, 2, 3, . . . ,m}. As such we can consider the following related question:
Can {1, 2, 3, . . . ,m} be equivalent to a proper subset of itself?

Proposition 1.3.6. The set {1, 2, 3, . . . ,m} is not equivalent to any proper subset of itself.

Proof. We will prove this by induction on m. This is clear if m = 1 as the only proper subset is the empty
set.

Assume that the statement holds for the set {1, 2, 3, . . . , k}. Assume also that there is a proper subset S of
{1, 2, 3, . . . , k, k+1} such that there exists a 1−1 and onto function f : {1, 2, 3, . . . , k, k+1} → S. If k+1 6∈ S,
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then the restriction of f to {1, 2, 3, . . . , k} defines a one to one function onto S \{f(k+ 1)} ( {1, 2, 3, . . . , k},
which is impossible by assumption.

Suppose that k + 1 ∈ S and let S′ = S \ {k + 1}. Then S′ ( {1, 2, 3, . . . , k}. If f(k + 1) = k + 1
then the restriction of f to {1, 2, 3, . . . , k} defines a one to one function onto S′ which is again impossible.
So we may assume that f(j) = k + 1 for some j ∈ {1, 2, 3, . . . , k}. From here we define a new function
f∗ : {1, 2, 3, . . . , k, k + 1} → S by

f∗(i) :=


k + 1 if i = k + 1,

f(k + 1) if i = j

f(i) if i 6= k + 1, j.

But then f∗ is a 1 − 1 function from {1, 2, 3, . . . , k, k + 1} onto S that maps k + 1 to k + 1, something we
already know to be impossible.

Corollary 1.3.7. If a set X is finite, then X is not equivalent to any proper subset of itself.

Proof. We can clearly assume that X is not empty. As such X ∼ {1, 2, 3, . . . , n} for some n ∈ N. Therefore,
there exists a 1− 1 and onto function f : X → {1, 2, 3, . . . , n}.

Assume that there is a proper subset S ( X with X ∼ S. Then it folows that {1, 2, 3, . . . , n} ∼ S as
well. Hence there exits a 1− 1 and onto function g : {1, 2, 3, . . . , n} → S. From this it follow that h = f ◦ g
defines a 1 − 1 function from {1, 2, 3, . . . , n} into {1, 2, 3, . . . , n} with proper range f(S). This shows that
{1, 2, 3, . . . , n} is equivalent to f(S) ( {1, 2, 3, . . . , n} which we know is impossible.

Remark 1.3.8. The proposition above is a formal realisation of the Pigeonhole Principle: If m > n and m
objects are placed in n containers, then at least one of the containers must contain more than one object.

Example 1.8. The function f(n) = n+1 defines a 1−1 function from N onto the proper subset {2, 3, 4, . . .}.

Definition 1.3.9. A set X is countable if it is either finite or if X ∼ N. If X is not countable, we say it
is uncountable.

We say that X is countably infinite if X ∼ N. In this case we write

| X |=| N |= ℵ0.

(ℵ0 = aleph naught).

Proposition 1.3.10. Every infinite set countains a countably infinite subset.

Proof. The Axiom of Choice allows us to define a function

f : P(X) \ {∅} → X

such that for every A ⊂ X with A 6= ∅, we have f(A) ∈ A.
Let x1 = f(X). Now define a function recursively by

xn+1 = f(X \ {x1, x2, x3, . . . , xn}).

Then A = {x1, x2, . . . , xn, . . .} is a countably infinite subset of X.

Corollary 1.3.11. A set X is infinite if and only if it is equivalent to a proper subset of itself.
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Proof. Assume that X is not infinite. Then we know it cannot be equivalent to a proper subset of itself.
Assume that X is infinite. Then X contains a countably infinite subset {x1, x2, . . . , xn, . . .}. We can

define f : X → X by

f(x) :=

{
xn+1 if x = xn for some n,

x if x 6= xn for any n.

Then f(x) is 1− 1 and has proper range. As such X ∼ f(X).

Assume that there exists a 1 − 1 function f : X → Y . Then X ∼ f(X) ⊆ Y . This should suggest that
Y has at least as many elements as X. With this in mind we introduce the following notation:

Informal definition 1. If there exists a 1− 1 function f : X → Y we write | X |�| Y |.

Example 1.9. If we let Q =
{
n
m : n ∈ Z,m ∈ N, gcd(n,m) = 1

}
. If we define φ : Q→ N by

φ(
n

m
) :=


2n3m if n > 0,

1 if n = 0,

5−n7m if n < 0,

then φ is 1 − 1. Hence we have that | Q |�| N |. However, the map ψ : N → Q given by ψ(n) = n
1 is also

clealry 1− 1, so we have | N |�| Q |. This leads us to ask: Is N ∼ Q?

The question that arises from the previous example can be generalized as follows:

Problem 4. Assume that A1 ⊆ A and that B1 ⊆ B. If A ∼ B1 and B ∼ A1, is A ∼ B?

While it would seem reasonable that the answer to the above question is Yes, it turns out that the proof
is not so straight forward. It can however, be deduced from the following important result:

Theorem 1.3.12 [Cantor-Schroeder-Bernstein Theorem]. Assume that A2 ⊆ A1 ⊆ A0 = A. If
A0 ∼ A2, then A0 ∼ A1.

Proof. Assume that φ : A0 → A2 is 1− 1 and onto. We can recursively define

An+2 = φ(An).

We get a sequence {An} of subsets of A0 such that .....
We can write

A0 = (A0 \A1) ∪ (A1 \A2) ∪ (A2 \A3) ∪ (A3 \A4) ∪ · · · ∪A∞
where

A∞ =

∞⋂
n=0

An =

∞⋂
n=1

An.

Similarly
A1 = (A1 \A2) ∪ (A2 \A3) ∪ (A3 \A4) ∪ (A4 \A5) ∪ · · · ∪A∞.

Now becase φ is 1 − 1 and the range is A2, we get that for each k = 0, 1, 2, . . . we have (Ak \ Ak+1) ∼
(Ak+2 \Ak+3). In particular,

(A0 \A1) ∼ (A2 \A3), (A2 \A3) ∼ (A4 \A5), (A4 \A5) ∼ (A6 \A7), . . . .

We can now define f : A0 → A1 by
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f(x) :=


φ(x) if x ∈ A2k \A2k+1 for some k = 0, 1, 2, . . .,

x if x ∈ A2k+1 \A2k+2 for some k = 0, 1, 2, . . .,

x if x ∈ A∞.

It follows that f is both 1− 1 and onto, and as such that A0 ∼ A1.

Corollary 1.3.13 [Cantor-Schroeder-Bernstein Theorem]. Assume that A1 ⊆ A and that B1 ⊆ B.
If A ∼ B1 and B ∼ A1, then A ∼ B.

Proof. Let f : A→ B1 be 1-1 and onto. Let g : B → A1 be 1− 1 and onto. Let

A2 = g ◦ f(A) = g(B1).

Then since both f and g are 1− 1, we have A ∼ A2. But since A2 ⊆ A1 ⊆ A the Cantor-Schroter-Bernstein
Theorem shows that A ∼ A1. However, A1 ∼ B so indeed A ∼ B.

Corollary 1.3.14. An infinite set X is countably infinite if and only if there exists a 1 − 1 function
f : X → N. In particular, Q ∼ N.

Proof. Assume that X is countably infinite, then be definition there is a 1− 1 and onto function f : X → N.
Assume that there exists a 1 − 1 function f : X → N. It follows that | X |�| N |. Conversely, since

X is infinite, there exists a countably infinite subset {x1, x2, x3, . . .}. The function g : N → X defined by
g(n) = xn is 1− 1. As such | N |�| X |. The CSB Theorem shows that | N |=| X |.

Remark 1.3.15. We have seen that if there exists a 1 − 1 function f : X → Y , then X is equivalent to
a subset of Y . It follows that we should view Y as containing at least as many elements as X. But what
happens if there exists an onto function g : X → Y ? In this case, it would seem that there are enough points
in X to cover all of Y . As such intuitively we would expect that | Y |�| X |.

Proposition 1.3.16. Assume that there exists an onto function g : X → Y . Then there exists a 1 − 1
function f : Y → X. That is | Y |�| X |.

Proof. Assume that g : X → Y is onto. For each y ∈ Y , the set

g−1({y}) 6= ∅.

By the Axiom of Choice there is a choice function

h : P(X) \ {∅} → X

such that for every A ⊂ X with A 6= ∅, we have h(A) ∈ A. Then if we define f : Y → X by

f(y) = h(g−1({y})),

then f is 1− 1.

Corollary 1.3.17. Given two sets X and Y . The following are equivalent.

1. There exists a 1− 1 function f : X → Y .

2. There exists an onto function g : Y → X.

12



3. | X |�| Y |.

We have already seen that if X is infinite, then | N |�| X |. It is therefore natural to ask if every pair of
infinite sets are equivalent to one another.

Theorem 1.3.18. [0, 1] is uncountable.

Proof. Assume that [0, 1] is countable. Then we can list the elements of [0, 1] in a sequence {a1, a2, a3, . . .}.
Now each ai has a decimal expansion which is actually unique if we do not allow for an infinite string of
consequetive 9’s. We can write

a1 = .a1,1a1,2a1,3 · · · a1,n · · ·
a2 = .a2,1a2,2a2,3 · · · a2,n · · ·
a3 = .a3,1a3,2a3,3 · · · a3,n · · ·

...

an = .an,1an,2an,3 · · · an,n · · ·
...

We can construct b0 ∈ [0, 1] as follows:
b0 = .b1b2b3 · · · bn · · ·

where

bn :=

{
7 if an,n 6= 7,

3 if an,n = 7.

Then it is clear that b0 ∈ [0, 1] but that b0 6= an for any n.

Corollary 1.3.19. R is uncountable.

In fact, it is easy to see that (0, 1) ∼ R. The map

x→ tan(πx− π

2
)

establishes a 1− 1 correspondence between (0, 1) and R.

Notation: We write | R |= c.

Problem 5. Given two sets X and Y is it always the case that either | X |�| Y | or | Y |�| X |? That is,
can we always compare the size of two sets.

Theorem 1.3.20. ([Comparability Theorem for Cardinals] )
Given two sets X and Y , either | X |�| Y | or | Y |�| X |.

Proof. Let
S = {(A,B, f) | A ⊆ X,B ⊆ Y, f : A→ B is 1-1 and onto}.

We can order S by (A1, B1, f) ≤ (A2, B2, g) if and only if A1 ⊆ A2, B1 ⊆ B2, and g|A = f .
Let C = {(Aα, Bα, fα)}α∈I be a chain in S. Let

A =
⋃
α∈I

Aα
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and
B =

⋃
α∈I

Bα.

Define f : A→ B by
f(x) = fα(x)

if x ∈ Aα.
Note that f is well defined because if x ∈ Aα and x ∈ Aβ where Aα ⊆ Aβ , then

fα = (fβ)|Aα

so fα(x) = fβ(x).
We claim that f is both one to one and onto.
To see that it is 1-1 let x, y ∈ A be such that x 6= y. Then we can find α and β with x ∈ Aα and y ∈ Aβ .

Moreover we can assume that Aα ⊆ Aβ and hence that x, y ∈ Aβ . But then

f(x) = fβ(x) 6= fβ(y) = f(y).

To see that f is onto choose z ∈ B. Then z ∈ Bα for some α ∈ I. But fα is onto so there exists x ∈ Aα
such that fα(x) = z. Then cleary f(x) = z.

It follows that (A,B, f) is an upper bound for C. By Zorn’s Lemma S has a maximal element (A0, B0, f0).
If A0 = X, we are done since then | X |�| Y |.
Assume that A0 6= X. Assume also that B0 6= Y . Then there exists x0 ∈ X \ A0 and z0 ∈ Y \ B0. We

can know define a function f1 : A0 ∪ {x0} → B0 ∪ {z0} by

f1(x) :=

{
f0(x) if x ∈ A0,

z0 if x = x0.

Since f is also both 1-1 and onto, we have (A0, B0, f0) < (A1, B1, f1) contraditing the maximality of
(A0, B0, f0). It follows that if A0 6= X, then B0 = Y and we get | Y |�| X |.

1.4 Cardinal Arithmetic

1.4.1 Sums of Cardinals

Remark 1.4.1. Suppose that two finite sets X and Y are disjoint with | X |= n and | Y |= m. Then it is
easy to see that

| X ∪ Y |= n+m =| X | + | Y | .
This leads us to the following definition:

Definition 1.4.2 [Sum of Cardinals]. Let X and Y be disjoint sets. We define

| X | + | Y | def
= | X ∪ Y | .

(It is actually easy to see that this is well defined.)

Example 1.10. Let X = {1, 3, 5, . . .} and Y = {2, 4, 6, . . .}. Then it is clear that X ∼ Y ∼ N, and since
X ∪ Y = N we get that

ℵ0 + ℵ0 = ℵ0.

Remark 1.4.3. We have just seen that ℵ0 + ℵ0 = ℵ0 and since (0, 1) ∼ R ∼ (2, 3) we get that c+ c = c as
well. We call such cardinal numbers idempotent.

The next result shows that every infinite cardinal number is in fact idempotent
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Theorem 1.4.4. If X is infinite, then

| X | + | Y |= max{| X |, | Y |}.

In particular
| X | + | X |=| X | .

Proof. (Sketch): We first show that | X | + | X |=| X |. To do so use Zorn’s Lemma to show that every
infinite set X can be written as the disjoint union of a family {Aα}α∈I of countably infinite sets and then
note that each such set can be split into two disjoint countably infinite subsets.

Finally, it is easy to see that

max{| X |, | Y |} ≤| X | + | Y |≤ max{| X |, | Y |}+ max{| X |, | Y |} = max{| X |, | Y |}.

From here the CBS Theorem shows that

| X | + | Y |= max{| X |, | Y |}.

Problem 6. The previous proposition can be extended to show that the union of finitely many countable sets
is countable. What can we say about a countable union of countable sets?

Theorem 1.4.5. Assume that {Xi}∞i=1 is a countable collection of countable sets. Then

X =

∞⋃
i=1

Xi

is countable.

Proof. First we note that we may assume that Xi ∩Xj = ∅ if i 6= j. If not we can define a new collection
{Ei}∞i=1 by E1 = X1, E2 = X2 \X1,

En+1 = Xn+1 \
n⋃
i=1

Xi.

Assuming that the collection {Xi}∞i=1 is pairwise disjoint, for each i = 1, 2, 3, . . ., if Xi 6= ∅ let

Xi = {xi,j}

where the index j may run over a finite set or over N. Now define f : X =
∞⋃
i=1

Xi → N by

f(xi,j) = 2i3j .

Since f is 1-1, we see that X is countable.

1.4.2 Products of Cardinals

Remark 1.4.6. Suppose that two finite sets X and Y are disjoint with | X |= n and | Y |= m. Then it is
easy to see that

| X × Y |= n ·m =| X | · | Y | .

This leads us to the following definition:
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Definition 1.4.7 [Product of Cardinals]. Let X and Y be two sets. We define

| X | · | Y | def
= | X × Y | .

(It is again easy to see that this is well defined.)

Example 1.11. Show that ℵ0 · ℵ0 = ℵ0.

It suffices to show that N× N is countable. To do so we define f : N× N→ N by

f((n,m)) = 2n3m.

As before, f is 1-1, and hence N× N is countable.

Remark 1.4.8. We have already seen that ℵ0 · ℵ0 = ℵ0. The next result shows that every infinite has the
same property.

Theorem 1.4.9. If X is infinite and Y is nonempty, then

| X | · | Y |= max{| X | | Y |}.

In particular
| X | · | X |=| X | .

The proof of the previous theorem relies on a clever use of Zorn’s Lemma. We omit it here for now.

1.4.3 Exponentiation of Cardinals

Remark 1.4.10. Recall that given a collection {Yx}x∈X of sets we defined∏
x∈X

Yx = {f : X →
⋃
x∈X

Yx | f(x) ∈ Yx}.

If we modify our notation so that for each x ∈ X we have Yx = Y for some fixed Y , then we get

Y X =
∏
x∈X

Yα =
∏
x∈X

Y = {f : X → Y }.

Now if X = {1, 2, 3, . . . , n} and Y = {1, 2, 3, · · · ,m}, then

| Y X |=| {f : {1, 2, 3, . . . , n} → {1, 2, 3, . . . ,m}} |= mn =| Y ||X| .

Definition 1.4.11. Let X and Y be non-empty sets. Then we define

| Y ||X| def
= | Y X |

The following theorem shows that our familiar laws for exponentiation do hold.

Theorem 1.4.12. Let X, Y and Z be non-empty sets. Then

1) | Y ||X| · | Y ||Z|=| Y ||X|+|Z|

2) (| Y ||X|)|Z| =| Y |(|X|·|Z|)
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Example 1.12. Show that 2ℵ0 = c.

Observe that 2ℵ0 represents the cardinality of the set {0, 1}N = {{a1, a2, . . . , an, . . .} | ai = 0, 1}.
Define a function f : {0, 1}N → [0, 1] by

f({a1, a2, . . . , an, . . .}) =

∞∑
n=1

an
3n

Since f is 1-1 we get that 2ℵ0 � c.
For each α ∈ [0, 1] choose a sequence {an} ∈ {0, 1}N such that

α =

∞∑
n=1

an
2n
.

Then the function given by g(α) = {an} is a 1-1 functiopn from [0, 1] into {0, 1}N. It follows that c � 2ℵ0

and as such by the Cantor Bernstein Theorem that 2ℵ0 = c.

Remark 1.4.13. Let X be any set. Let A ⊆ X. The characteristic function of A is the function

χA(x) :=

{
1 if x ∈ A,
0 if x 6∈ A.

Then χA ∈ {0, 1}X .

Conversely, if f ∈ {0, 1}X , and A = {x ∈ X | f(x) = 1}, then f = χA.

It follows that the map Γ : P(X)→ {0, 1}X given by

Γ(A) = χA

is 1-1 and onto. Consequently, we have that | P(X) |= 2|X|.

The next theorem shows that the Power set of a set X is always strictly larger than X.

Theorem 1.4.14 [Russel’s Paradox]. For any set X, we have that | X |≺| P(X) |.

Proof. Given that we know that any two cardinal numbers are comparable, it suffices to show there is no
onto function f : X → P(X).

Assume to the contrary that there is an onto function f : X → P(X). Let

A = {x ∈ X | x 6∈ f(x)}.

Since A ⊆ X and f is onto, there exists an x0 ∈ X such that f(x0) = A.

First we assume that x0 ∈ A. Then by definition we have x0 6∈ f(x0) = A, which is impossible.

Next we assume that x0 6∈ A. Then we have x0 6∈ f(x0) and as such by the definition of A we have
x0 ∈ A which is again impossible.

It follows that no such function f could exist and hence that | X |≺| P(X) |.

Finally, we note that ℵ0 ≺ c. We can ask; Is there a set with cardinality strictly between ℵ0 and c. The
answer to this question is actually not derivable from the standard rules of set theory. THis leads us to adopt
the following additional axiom which is both consistent with and independent of the other typical axioms of
set theory:
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Axiom 1.4.15. [Continuum Hypothesis] Assume that X is such that ℵ0 �| X |� c. Then either | X |= ℵ0

or | X |= c.

Next we observe that c = 2ℵ0 and that in general | X |≺ 2|X|. We can extend the Continuum Hypothesis
further by adopting:

Axiom 1.4.16. [Generalized Continuum Hypothesis] Assume that X and Y are such that | X |�| Y |�
2|X|. Then either | Y |=| X | or | Y |= 2|X|.
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Chapter 2

Metric Spaces

2.0 Basic Concepts and Examples

Definition 2.0.1. Let X be a non-empty set. A metric on X is a function d : X ×X → R such that

M1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.

M2) d(x, y) = d(y, x) for all x, y ∈ X.

M3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. [Triangle Inequality]

The pair (X, d) is called a metric space.

Remark 2.0.2. A metric is an abstract distance function. The first example below is the motivating example.

Example 2.1. 1) Let X = R and let d(x, y) =| x− y |.
Here the first two conditions are clearly satisfied by the definition of the absolute value function, and
the triangle inequality is the usual triangle inequality property of the absoulte value function.

2) Let X be any set. Define

d(x, y) :=

{
1 if x 6= y,

0 if x = y.

It is easy to verify that this is a metric. It is called the discrete metric.

3) Let X = Rn. Let x = {x1, x2, x3 . . . , xn} and y = {y1, y2, y3 . . . , yn}. Define

d2(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

d2 is called the Euclidean metric.

This metric carries very little information about the underlying set, though it will prove to be an
important example.

It clearly satisfies M1) and M2). Heuristically, the triangle inequality is the familiar result that the
legth of any one side of a triangle is less than or equal to the sum of the legths of the other two side.
We will however prove later that it does satisfy the triangle inequality.

Remark 2.0.3. Many of the most important examples of metric spaces are vector spaces with an abstract
length function or norm.
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Definition 2.0.4. Let V be a vector space. A norm on V is a function ‖ · ‖ : V → R such that

N1) ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.

N2) ‖αx‖ =| α | ‖x‖ for all x ∈ V , α ∈ R.

N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V . [Triangle Inequality]

The pair (V, ‖ · ‖) is called a normed linear space.

Remark 2.0.5. Given a normed linear space (V, ‖ · ‖) we have a natural metric on V induced by ‖·‖ defined
as follows:

d‖·‖(x, y) = ‖x− y‖.

To see that this is indeed a metric observe:

M1) d‖·‖(x, y) = ‖x− y‖ ≥ 0 for all x, y ∈ V and d‖·‖(x, y) = 0 if and only if x− y = 0⇔ x = y.

M2) d‖·‖(x, y) = ‖x− y‖ = ‖y − x‖ = d(y, x) for all x, y ∈ X.

M3) d‖·‖(x, y) = ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖ = d‖·‖(x, z) + d‖·‖(z, y) for all x, y, z ∈ V .

Example 2.2. 1) Let X = Rn. Let x = {x1, x2, x3 . . . , xn}. Define

‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

n.

Then we will see that ‖·‖2 is a norm. We call ‖·‖2, the 2-norm or the Euclidean norm.

2) Let X = Rn. Let x = {x1, x2, x3 . . . , xn}. Define

‖x‖1 =| x1 | + | x2 | + · · ·+ | xn |=
n∑
i=1

| xi | .

Then it is actually easy to see that ‖·‖1 is a norm. We call ‖·‖1, the 1-norm .

3) Let X = Rn. Let x = {x1, x2, x3 . . . , xn}. Define

‖x‖∞ = max{| x1 |, | x2 |, . . . , | xn |}.

Then it is again easy to see that ‖·‖∞ is a norm. We call ‖·‖∞, the ∞-norm or the sup norm .

4) Let X = Rn. Let x = {x1, x2, x3 . . . , xn}. Let 1 < p <∞. Define

‖x‖p = (| x1 |p + | x2 |p + · · ·+ | xn |p)
1
p = (

n∑
i=1

| xi |p)
1
p .

Remark 2.0.6. To show that ‖·‖p determines a norm on Rn, we begin with the following lemma. Before we
state and prove the result we note that if 1 < p <∞ and if 1

p + 1
q = 1, then

1 +
p

q
= p

so

p− 1 =
p

q
⇒ 1

p− 1
=
q

p
= q − 1

and
(p− 1)q = p.
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Lemma 2.0.7. Let α, β > 0, Let 1 < p <∞. Then if 1
p + 1

q = 1,

αβ ≤ αp

p
+
βq

q
.

Proof. Let u = tp−1 and as such t = u
1
p−1 = uq−1 . Then

αβ ≤
∫ α

0

tp−1 dt+

∫ β

0

uq−1 dt =
αp

p
+
βq

q
.

Theorem 2.0.8 [Hölders Inequality I]. Let (a1, a2, . . . , an) ∈ Rn and (b1, b2, . . . , bn) ∈ Rn. Let 1 < p <
∞ and 1

p + 1
q = 1. Then

n∑
i=1

| aibi |≤ (

n∑
i=1

| ai |p))
1
p (

n∑
i=1

| bi |q))
1
q . (∗)

Proof. First observe that we can assume that

(a1, a2, . . . , an) 6= (0, 0, . . . 0) 6= (b1, b2, . . . , bn),

otherwise the inequality is trivially and equality holds. Moreover since for any α, β > 0 we have that

n∑
i=1

| (αai)(βbi) |= αβ

n∑
i=1

| aibi |,

(

n∑
i=1

| αai |p)
1
p = α(

n∑
i=1

| ai |p)
1
p ,

and

(

n∑
i=1

| βbi |q))
1
q = β(

n∑
i=1

| bi |q))
1
q ,

it follows that (∗) holds for (a1, a2, . . . , an) ∈ Rn and (b1, b2, . . . , bn) ∈ Rn if and only if it holds for
(αa1, αa2, . . . , αan) ∈ Rn and (βb1, βb2, . . . , βbn) ∈ Rn for some α, β > 0. As such, by scaling if neces-
sary, we may assume that

n∑
i=1

| ai |p= 1 =

n∑
i=1

| bi |q .

Now for each i = 1, 2, . . . , n, we have

| aibi |≤
| ai |p

p
+
| bi |q

q
.

As such

n∑
i=1

| aibi | ≤

n∑
i=1

| ai |p

p
+

n∑
i=1

| bi |q

q

=
1

p
+

1

q
= 1

= (

n∑
i=1

| ai |p))
1
p (

n∑
i=1

| bi |q))
1
q .
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Theorem 2.0.9 [Minkowski’s Inequality]. Let (a1, a2, . . . , an) ∈ Rn and (b1, b2, . . . , bn) ∈ Rn. Let
1 < p <∞. Then

(

n∑
i=1

| ai + bi |p)
1
p ≤ (

n∑
i=1

| ai |p)
1
p + (

n∑
i=1

| bi |p)
1
p

Proof. First let 1
p + 1

q = 1.
We can again assume that

(a1, a2, . . . , an) 6= (0, 0, . . . 0) 6= (b1, b2, . . . , bn),

otherwise the inequality is trivially true.
Now

n∑
i=1

| ai + bi |p =

n∑
i=1

| ai + bi | · | ai + bi |p−1

≤
n∑
i=1

| ai | · | ai + bi |p−1 +

n∑
i=1

| bi | · | ai + bi |p−1

By Hölders Inequality

n∑
i=1

| ai | · | ai + bi |p−1 ≤ (

n∑
i=1

| ai |p))
1
p · (

n∑
i=1

| ai + bi |(p−1)q)
1
q

= (

n∑
i=1

| ai |p))
1
p · (

n∑
i=1

| ai + bi |p)
1
q

Similarly we get that

n∑
i=1

| bi | · | ai + bi |p−1≤ (

n∑
i=1

| bi |p))
1
p · (

n∑
i=1

| ai + bi |p)
1
q .

Putting everything together we get

n∑
i=1

| ai + bi |p ≤
n∑
i=1

| ai | · | ai + bi |p−1 +

n∑
i=1

| bi | · | ai + bi |p−1

≤ [(

n∑
i=1

| ai |p))
1
p + (

n∑
i=1

| bi |p))
1
p ] · (

n∑
i=1

| ai + bi |p)
1
q

Therefore, dividing both sides of the above inequality by (
n∑
i=1

| ai + bi |p)
1
q , we get,

(

n∑
i=1

| ai + bi |p)1− 1
q = (

n∑
i=1

| ai + bi |p)
1
p ≤ (

n∑
i=1

| ai |p)
1
p + (

n∑
i=1

| bi |p)
1
p

Example 2.3 [Sequence Spaces]. 1) Let l1 = {{xi} |
∞∑
i=1

| xi |<∞}. Define

‖{xi}‖1 =

∞∑
i=1

| xi | .
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Observe that if {xi} and {yi} are in l1, then for any k ∈ N,

k∑
i=1

| xi + yi | ≤
k∑
i=1

| xi | +
k∑
i=1

| yi |

≤
∞∑
i=1

| xi | +
∞∑
i=1

| yi |

= ‖{xi}‖1 + ‖{yi}‖1

It follows from the Monotone Convergence Theorem that
∞∑
i=1

| xi + yi | converges and hence that

{xi + yi} ∈ l1. Moreover it also shows us that

‖{xi + yi}‖1 ≤ ‖{xi}‖1 + ‖{yi}‖1.

A similar arguement shows that if {xi} ∈ l1 and α ∈ R, then {αxi} ∈ l1 and

‖{αxi}‖1 =| α | ‖{xi}‖1.

It follows that (l1, ‖{·}‖1) is a normed linear space.

2) Let 1 < p <∞. Let lp = {{xi} |
∞∑
i=1

| xi |p<∞}. Define

‖{xi}‖p = (

∞∑
i=1

| xi |p)
1
p .

Observe that if {xi} and {yi} are in lp, then for any k ∈ N,

(

k∑
i=1

(| xi + yi |)p)
1
p ≤ (

k∑
i=1

| xi |p)
1
p + (

k∑
i=1

| yi |p)
1
p

≤ (

∞∑
i=1

| xi |p)
1
p + (

∞∑
i=1

| yi |p)
1
p

= ‖{xi}‖p + ‖{yi}‖p

As before, this shows that {xi + yi} ∈ lp and that

‖{xi + yi}‖p ≤ ‖{xi}‖p + ‖{yi}‖p.

A similar arguement shows that if {xi} ∈ lp and α ∈ R, then {αxi} ∈ lp and

‖{αxi}‖p =| α | ‖{xi}‖p.

3) Let l∞ = {{xi} | sup{| xi |} <∞}. Define

‖x‖∞ = sup{| xi |}.

Then it is again easy to see that ‖·‖∞ is a norm.
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Example 2.4. The space (C([a, b]), ‖·‖∞).

Let C([a, b]) = {f : [a, b]→ R such that f(x) is continuous on [a, b]}. Let

‖f‖∞ = max{| f(x) || x ∈ [a, b]}.

If f, g ∈ C([a, b]), then for each x ∈ [a, b],we have

| (f + g)(x) | = | f(x) + g(x) |
≤ | f(x) | + | g(x) |
≤ ‖f‖∞ + ‖g‖∞.

From this it follows immediately that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

It is then a straight forward task to show that ‖·‖∞ defines a norm on C([a, b]).
This space will play a fundamental role in much of the later portion of this course.

Example 2.5. The space (C([a, b]), ‖·‖1).

Given f ∈ C([a, b]), define

‖f‖1 =

∫ b

a

| f(t) | dt (∗).

It follows from the linearity of integration and the usual triangle inequality for R that ‖·‖1 defines a norm
on C([a, b]).

Example 2.6. The space (C([a, b]), ‖·‖p).

Given f ∈ C([a, b]), we claim that

‖f‖p = (

∫ b

a

| f(t) |p dt)
1
p

defines a norm on C([a, b]). To see this we observe that all of the properties of a norm hold trivially, with the
exception of the triangle inequality. To establish the triangle inequality, we will first need to prove analogues
of Hölders Inequality and Minkowski’s Inequality.

Theorem 2.0.10 [Hölders Inequality II]. Let 1 < p <∞ and 1
p + 1

q = 1. Then for each f, g ∈ C([a, b],
we have ∫ b

a

| f(t)g(t) | dt ≤ (

∫ b

a

| f(t) |p dt)
1
p (

∫ b

a

| g(t) |q dt)
1
q .

Proof. Clearly the result holds if either f(x) = 0 for all x ∈ [a, b] or if g(x) = 0 for all x ∈ [a, b]. As such we
may assume that this is not the case. Since for any α, β >= 0 we have∫ b

a

| (αf(t))(βg(t)) | dt = αβ

∫ b

a

| f(t)g(t) | dt,

(

∫ b

a

| αf(t) |p dt)
1
p = α(

∫ b

a

| f(t) | dt)
1
p ,

24



and

(

∫ b

a

| βg(t) |q dt)
1
q = β(

∫ b

a

| g(t) |q dt)
1
q ,

using the same trick as in the previous proof of Hölders Inequality for vectors of Rn we see that we only
need to prove (∗) under the additional assumption that∫ b

a

| f(t) |p dt = 1 =

∫ b

a

| g(t) |q dt,

Again, we have that for each t ∈ [a, b],

| f(t)g(t) |≤ | f(t) |p

p
+
| g(t) |q

q
.

Integrating, we get ∫ b

a

| f(t)g(t) | dt ≤
∫ b

a

(
| f(t) |p

p
+
| g(t) |q

q
)dt

=
1

p
+

1

q
= 1

= (

∫ b

a

| f(t) |p dt)
1
p (

∫ b

a

| g(t) |q dt)
1
q .

Theorem 2.0.11 [Minkowski’s Inequality II]. Let f, g ∈ C([a, b]). Let 1 < p <∞. Then

(

∫ b

a

| (f + g)(t)) |p dt)
1
p ≤ (

∫ b

a

| f(t) |p dt)
1
p + (

∫ b

a

| g(t) |p dt)
1
p .

Proof. This result can be obtained from Hölders Inequality II in nearly the exact same way as Minkowski’s
Inequality I was deduced from Hölders Inequality I. Indeed we may assume that∫ b

a

| f(t) |p dt 6= 0 6=
∫ b

a

| g(t) |p dt.

Then

∫ b

a

| (f + g)(t) |p dt =

∫ b

a

| f(t) + g(t) | · | (f + g)(t) |p−1 dt

≤
∫ b

a

| f(t) | · | (f + g)(t) |p−1 dt+

∫ b

a

| g(t) | · | (f + g)(t) |p−1 dt

By Hölders Inequality∫ b

a

| f(t) | · | (f + g)(t) |p−1 dt ≤ (

∫ b

a

| f(t) |p)dt)
1
p · (

∫ b

a

| (f + g)(t) |(p−1)q)
1
q

= (

∫ b

a

| f(t) |p)dt)
1
p · (

∫ b

a

| (f + g)(t) |p)
1
q

25



Similarly we get that∫ b

a

| g(t) | · | (f + g)(t) |p−1 dt ≤ (

∫ b

a

| g(t) |p)dt)
1
p · (

∫ b

a

| (f + g)(t) |p)
1
q .

Putting everything together we get∫ b

a

| (f + g)(t) |p dt ≤
∫ b

a

| f(t) | · | (f + g)(t) |p−1 dt+

∫ b

a

| g(t) | · | (f + g)(t) |p−1 dt

≤ [(

∫ b

a

| f(t) |p dt)
1
p + (

∫ b

a

| g(t) |p dt)
1
p ] · (

∫ b

a

| (f + g)(t) |p dt)
1
q ).

Finally, dividing both sides of the above inequality by (
∫ b
a
| (f + g)(t) |p dt)

1
q gives

(

∫ b

a

| (f + g)(t)) |p dt)
1
p = (

∫ b

a

| (f + g)(t)) |p dt)1− 1
q

≤ (

∫ b

a

| f(t) |p dt)
1
p + (

∫ b

a

| g(t) |p dt)
1
p .

Definition 2.0.12. (Bounded Operator)

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed linear spaces. Let T : X → Y be linear. We define

‖T‖ = sup{‖T (x)‖Y | x ∈ X, ‖x‖X ≤ 1}.

We say that T is bounded if ‖T‖ <∞. We let B(X,Y ) = {T : X − Y |T is linear and bounded}.

Remark 2.0.13. We claim that B(X,Y ) is a vector space and that ‖T‖ is a norm on B(X,Y ).
Assume that T, S ∈ B(X,Y ). Let x ∈ X with ‖x‖X ≤ 1. Then

‖(T + S)(x)‖Y = ‖T (x) + S(x))‖Y
≤ ‖T (x)‖Y + ‖S(x)‖Y
≤ ‖T‖+ ‖S‖.

This shows that T + S ∈ B(X,Y ) and that ‖T + S‖ ≤ ‖T‖+ ‖S‖.

Now let α ∈ R and T ∈ B(X,Y ). Then since

sup{‖(αT )(x)‖Y | x ∈ X, ‖x‖X ≤ 1} = sup{‖T (αx)‖Y | x ∈ X, ‖x‖X ≤ 1}
= sup{| α | ‖T (x)‖Y | x ∈ X, ‖x‖X ≤ 1}
= | α | sup{‖T (x)‖Y | x ∈ X, ‖x‖X ≤ 1}
= | α | ‖T‖,

we have that αT ∈ B(X,Y ) and that ‖αT‖ =| α | ‖T‖.
Finally, it is esay to see that ‖T‖ = 0 if and only if T = 0. Hence ‖·‖ does indeed define a norm on X.
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2.1 Topology of Metric Spaces

In this section we will introduce some of the basic topological concepts associated with metric spaces.

Definition 2.1.1. Let (X, d) be a metric space. Let x0 ∈ X and let ε > 0. The open ball of radius ε centered
at x0 is the set

B(x0, ε) = {x ∈ X | d(x, x0) < ε}

The closed ball of radius ε centered at x0 is the set

B[x0, ε] = {x ∈ X | d(x, x0) ≤ ε}

A subset U ⊆ X is said to be open if for evey x0 ∈ U there exists an ε > 0 such that B(x0, ε) ⊆ U .

A subset F ⊆ X is said to be closed if F c is open.

Proposition 2.1.2. Let (X, d) be a metric space. Then

1) X and ∅ are both open.

2) If {Uα}α∈I is any collection of open sets, then U =
⋃
α∈I

Uα is also open.

3) If {U1, U2, . . . , Un} is any finite collection of open sets, then U =
n⋂
i=1

Ui is also open.

Proof. 1) That X is open follows immediately since for any x0 ∈ X clearly B(x1, 1) ⊆ X. That ∅ is open
follows vacuously from the definition.

2) Let {Uα}α∈I be any collection of open setsand let x0 ∈ U =
⋃
α∈I

Uα. Then x0 ∈ Uα0 for some α0 ∈ I.

But as Uα0 is open there exists an ε > 0 such that B(x0, ε) ⊆ Uα0 ⊆ U . Consequently U is also open.

3) If {U1, U2, . . . , Un} is any finite collection of open sets and x0 ∈ U =
n⋂
i=1

Ui. It follows that for each

i we can find an εi > 0 such that B(x0, εi) ⊆ Ui. Now if ε0 = min{ε1, ε2, . . . , εn}, then for each i we

have B(x0, ε0) ⊆ B(x0, εi) ⊆ Ui . Hence B(x0, ε0) ⊆
n⋂
i=1

Ui = U and U is open.

The following proposition follows immediately from the previous proposition and from DeMorgan’s Laws.
The proof is left as an exercise.

Proposition 2.1.3. Let (X, d) be a metric space. Then

1) X and ∅ are both closed.

2) If {Fα}α∈I is any collection of closed sets, then F =
⋂
α∈I

Fα is also closed.

3) If {F1, F2, . . . , Fn} is any finite collection of closed sets, then F =
n⋃
i=1

Ui is also closed.

Definition 2.1.4. Given a set X, a topology on X is a collection of sets τ ⊆ P(X) such that

1) X and ∅ are in τ .

2) If {Uα}α∈I ⊆ τ , then U =
⋃
α∈I

Uα ∈ τ .
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3) If {U1, U2, . . . , Un} ⊆ τ , then U =
n⋂
i=1

Ui ∈ τ .

In this case, we call elements of τ τ -open sets, or open sets for short. We call the pair (X, τ) a topological
space.

If (X, d) is a metric space, then we let τd denote the topology consisting of those subsets of X that are
open with respect to the metric d.

The next proposition, which is essentially a consequence of the triangle inequality, identifies some basic
open sets and basic closed sets in a metric space (X, d).

Proposition 2.1.5. Let (X, d) be a metric space. Then

1) For any x0 ∈ X and ε > 0, we have that B(x0, ε) is open.

2) A set U ⊆ X is open if and only if it is the union of open balls.

3) For any x0 ∈ X and ε ≥ 0, we have that B[x0, ε] is closed.

4) For any x0, the set {x0} is closed. In particular, every finite subset of a metric space is closed.

Proof. 1) Let z ∈ B(x0, ε) and let d = d(x0, z). Since d < ε, if we let r = ε − d, then r > 0. Now let
w ∈ B(z, r). Then by the triangle inequality

d(w, x0) ≤ d(w, z) + d(z, x0) < r + d = ε.

Consequently, B(z, r) ⊆ B(x0, ε) so that B(x0, ε) is open.

2) Since evey open ball is an open set, if U is the union of open balls it is an open set.

Assume that U is open. For each x ∈ U we can find an εx > 0 such that B(x, ε) ⊆ U . From this it
follows that

U =
⋃
x∈U

B(x, εx)

3) Let z ∈ B[x0, ε]
c. Then d(z, x0) = d > ε. This time r = d − epsilon > 0. Now let w ∈ B(z, r). If

w ∈ B[x0, ε], then we would have

d(z, x0) ≤ d(z, w) + d(w, x0) < ε+ r = d

which is clearly a contradiction. Consequently, we have w ∈ B[x0, ε]
c. It follows that B(z, r) ⊆ B[x0, ε]

c

and hence that B[x0, ε]
c is open. This shows that B[x0, ε] is closed.

4) Let y ∈ {x0}c. Let ε = d(y, x)). Then B(x0, ε) ⊂ {x0}c which shows that {x0}c is open.

Example 2.7. Open sets in R.
Recall that a subset I of R is an interval if whenever x, y ∈ I and x < z < y, then we must have that

z ∈ I.
There are three fundamental types of finite intervals:

1. Open (finite) intervals: (a, b) = {x ∈ R | a < x < b} where a, b ∈ R.

2. Closed (finite) intervals: [a, b] = {x ∈ R | a ≤ x ≤ b} where a, b ∈ R.

3. Half-open intervals: [a, b) = {x ∈ R | a ≤ x < b} or(a, b] = {x ∈ R | a < x ≤ b} where a, b ∈ R.

There are also two aditional types of infinite intervals or rays.

1. Open rays: (a,∞) = {x ∈ R | a < x} and (infty, b) = {x ∈ R | x < b} where a, b ∈ R.
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2. Closed rays: [a,∞) = {x ∈ R | a ≤ x} and (infty, b] = {x ∈ R | x ≤ b} where a, b ∈ R.

In addition, both R and ∅ are also intervals.
It is a straight forward exercise to show that every open interval or open ray is actually an open subset

of R with the ususal metric. It is also clear that R and ∅ are also open. Together we call these the open
intervals in R. The following theorem tells us exactly how the structure of an arbitrary open set depends
upon these key open sets:

Theorem 2.1.6. Let U ⊆ R be open. Then there is a countable collection {In} of pairwise disjoint open
intervals such that

U =
⋃
n

In.

It is also easy to see that every closed interval is closed, as is every closed ray. However, the interval
(0, 1] is neither open or closed.

Problem 7. We know that every open set is the countable union of open intervals. Is every closed set the
countable union of closed intervals?

Example 2.8. Cantor set Let P0 = [0, 1]. Construct P1 for P0 by removing the open middle 1
3 of the

interval. That is

P1 = [0, 1] \ (
1

3
,

2

3
) = [0,

1

3
] ∪ [

2

3
, 1].

Next construct P2 from P1 by removing the open interval of length 1
9 from the middle 1

3 each of the two closed
subintervals in P1.

P2 = [0,
1

9
] ∪ [

2

9
,

1

3
] ∪ [

2

3
,

7

9
] ∪ [

8

9
, 1].

Continue recursively to construct Pn from Pn−1 by removing the open interval of length 1
3n from the

middle 1
3 each of the 2n−1 closed subintervals in Pn−1.

Properties of Pn:

1. Each Pn is the union of 2n closed intervals of length 1
3n and hence Pn is closed.

2. Pn contains no interval of length greater than 1
3n .

Let

P =

∞⋂
n=1

Pn.

P is callled the Cantor ternary set or simply the Cantor set. As the intersection of closed sets P is also
closed.

Properties of P :

1. x ∈ P if and only if we can express x as a series with x =
∞∑
n=1

an
3n where an = 0, 2.

2. P is uncountable.

3. P contains no interval of positive length.

Example 2.9. Open sets and the Discrete Metric.
Let (X, d) be a metric space, where d is the discrete metric. That is d(x, y) = 1 if x 6= y. Then each

singleton {x} is open because
{x} = B(x, 1).
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If U ⊆ X, then

U =
⋃
x∈U
{x},

so U is an open set. Moreover, since every set is open it is also true that every set is closed.

Problem 8. We know that in R with the usual metric, that R and ∅ are both open and closed. Are there
any other such subsets in R? The answer to this question is essentiallly the Intermediate Value Theorm.

2.2 Boundaries, Interiors and Closures of a set.

Definition 2.2.1. Let (X, d) be a metric space. Let A ⊆ X.

1) We define the closure of A to be the set

Ā =
⋂
{F | A ⊆ F and F is closed in X}.

That is, Ā is the smallest closed set that contains A.

2) We define the interior of A to be the set

int(A) =
⋃
{U | U ⊆ A and U is open in X}.

That is, int(A) is the largest open set that contained in A. The elements of int(A) are called interior
points of A.

3) Let x ∈ X. A subset N ⊆ X is said to be a neighbourhood of x, if x ∈ int(N).

4) Given a set A ⊆ X, an element x ∈ X is said to be a boundary point of A if for every neighbourhood
N of x we have N ∩ A 6= ∅ and N ∩ Ac 6= ∅. (Note: It is easy to see that this is equivalent to the
statement that for every ε > 0 we have B(x, ε) ∩A 6= ∅ and B(x, ε) ∩Ac 6= ∅.)
We denote the set of all boundary points of A by bdy(A).

The following is a useful proposition that tells us when a set is closed in terms of the nature of its
boundary points.

Proposition 2.2.2. Let A ⊆ (X, d).

1) A is closed if and only if bdy(A) ⊆ A.

2) Ā = A ∪ bdy(A).

Proof. 1) First assume that A is closed. Then Ac is open. Let x ∈ Ac. Then there exists an ε > 0 such
that B(x, ε) ⊆ Ac. In particular, B(x, ε) ∩A = ∅ and x 6∈ bdy(A). Thus bdy(A) ⊆ A.

Conversely, assume that bdy(A) ⊆ A. Let x ∈ Ac, then x 6∈ bdy(A) and since x ∈ Ac, this means that
there exists ε > 0 such that B(x, ε) ⊆ Ac. This shows the Ac is open.

2) We first show that bdy(A) ⊆ Ā. Suppose that x 6∈ Ā Since Ā is closed there exists an ε > 0 such
that B(x, ε) ⊆ (Ā)c. In particular, B(x, ε) ∩ A = ∅ and x 6∈ bdy(A). Thus bdy(A) ⊆ Ā and as such
A ∪ bdy(A) ⊆ Ā.

Next let F = A ∪ bdy(A). We will show that F is closed. To see why this is so let x ∈ F c. Then
x 6∈ bdy(A) and since x 6∈ A, this means that there exists an ε > 0 such that B(x, ε) ∩A = ∅. Suppose
the z ∈ bdy(A)∩B(x, ε). Then since B(x, ε) is a neighbourhood of z by definition of a boundary point
we must also have B(x, ε) ∩ A 6= ∅ which is a contradiction. It follows that B(x, ε) ⊆ F c and hence
that F is closed.

Since F = A ∪ bdy(A) is closed set containing A it follows that Ā ⊆ A ∪ bdy(A) completing the proof.
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Definition 2.2.3. Let A ⊆ X. We say that x is a limit point of A if every neighbourhood N of x is such
that N ∩ (A \ {x}) 6= ∅ or equivalently if for every ε > 0 the set B(x, ε) contains at least one point in A
different from x.

We denote the set of limit points of A by Lim(A).

Note: Limit points are also often called cluster points.

We have the following analogue of our previous result concerning boundary points. The proof is virtually
identical.

Proposition 2.2.4. Let A ⊆ (X, d).

1) A is closed if and only if Lim(A) ⊆ A.

2) Ā = A ∪ Lim(A).

Proof. 1) First assume that A is closed. Then Ac is open. Let x ∈ Ac. Then there exists an ε > 0 such
that B(x, ε) ⊆ Ac. In particular, B(x, ε) ∩A = ∅ and x 6∈ Lim(A). Thus Lim(A) ⊆ A.

Conversely, assume that Lim(A) ⊆ A. Let x ∈ Ac, then x 6∈ Lim(A) and since x ∈ Ac, this means
that there exists ε > 0 such that B(x, ε) ⊆ Ac. This shows the Ac is open.

2) We first show that Lim(A) ⊆ Ā. Suppose that x 6∈ Ā Since Ā is closed there exists an ε > 0 such that
B(x, ε) ⊆ (Ā)c. In particular, B(x, ε) ∩ A = ∅ and hence x 6∈ Lim(A). Thus Lim(A) ⊆ Ā and as such
A ∪ Lim(A) ⊆ Ā.

Next let F = A ∪ Lim(A). We will show that F is closed. To see why this is so let x ∈ F c. Then
x 6∈ Lim(A) and since x 6∈ A, this means that there exists an ε > 0 such that B(x, ε)∩A = ∅. Suppose
the z ∈ Lim(A)∩B(x, ε). Then since B(x, ε) is a neighbourhood of z by definition of a limit point we
must also have B(x, ε)∩ (A \ {z}) 6= ∅ which is a contradiction. It follows that B(x, ε) ⊆ F c and hence
that F is closed.

Since F = A ∪ Lim(A) is a closed set containing A it follows that Ā ⊆ A ∪ Lim(A) completing the
proof.

The proof of the following proposition is straight forward and is left to the reader.

Proposition 2.2.5. Let A ⊆ B ⊆ X.

1) Ā ⊆ B̄.

2) int(A) ⊆ int(B).

3) (Ā)c = int(Ac).

4) int(A) = A \ bdy(A).

Proposition 2.2.6. Let A,B ⊆ X.

1) A ∪B = Ā ∪ B̄.

2) int(A ∩B) = int(A) ∩ int(B).

Proof. 1) Since A ∪ B ⊆ Ā ∪ B̄ and Ā ∪ B̄ is closed, it is clear that A ∪B ⊆ Ā ∪ B̄. Similarly, since
A ⊆ A ∪B and B ⊆ A ∪B, we get Ā ⊆ A ∪B and B̄ ⊆ A ∪B.
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2) Since int(A) ∩ int(B) ⊆ A ∩ B and int(A) ∩ int(B) is open we have int(A) ∩ int(B) ⊆ int(A ∩B).
Similarly, since int(A ∩B) ⊆ A and int(A ∩B) ⊆ B, we get int(A ∩B) ⊆ int(A) and int(A ∩B) ⊆
int(B).

Problem 9. Let (X, d) be any metric space. Let x ∈ X and ε > 0. Then we know that B(x, ε) ⊆ B[x, ε],
and that B[x, ε] is a closed set. Is B[x, ε] = B(x, ε)?

Definition 2.2.7. Given a set A ⊂ X, we say that A is dense in X if A = X.
We say that a metric space (X, d) is separable if X has a dense subset A which is countable. Otherwise

we say that (X, d) is non-separable.

Example 2.10. 1) R is separable since Q is countable and dense.

2) Rn is separable since Qn is countable and dense.

3) l1 is separable. (Exercise).

4) l∞ is nonseparable. (Exercise).

Problem 10. Is (C[a, b], ‖·‖∞) separable?

2.3 Convergence of Sequences and Topology in a Metric Space

.

Definition 2.3.1. Let (X, d) be a metric space. Let {xn} ⊆ X be a sequence in X. We say that the sequence
converges to a point x0 in X if for every ε > 0, there exists an N ∈ N such that if n ≥ N , then d(xn, x0) < ε.
In this case, we call x0 the limit of the sequence {xn} and write

x0 = lim
n→∞

xn.

Equivalently, we have that x0 = lim
n→∞

xn if and only if 0 = lim
n→∞

d(xn, x0) when {d(xn, x0)} is viewed as a

sequence of real numbers.
We will often use the notation xn → x0 to mean x0 = lim

n→∞
xn.

We say that a sequence is convergent if it has a limit. Otherwise we say it is divergent.

Remark 2.3.2. In the previous definition the language we use suggests that a limit if it exists must be unigue.
In the case of the real line, this was a consequence of the Triangle Inequality. We will see next that this fact
also carries over to an abstract metric space.

Proposition 2.3.3. [Uniqueness of Limits] Let (X, d) be a metric space. Let {xn} ⊆ X be a sequence
in X. Assume that

x0 = lim
n→∞

xn = y0.

Then x0 = y0.

Proof. Assume that x0 = lim
n→∞

xn = y0. Assume also that x0 6= y0 with d(x0, y0) = ε > 0.
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Since x0 = lim
n→∞

xn = y0, we can find an N0 ∈ N such that if n ≥ N0, then d(xn, x0) < ε
2 and

d(xn, y0) < ε
2 . From this we deduce using the Triangle Inequality that

d(x0, y0) ≤ d(xN0
, x0) + d(xN0

, y0) <
ε

2
+
ε

2
= ε,

which is clearly impossible.

We have seen that a convergent sequence can have only one limit. However, it is possible for a se-
quence to contain subsequences convergeing to different values. For example the real sequence {xn} =
{1,−1, 1,−1, 1,−1, . . .} = {(−1)n+1} is such that x2k−1 → 1 and x2k → −1.

Definition 2.3.4. We say that a point x0 is a limit point of the sequence {xn} if there is a subsequence
{xnk} of {xn} with xnk → x0.

Note: The as the example below shows set of limit points of the sequence {xn} can be different than the
limit point of the collection of elements in the sequence viewed simply as a subset of the metric space (X, d).
For this reason we use the notation lim∗({xn}) to denote the set of limit points of {xn}.

In general Lim({xn}) ⊆ lim∗({xn}). The proof of this claim is left as an exercise.

Example 2.11. Let xn = 1 for each n ∈ N. Then the constant sequence {xn} = {1, 1, 1, . . .} clearly converges
to 1. As such lim∗({xn}) = {1} . However, when the elements of the sequence are viewed as a subset of R
all we have is the singleton {1}. And in this case Lim({1}) = ∅.

We can now state a very important result which essentially shows that the topology of a metric space is
determined by its convergent sequences.

Proposition 2.3.5. Let A ⊆ X.

1) x0 ∈ Lim(A) if and only if there exists a sequence {xn} ⊆ A with xn 6= x0 and xn → x0.

2) x0 ∈ bdy(A) if and only if there exists sequences {xn} ⊆ A and {yn} ⊆ Ac with xn → x0 and yn → x0.

3) A set A ⊆ X is closed if and only if

(*) whenever {xn} is a sequence in A with xn → x0, we must have x0 ∈ A.

Proof. 1) Assume that x0 ∈ Lim(A). For each n ∈ N, there exists an xn ∈ A ∩ (B(xo,
1
n ) \ {x0}). It

follows that the sequence {xn} is such that {xn} ⊆ A with xn 6= x0 and xn → x0.

Assume that there exists a sequence {xn} ⊆ A with xn 6= x0 and xn → x0. Let ε > 0. Then there
exists an N ∈ N such that xn ∈ B(x0, ε) for every n ≥ N . But then xN ∈ B(xo, ε) \ {x0} which shows
that x0 ∈ Lim(A).

2) Assume that x0 ∈ bdy(A). For each n ∈ N, there exists an xn ∈ A∩(B(xo,
1
n ) and a yn ∈ Ac∩(B(xo,

1
n ).

It follows that there exists sequences {xn} ⊆ A and {yn} ⊆ Ac with xn → x0 and yn → x0.

Suppose that there exists sequences {xn} ⊆ A and {yn} ⊆ Ac with xn → x0 and yn → x0. Let ε > 0.
Then there exists an N ∈ N such that xn ∈ B(x0, ε) and yn ∈ B(x0, ε) for every n ≥ N . But then
xN , yN ∈ B(xo, ε). This shows that x0 ∈ bdy(A)).

3) Assume that A is closed and {xn} is a sequence in A with xn → x0. Assume also that x0 ∈ Ac. Since
Ac is open we can find an ε > 0 such that B(x0, ε) ⊆ Ac. But this is impossible since xn ∈ B(x0, ε) for
large enough n′s. Hence x0 ∈ A.

Conversely, assume that A is not closed. Then there exists a point x0 ∈ bdy(A) \A. By 2) above there
is a sequence {xn} ⊆ A with xn → x0. This shows that (∗) fails. Consequently, if (∗) holds, A must
be closed.
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We close this section with a brief remark about convergent sequences in a discrete metric space.

Remark 2.3.6. Let (X, d) be any set with the discrete metric. Assume that xn → x0. Then there exists an
N ∈ N such that if n ≥ N , then xn ∈ B(x0, 1/2). But B(x0, 1/2) = {x0} and hence xn = x0 for all n ≥ N .
That is, the only convergent sequences are those that are eventually constant.

2.4 Induced Metric and the Relative Topology

Definition 2.4.1. Let (X, d) be a metric space and let A ⊆ X. We can define a function dA on A× A as
follows:

dA(x, y)
def
= d(x, y)

for every x, y ∈ A. It is easy to see that dA is a metric on A which we call the induced metric.
If we let

τA = {W ⊂ A |W = U ∩A for some open set U ⊆ X}

then it is easy to see that τ is a topology on A, which we call the relative topology on A inherited from τd on
X. .

We will now show that the relative topology τA is the natural topology obtained from the induced metric
dA.

Theorem 2.4.2. Let (X, d) be a metric space and let A ⊆ X. Let τA and τdA be the relative topology and
the metric topology on A respectively. Then

τA = τdA .

Proof. Let W ⊂ A be in τA and let x ∈ W . We know there exists an open set U in X so that W = A ∩ U .
But since x ∈ U we can find an ε > 0 such that

Bd(x, ε) = {y ∈ X | d(x, y) < ε} ⊂ U.

But then
BdA(x, ε) = {y ∈ A | d(x, y) < ε} ⊂W

which shows that W ∈ τdA .
Now let W ⊂ A be in τdA . Then for each x ∈W we can find an εx > 0 so that

W =
⋃
x∈W

BdA(x, εx).

But then if
U =

⋃
x∈W

Bd(x, εx),

we have U is open in X and W = U ∩A. Hence W ∈ τA.

2.5 Continuity

Definition 2.5.1. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y .
We say that f(x) is continuous at x0 ∈ X if for every ε > 0 there exists a δ > 0 such that if x ∈ X with

dX(x, x0) < δ, then dY (f(x), f(x0)) < ε.
Otherwise, we say that f(x) is discontinuous at x0.

We say that f(x) is continuous if it is continuous at each x ∈ X.
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Remark 2.5.2. Recall that every function f : X → Y induces a function f−1 : P(Y )→ P(X) given by

f−1(B) = {x ∈ X | f(x) ∈ B}

for each B ⊆ Y . The map f−1 is called the pullback of f .

The three theorems establish continuity of a function in terms of the nature of the pull back and in terms
of the way the function acts on convergent sequences.

Theorem 2.5.3. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . Then the following are equivalent:

1) f(x) is continuous at x0.

2) If W is a neighborhood of y0 = f(x0), then V = f−1(W ) is a neighborhood of x0.

Proof. 1) ⇒ 2) Assume that f(x) is continuous at x0. Since W is a neighbourhood of y0, there exists an
ε0 > 0 such that B(y0, ε0) ⊆ W . Now by definition of continuity at x0, there exists a δ0 > 0 such that if
x ∈ B(x0, δ0), then f(x) ∈ B(y0, ε0) ⊆W . Hence B(x0, δ0) ⊆ V .

2)⇒ 1) Assume that ε > 0. Then W = B(y0, ε) is a neigbourhood of y0. Let V = f−1(W ). Then V is a
neighborhood of x0. In particular, There is a δ > 0 such that B(x0, δ) ⊆ V . This means that if x ∈ X with
dX(x, x0) < δ, then dY (f(x), f(x0)) < ε.

Theorem 2.5.4. [Sequential Characterization of Continuity]: Let (X, dX) and (Y, dY ) be metric
spaces and f : X → Y . Then the following are equivalent:

1) f(x) is continuous at x0.

2) If {xn} is a sequence in X with xn → x0, then f(xn)→ f(x0).

Proof. 1) ⇒ 2) Assume that f(x) is continuous at x0 and that xn → x0. Letε0 > 0 and let δ > 0 be such
that if x ∈ X with dX(x, x0) < δ, then dY (f(x), f(x0)) < ε. Since xn → x0 there exists an N ∈ N such
that if n ≥ N , we have dX(xn, x0) < δ. It folows that if n ≥ N , we have dY (f(xn), f(x0)) < ε. That is,
f(xn)→ f(x0).

2) ⇒ 1) Assume that f(x) is not continuous at x0. Then there exists an ε0 > 0 such that in every ball
B(x0, δ) there is a point xδ with dY (f(xδ), f(x0)) ≥ ε0. In particular, for each n ∈ N, there exists an xn
with dX(xn, x0) < 1

n but dY (f(xn), f(x0)) ≥ ε0. It follows that xn → x0 but f(xn) 6→ f(x0). Consequently,
2) fails.

Theorem 2.5.5. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . Then the following are equivalent:

1) f(x) is continuous.

2) If W is an open set in Y , then V = f−1(W ) is open in X.

3) If {xn} is a sequence in X with xn → x0 where x0 ∈ X, then f(xn)→ f(x0) in Y .

Proof. 1) ⇒ 2) Assume that f(x) is continuous. Let W be open in Y and let V = f−1(W ). Assume that
x0 ∈ V . Then W is an open set containing y0 = f(x0). It then follows that V is a neighbourhood of x0.
That is x0 ∈ int(V ). But since V = int(V ), V is open in X.

2) ⇒ 3) Assume that xn → x0. Let y0 = f(x0) and let ε > 0. If W = B(y0, ε), then since W is open
so is V = f−1(W ). But x0 ∈ V so there exists a δ > 0 for which B(x0, δ) ⊆ V . And since Since xn → x0

there exists an N ∈ N such that if n ≥ N , we have dX(xn, x0) < δ. It folows that if n ≥ N , we have
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dY (f(xn), f(x0)) < ε. That is, f(xn)→ f(x0).

3)⇒ 1) This follows immediately from the sequential characterization of continuity.

Example 2.12. Let (x, d) be any set together with the discrete topology. Since every subset of (X, d) is open
it follows that for any function f : (X, d)→ (Y, dY ), f(x) is automatcally continuous.

Definition 2.5.6. Let (X, dX) and (Y, dY ) be two metric spaces. A function φ : X → Y is said to be a
homeomorphism if φ is 1-1 and onto and if both φ and φ−1 are continuous. We then say that (X, dX) and
(Y, dY ) are homeomorphic.

Two metric spaces (X, dX) and (Y, dY ) are said to be equivalent if there exists a 1-1 onto map φ : X → Y
and two constants c1, c2 > 0 such that

c1dX(x1, x2) ≤ dY (φ(x1), φ(x2)) ≤ c2dX(x1, x2)

for each x1, x2 ∈ X

Remark 2.5.7. 1) If φ : X → Y is a homeomorphism, then φ(U) is open in Y if and only if U is open
in X. As such, homeomomorphic spaces can be viewed as identical topologically.

2) If (X, dX) and (Y, dY ) are equivalent, then they are homoeomorphic. But the converse need not hold.
(Exercise)

Definition 2.5.8. [Continuity on a Set] Given a function f : X → Y and a subset A ⊆ X. The
restriction of f(x) to A is the function f|A : A→ Y given by

f|A(x)
def
= f(x)

for all x ∈ A.

Given a function f : X → Y and a subset A ⊆ X, we say that f(x) is continuous on A if the restriction
f|A is continuous on the metric space (A, dA).

Remark 2.5.9. It follows immediately from the sequential characterization of continuity that f(x) is con-
tinuous on A if and only if whenever {xn} is a sequence in A with xn → x0 for some x0 ∈ A, then we have
f(xn)→ f(x0).

2.6 Complete Metric Spaces: Cauchy Sequences

.
Recall that a sequence {xn} converges to a point x0 in X if for every ε > 0, there exists an N ∈ N such

that if n ≥ N , then d(xn, x0) < ε. At this point, if we want to test to see if a sequence converges it seems
we need to have a possible limit in mind. This leads to the following question:

Problem 11. Is there an intrinsic test to see if a sequnece {xn} converges?

We beign with the following strategy:

Strategy: Assume that xn → x0. Let ε > 0 .Then there exists an N ∈ N such that if n ≥ N , then
d(xn, x0) < ε

2 . In particular, if n,m ≥ N , then

d(xn, xm) ≤ d(xn, x0) + d(x0, xm) <
ε

2
+
ε

2
= ε.
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This leads us to the following definition:

Definition 2.6.1. A sequence {xn} is said to be Cauchy in (X, d) if for every ε > 0, there exists an N ∈ N
such that if n,m ≥ N , then d(xn, xm) < ε.

Theorem 2.6.2. Let {xn} be a convergent sequence in (X, d). Then {xn} is Cauchy.

This takes us to the fundamental question:

Problem 12. Does every Cauchy sequence converge?

It turns out that the answer to the above question can be no. For example, let X = (0, 1) with the usual
metric. Then { 1

n} is Cauchy but does not converge. In contrast this sequence, and any Cauchy sequence for
that matter, does converge in R with the usual metric.

Definition 2.6.3. A metric space (X, d) is said to be complete if every Cauchy sequence converges.

We will show that several of the usual examples of metric spaces we have are complete. In this respect
we will begin with R and the usual metric. However to do so we need to first observe to important properties
of Cauchy sequences.

Definition 2.6.4. A set A ⊂ (X, d) is said to be bounded if there exists an x0 ∈ X and an M > 0 such that
A ⊆ B[x0,M ].

Proposition 2.6.5. Every Cauchy sequence is bounded.

Proof. Let {xn} be Cauchy. There exists an N ∈ N such that if n,m ≥ N , then d(xn, xm) < 1. In particular,
d(xN , xm) < 1 for all m ≥ N . Now let

M = max{d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN ), 1}.

Then {xn} ⊂ B[xN ,M ].

We know that the sequence {1,−1, 1,−1, . . .} has a convergent subsequence but it does not converge. We
will now see that for a Cauchy sequence this is not possible.

Proposition 2.6.6. Assume that {xn} is a Cauchy sequence with a subsequence xnk → x0. Then xn → x0.

Proof. Let ε > 0. There exists an N ∈ N such that if m, n ≥ N , then

d(xn, xm) <
ε

2
.

Since lim
k→∞

xnk = x0, we can find a K ∈ N so that nK ≥ N and

d(xnK , x0) <
ε

2
.

But now we have that for all n ≥ N ,

d(xn, x0) ≤ d(xn, xnK ) + d(xnK , x0) <
ε

2
+
ε

2
= ε,

showing that {xn} converges and lim
n→∞

xn = x0.
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2.7 Completeness of R, Rn and lp

To show that R with the usual metric is complete we need the following important theorem with its proof
left as an excercise:

Theorem 2.7.1. (Bolzano-Weierstrass Theorem)
Every bounded sequence {xn} ⊂ R has a convergent subsequence.

We are now prepared to establish the completeness of R.

Theorem 2.7.2. (Completeness Theorem for R)
Every Cauchy sequence {xn} ⊂ R converges.

Proof. Let {xn} ⊂ R be Cauchy. Then we know that {xn} is also bounded. By the Bolzano-Weierstrass
Theorem {xn} has a convergent subsequence {xnk}. Form here it follows that {xn} itself converges.

Next we will show that (Rn, ‖·‖2) is also complete. To do so we need the following useful observation.

Proposition 2.7.3. Let {xk} = {(xk,1, xk,2, . . . , xk,n)} be a sequence in (Rn, ‖·‖2). Then xk → x0 =
(x0,1, x0,2, . . . , xo,n) if and only if xk,i → x0,i for each i = 1, 2, . . . , n.

Theorem 2.7.4. (Completeness Theorem for (Rn, ‖·‖2))
Every Cauchy sequence {xk} ⊂ (Rn, ‖·‖2) converges.

It is in fact possible to modify our previous argument to show that for any 1 ≤ p ≤ ∞ that a sequence
{xk} ⊂ (Rn, ‖·‖p) converges in ‖·‖p if and only if the component sequence {xk,i} converges for each i =
1, 2, . . . , n. Consequently we have the following:

Theorem 2.7.5. (Completeness Theorem for (Rn, ‖·‖p))
Let 1 ≤ p ≤ ∞. Every Cauchy sequence {xk} ⊂ (Rn, ‖·‖p) converges.

We will now show that our completeness theorems extend to sequence spaces.

Lemma 2.7.6. Let 1 ≤ p ≤ ∞. Let {xk} = {(xk,1, xk,2, xk,3, . . .)} be a Cauchy sequence in (lp, ‖·‖p). Then
for each i ∈ N, the component sequence {xk,i} is Cauchy in R.

Proof. As before, this follows because for each i ∈ N,

| xk,i − xm,i |≤ ‖xk − xm‖p.

Theorem 2.7.7. (Completeness Theorem for (lp, ‖·‖p))
Let 1 ≤ p ≤ ∞. Every Cauchy sequence {xk} ⊂ (lp, ‖·‖p) converges.

Proof. Case 1) (l∞, ‖·‖∞)
Assume that {xk} ⊂ (l∞, ‖·‖∞) is Cauchy. Since each component sequence {xk,i} is also Cauchy we can

define

x0,i = lim
k→∞

xk,i.

We claim that the sequence x0 = {x0,i} ∈ l∞ and that xk → x0.
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To do so first fix an ε > 0. Then choose an N0 such that if k,m > N0 we have

‖xk − xm‖∞ <
ε

2
.

Let k ≥ N0. Then for each i ∈ N, we have

| xk,i − xm,i |≤ ‖xk − xm‖∞ <
ε

2

for all m ≥ N0. It follows that for each i ∈ N,

| xk,i − x0,i |= lim
m→∞

| xk,i − xm,i |≤
ε

2
< ε (∗)

It follows that the sequence {xk,i − x0,i}∞i=1 is in l∞ and hence that x0 = {x0,i} is also in l∞. Moreover, (∗)
also shows that if k ≥ N0, then

‖xk − x0‖∞ ≤
ε

2
< ε.

This shows that xk → x0.

Case 2) (l1, ‖·‖1)
Assume that {xk} ⊂ (l1, ‖·‖1) is Cauchy. Since each component sequence {xk,i} is also Cauchy we can

define

x0,i = lim
k→∞

xk,i.

We claim that the sequence x0 = {x0,i} ∈ l1 and that xk → x0.
To do so first fix an ε > 0. Then choose an N0 such that if k,m > N0 we have

‖xk − xm‖1 <
ε

2
.

Let k ≥ N0. Then for each j ∈ N, we have

j∑
i=1

| xk,i − xm,i |≤ ‖xk − xm‖∞ <
ε

2

for all m ≥ N0. It follows that for each j ∈ N,

j∑
i=1

| xk,i − x0,i |= lim
m→∞

j∑
i=1

| xk,i − xm,i |≤
ε

2
< ε (∗)

Since j ∈ N was arbitrary, we get

∞∑
i=1

| xk,i − x0,i |≤
ε

2
< ε (∗∗)

It follows that the sequence {xk,i − x0,i}∞i=1 is in l1 and hence that x0 = {x0,1} is also in l1. Moreover,
(∗∗) also shows that if k ≥ N0, then

‖xk − x0‖1 ≤
ε

2
< ε.

This shows that xk → x0.

Case 3) (lp, ‖·‖p) where 1 < p <∞
Assume that {xk} ⊂ (lp, ‖·‖p) is Cauchy. Since each component sequence {xk,i} is also Cauchy we can

define

x0,i = lim
k→∞

xk,i.
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We claim that the sequence x0 = {x0,i} ∈ lp and that xk → x0.
To do so first fix an ε > 0. Then choose an N0 such that if k,m > N0 we have

‖xk − xm‖p <
ε

2
.

Let k ≥ N0. Then for each j ∈ N, we have

(

j∑
i=1

| xk,i − xm,i |p)
1
p ≤ ‖xk − xm‖∞ <

ε

2

for all m ≥ N0. It follows that for each j ∈ N,

(

j∑
i=1

| xk,i − x0,i |p)
1
p = lim

m→∞
(

j∑
i=1

| xk,i − xm,i |p)
1
p ≤ ε

2
< ε (∗)

Since j ∈ N was arbitrary, we get

(

∞∑
i=1

| xk,i − x0,i |p)
1
p ≤ ε

2
< ε (∗∗)

It follows that the sequence {xk,i − x0,i}∞i=1 is in lp and hence that x0 = {x0,1} is also in lp. Moreover,
(∗∗) also shows that if k ≥ N0, then

‖xk − x0‖p ≤
ε

2
< ε.

This shows that xk → x0.

All of the examples in this section are normed linear spaces which are complete in the induced metric.
This leads us to the following definition.

Definition 2.7.8. A normed linear space (X, ‖·‖) which is complete under the metric space induced by the
norm is called a Banach space.

2.8 Completeness of (Cb(X), ‖·‖∞)
.

Definition 2.8.1. Let (X, dX), (Y, dY ) be metric spaces. Let {fn} be a sequnce of functions from X to Y .
We say that a the sequence {fn} converges pointwise on X to f0(x) if

lim
n→∞

fn(x0) = f0(x0)

for every x0 ∈ X.

We say thay {fn} converges to f(x) uniformly on X if for every ε > 0 there exists an N0 ∈ N such that
if n ≥ N0, then dY (fn(x), f0(x)) < ε for all x ∈ X.

Remark 2.8.2. It should be clear that if fn → f0 uniformly, then fn → f0 pointwise but the converse does
not necessarily hold. For example if fn(x) = xn on [0, 1], then fn → f0 pointwise where

f0(x) :=

{
0 if x ∈ [0, 1),

1 if x = 1

However, each fn is continuous on [0, 1] but f0 is not. As we will soon see the convergence is not uniform.
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The next theorem shows that unlike pointwsie convergence, uniform convergence preserves continuity.
The proof uses an important technique known as a three ε argument.

Theorem 2.8.3. Let (X, dX), (Y, dY ) be metric spaces. Let {fn : X → Y } be a sequence of functions that
converges uniformly on X to f0. If each fn(x) is continuous at x0, then so is f0(x). In particular, if each
fn is continuous, so is f0.

Proof. Assme that fn → f0 uniformly and that each fn(x) is continuous at x0. Let ε > o. By uniform
convergence, we can find an N0 ∈ N such that if n ≥ N0, then dY (fn(x), f0(x)) < ε

3 for all x ∈ X. Since fN0

is continuous at x0, there exists a δ > 0 such that if x ∈ B(x0, δ), then dY (fN0
(x), fN0

(x0)) < ε
3 .So assume

that x ∈ B(x0, δ). Then

dY (f0(x), f0(x0)) ≤ dY (f0(x), fN0(x)) + dY (fN0(x), fN0(x0)) + dY (fN0(x0), f0(x0))

≤ ε

3
+
ε

3
+
ε

3
= ε

Definition 2.8.4. Let (X, d) be a metric space. Let

Cb(X) = {f : X → R | f(x)is continuous on X and f(X) is bounded in R}.

Define the norm ‖·‖∞ on Cb(X) by

‖f‖∞ = sup{| f(x) || x ∈ X}.

Then (Cb(X), ‖·‖∞) is a normed linear space.

Remark 2.8.5. Observe that it follows immediately from the definition of uniform convergence that fn → f0

in (Cb(X), ‖·‖∞) if and only if fn → f0 uniformly on X.

We are now in a position to show that (Cb(X), ‖·‖∞) is complete.

Theorem 2.8.6. [Completeness Theorem for (Cb(X), ‖·‖∞)]
(Cb(X), ‖·‖∞) is complete.

Proof. Assume that {fn} is Cauchy in (Cb(X), ‖·‖∞). Let x0 ∈ X. Since

| fn(x0)− fm(x0) |≤ ‖fn − fm‖∞,

it follows that {fn(x0)} is also Cauchy in R. Now define

f0(x)
def
= lim

n→∞
fn(x)

for each x ∈ X.

Claim: fn → f0 uniformly on X.
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To see why this is so let e > 0. Choose an N0 so that if n,m ≥ N0, then ‖fn − fm‖∞ < ε
2 . Now let

n ≥ N0 and x ∈ X. Then

| fn(x)− f0(x) | = lim
n→∞

| fn(x)− fm(x) |

≤ ε

2
< ε

and fn → f0 uniformly.
The Since each fn is continuous, it follows that f0 is also continuous on X. To complete the proof we

need only show that f0 is also bounded. However, since fn is Cauchy, it is bounded. As such there exists an
M so that ‖fn‖∞ ≤M for each n ∈ N. By uniform convergence, we can find an n0 such that if x ∈ X, then
| f0(x)− fn(x) |≤ 1 for all x ∈ X. Hence

| f0(x) |≤| f0(x)− fn(x) | + | fn(x) |≤ 1 +M

for all x ∈ X. Consequently f0 ∈ Cb(X) and fn → f0.

Remark 2.8.7. Observe that if we let X = N and give N the discrete metric d, then in this case (Cb(N), ‖·‖∞)
is exactly (l∞, ‖·‖∞). In particular, or previous result is a generalization of the proof that (l∞, ‖·‖∞) is
complete.

Following what we did above, given any set X we can give X the discrete topology. In this case, we define

(l∞(X), ‖·‖∞)
def
= (Cb(X), ‖·‖∞).

Problem 13. In the previous remark, we saw how we could define the analog of (l∞(X), ‖·‖∞) of (l∞, ‖·‖∞)
for any set X. Is there a way to define the analogue (lp(X), ‖·‖p) of (lp, ‖·‖p) for any 1 ≤ p <∞?

2.9 Characterizations of Complete Metric Spaces

.
In this section we will give several useful characterizations of completeness for metric and normed linear

spaces.

Remark 2.9.1. Recall that the Nested Interval Theorem states the following: Suppose that {[an, bn]} is a

sequence of closed intervals in R with [an+1, bn+1] ⊆ [an, bn], then
∞⋂
n=1

[an, bn] 6= ∅.

The simplest proof of the Nested Interval Theoerm uses the Monotone Convergence Theorem, which
in turn follows from the Least Upper Bound Property. In fact, it turns out that all three statements are
logically equivalent and are actually different variants of the Completeness Property for R. As such it makes
sense to ask if there is an analog of the Nested Interval Theorem for general metric spaces that serves as a
characterization of completeness.

One might ask if the following may be true:

Conjecture: A metric space is complete if and only if whenever {Fn} is a sequence of non-empty closed

subsets of X with Fn+1 ⊆ Fn, then
∞⋂
n=1

Fn 6= ∅.

Unfortunately, this result is false even for R. In particular, if Fn = [n,∞), then Fn is a closed interval

but
∞⋂
n=1

Fn = ∅. However, it does turn out that an appropriate analogue to the Nested Interval Theorem does

in fact exist. To formulate this result we first need the notion of the diameter of a set.

42



Definition 2.9.2. Let A ⊆ (X, d). We let

diam(A)
def
= sup{d(x, y) | x, y ∈ A}.

In this case, diam(A) is called the diameter of A.

The following prroposition will be needed later on.

Proposition 2.9.3. Let A ⊆ B ⊆ X. Then

1) diam(A) ≤ diam(B)

2) diam(A) = diam(A)

Proof. Statement 1) is obvious so we will only prove 2).
We know from 1) that diam(A) ≤ diam(A). From this it follows that the statement is true if diam(A) =

∞. Hence we may assume that diam(A) = d <∞.

Let x, y ∈ A and let ε > 0. We can find x0, y0 ∈ A so that d(x, x0) ≤ ε
2 and d(y, y0) ≤ ε

2 . It follows that

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) ≤ ε

2
+ d+

ε

2
= d+ ε.

From this it follows that diam(A) ≤ diam(A) ≤ diam(A) + ε. But ε was arbitrary so indeed diam(A) =
diam(A).

We are now in a position to state and prove our analogue of the Netsed Interval Theorem.

Theorem 2.9.4. [Cantor’s Intersection Theorem]
Let (X, d) be a metric space. Then the following are equivalent:

1) (X, d) is complete.

2) (X, d) satisfies the following property:

(∗) If {Fn} is a sequence of non-empty closed sets such that Fn+1 ⊆ Fn for each n ∈ N and

lim
n→∞

diam(Fn) = 0, then
∞⋂
n=1

Fn 6= ∅.

Proof. 1)⇒ 2) Assume that {Fn} is as above. For each n ∈ N, choose an xn ∈ Fn and let ε > 0.
Since diam(Fn) → 0, we can find an N0 so that diam(FN0

) < ε. If n,m ≥ N0, then because {Fn} is
nested xn, xm ∈ FN0

. It follows that d(xn, xm) ≤ diam(FN0
) < ε, and hence that {xn} is Cauchy. Because

(X, d) is complete, we have xn → x0 for some x0 ∈ X.
Now for each n ∈ N, again because {Fn} is nested, we have {xn, xn+1, xn+2, . . .} ⊆ Fn. But the sequence

{xn, xn+1, xn+2, . . .} also converges to x0. Since Fn is closed, this means that x0 ∈ Fn. Since n was arbitrary,

x0 ∈
∞⋂
n=1

Fn.

2) ⇒ 1) Let {xn} be a Cauchy sequence in X. For each n ∈ N let An = {xn, xn+1, xn+2, . . .}. The fact
that {xn} is Cauchy means that diam(An)→ 0.

Next, let Fn = An. Then clearly, Fn 6= ∅, Fn+1 ⊆ Fn and since diam(An) = diam(Fn), we have

diam(Fn)→ 0. By (∗), we can conclude that there exists an x0 ∈
∞⋂
n=1

Fn.

Let ε > 0. Choose N0 ∈ N so that diam(FN0
) < ε. Then FN0

⊂ B(x0, ε). In particular, is n ≥ N0, then
d(xn, x0) < ε.
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Our next result, which characterises completeness for a normed linear space, is an analogue of the familiar

fact that if a series
∞∑
n=1

an converges absolutely, then it converges.

Definition 2.9.5. Let (X, ‖·‖) be a normed linear space. Let {xn} ⊂ X. A series with terms {xn} is a
formal sum

∞∑
n=1

xn = x1 + x2 + x3 + · · · .

For eack k ∈ N, we define the k-th partial sum of
∞∑
n=1

xn by

Sk =

k∑
n=1

xn ∈ X

As we do in R, we say that the series
∞∑
n=1

an convegres if the sequence {Sk} converges. Otherwise we say

that the series diverges.

Theorem 2.9.6. [Generalized Weierstrass M-Test]
Let (X, ‖·‖) be a normed linear space. Then the following are equivalent:

1) (X, ‖·‖) is a Banach space.

2) (X, ‖·‖) satisfies the following property:

(∗) Let {xn} be a sequence in (X, ‖·‖). If
∞∑
n=1
‖xn‖ converges in R, then

∞∑
n=1

xn converges in

(X, ‖·‖).

Proof. 1) ⇒ 2)
∞∑
n=1
‖xn‖ convegres in R. For each k ∈ N, let Tk =

k∑
n=1
‖xn‖. Then {Tk} is a Cauchy

sequence. Hence, given ε > 0 we can find an N0 so that in k > m > N0, then

k∑
n=m+1

‖xn‖ =| Tk − Tm |< ε.

If we let Sk =
k∑

n=1
xn and k > m > N0, then

‖Sk − Sm‖ = ‖
k∑

n=m+1

xn‖ ≤
k∑

n=m+1

‖xn‖ < ε.

This shows that {Sk} is Cauchy and hence convergent.

2) ⇒ 1) Assume that (∗) holds and that {xn} is Cauchy in (X, ‖·‖). We can choose an n1 such that if
i, j ≥ n1, then ‖xi − xj‖ < 1

2 . Then we can choose n2 > n1 so that if i, j ≥ n2, then ‖xi − xj‖ < 1
22 . Next we

choose n3 > n2 > n1 so that i, j ≥ n1, then ‖xi − xj‖ < 1
23 . Proceeding inductively we construct a striclty

increasing sequence of natural numbers {nk} such that for each k ∈ N if i, j ≥ nk, then ‖xi − xj‖ < 1
2k

. In

particular, for each k ∈ N we have ‖xnk − xnk+1
‖ < 1

2k
.

For each k ∈ N, let gk = xnk − xnk+1
. Then

∞∑
k=1

‖gk‖ =

∞∑
k=1

‖xnk − xnk+1
‖ <

∞∑
k=1

1

2k
= 1.
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It now follows from (∗) that the sequence {Sj} = {
j∑

k=1

xnk − xnk+1
} also converges. But

Sj =

j∑
k=1

xnk − xnk+1
= (xn1

− xn2
) + (xn2

− xn3
) + · · ·+ (xnj − xnj+1

) = xn1
− xnj+1

as the series telescopes. It follows that

xnj+1

j→∞→ xn1
−
∞∑
k=1

gk.

Finally, because the subsequence {xnj+1
} converges, so does {xn}.

Example 2.13. [A continuous nowhere differentiable function]
Let

ϕ(x) =

{
x if x ∈ [0, 1]
2− x if x ∈ [1, 2]

.

and then extend ϕ to all of R by letting ϕ(x+ 2) = ϕ(x).
Let

f(x) =

∞∑
n=0

(
3

4
)nϕ(4nx).

Then by the Weierstrass M-Test, f(x) is continuous on R. We claim that f(x) is nowhere diffferentiable.
Fix x ∈ R. For each m ∈ N, there exists a k ∈ Z such that

k ≤ 4mx ≤ k + 1

or equivalently that
k

4m
≤ x ≤ k + 1

4m
.

Let

pm =
k

4m
, qm =

k + 1

4m

For n ∈ N, let
α = 4npm = 4n−mk

and
β = 4nqm = 4n−m(k + 1).

• If n > m, then α and β differ by an even integer so that | ϕ(α)− ϕ(β) |= 0.

• If n = m, then α = k and β = k + 1 so that | ϕ(α)− ϕ(β) |= 1.

• If n < m, then there is no integer strictly between α and β so that | ϕ(α)− ϕ(β) |=| α− β |= 4n−m.
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It follows that

| f(pm)− f(qm) | = |
m∑
n=0

(
3

4
)n[ϕ(4npm)− ϕ(4nqm)] |

≥ (
3

4
)m −

m−1∑
n=0

(
3

4
)n | ϕ(4npm)− ϕ(4nqm) |

= (
3

4
)m −

m−1∑
n=0

(
3

4
)n4n−m

= (
3

4
)m − 1

4m

m−1∑
n=0

3n

=
3m

4m
− 1

4m
(
3m − 1

3− 1
)

=
2 · 3m

2 · 4m
− 3m − 1

2 · 4m

=
3m + 1

2 · 4m

>
1

2
(
3

4
)m

But | pm − qm |= 1
4m so that

| f(pm)− f(qm) |
| pm − qm |

>
1

2
3m

If x = pm, then we have
| f(x)− f(qm) |
| x− qm |

>
1

2
3m.

If x = qm, then we have
| f(pm)− f(x) |
| pm − x |

>
1

2
3m.

If x 6= pm, x 6= qm, then since pm < x < qm, we get

1

2
3m <

| f(pm)− f(qm) |
| pm − qm |

≤ | f(pm)− f(x) |
| pm − qm |

+
| f(x)− f(qm) |
| pm − qm |

≤ | f(pm)− f(x) |
| pm − x |

+
| f(x)− f(qm) |
| x− qm |

As such either
| f(pm)− f(x) |
| pm − x |

>
1

4
3m

or
| f(x)− f(qm) |
| x− qm |

>
1

4
3m.

All together this shows that there exists a sequence {ym} → x such that for each m ∈ N

| f(ym)− f(x) |
| ym − x |

>
1

4
3m.

We can conclude that f is not differentiable at x.
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2.10 Completions of Metric Spaces

We know that R can be constructed from Q by essentially completing Q. In this section, we will see that
every metric space may be viewed as a dense subset of a complete metric space.

We begin with the following simple, but very useful result.

Proposition 2.10.1. Let (X, d) be a complete metric space. Let A ⊆ X. Then A is complete with respect
to the induced metric if and only if A is closed in X.

Proof. Assume that A is closed in X and let {xn} be Cauchy in (A, dA). Then it is clear that {xn} is also
Cauchy in (X, d). As such there exists an x0 ∈ X with xn → x0. Since A is closed, xo ∈ A and A is complete.

For the converse, assume that A is not closed. Then there exists a point x0 ∈ bdy(A) \A. It follows that
there exists a sequence {xn} ⊆ A with xn → x0 in (X, d). But then {xn} is Cauchy in (A, dA) but it cannot
have a limit in A. That is A is not complete.

Definition 2.10.2. Let (X, dX) and (Y, dY ) be two metric spaces. A map φ : X → Y is said to be an
isometry if dY (φ(x1), φ(x2)) = dX(x1, x2) for every x1, x2 ∈ X.

Note that it is clear that isometries are 1− 1. If φ is onto we say that (X, dX) and (Y, dY ) are isometric
metric spaces.

A completion of (X, dX) is a pair ((Y, dY ), φ) where (Y, dY ) is a complete metric space, φ : X → Y is an
isometry and φ(X) is dense in Y .

It is not obvious that every metric space (X, d) can be completed. However, we will now show that this
is infact the case.

Theorem 2.10.3. Given a metric space (X, d), there exists and isometry φ : X → (Cb(X), ‖·‖∞).

Proof. Fix a point a ∈ X. For each u ∈ X define φ(u) = fu : X → R by

fu(x) = d(u, x)− d(x, a).

Then fu is continuous on X.
The triangle inequality shows that for any x ∈ X that

| fu(x) |=| d(u, x)− d(x, a) |≤ d(u, a)

so fu ∈ Cb(X).
Next we observe that for any u, v ∈ X, we have

‖fu − fv‖∞ = sup{| fu(x)− fv(x) || x ∈ X}
= | d(u, x)− d(v, x) |
≤ d(u, v).

On the other hand, (fu − fv)(v) = (d(u, v)− d(v, a))− (d(v, v)− d(v, a)) = d(u, v) so in fact ‖fu − fv‖∞ =
d(u, v).

Corollary 2.10.4. Every metric space has a completion.

Proof. Let φ : X → (Cb(X), ‖·‖∞) be as in the previous theorem. Let Y = φ(X). Since Y is a closed subset
of a complete metric space it is also complete.
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2.11 Banach Contractive Mapping Theorem

To motivate the main result of this section we begin with the following problem.

Problem 14. Does there exists a function f ∈ C[0, 1] so that

(2.1) f(x) = ex +

∫ x

0

sin(t)

2
f(t) dt.

The strategy we will follow in answering this question is to first define a map Γ : C[0, 1]→ C[0, 1] defined by

Γ(g) = ex +

∫ x

0

sin(t)

2
g(t) dt

for each g ∈ C[a, b]. Note that the fact that Γ(g) ∈ C[0, 1] follows from the Fundamental Theorem of Calculus.
Next we will show that in fact there exists a unique function f ∈ C[0, 1] such that Γ fixes f . That is Γ(f) = f
and hence

f(x) = Γ(f) = ex +

∫ x

0

sin(t)

2
f(t) dt.

as desired.

Definition 2.11.1. Let Γ : X → X. We call x0 ∈ X a fixed point of Γ if Γ(x0) = x0.

If (X, d) is a metric space and Γ : X → X, we say that Γ is Lipschitz if there exists constant 0 ≤ α such
that

d(Γ(x),Γ(y)) ≤ αd(x, y)

for every x, y ∈ X.

We say that Γ is a contraction if there exists a constant 0 ≤ k < 1 such that

d(Γ(x),Γ(y)) ≤ kd(x, y)

for every x, y ∈ X.

The following theorem, which is also know as the Banach Fixed Point Theorem, shows that every con-
traction map on a complete metric space has a unique fixed point.

Theorem 2.11.2. [Banach Contractive Mapping Theorem]
Let (X, d) be a complete metric space. Let Γ : X → X be a contraction. Then Γ has a unique fixed point

x0 ∈ X.

Proof. Let x1 ∈ X. Then let x2 = Γ(x1), x3 = Γ(x2), and proceed recursively by defining

xn+1 = Γ(xn).

Note that
d(x3, x2) = d(Γ(x2),Γ(x1)) ≤ kd(x2, x1).

Similarly,
d(x4, x3) = d(Γ(x3),Γ(x2)) ≤ kd(x3, x2) ≤ k2d(x2, x1).

In fact, we can proceed inductively to show that

d(xn+1, xn) =≤ kn−1d(x2, x1).
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From this it follows that if m > n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ km−2d(x2, x1) + km−1d(x2, x1) + · · ·+ kn−1d(x2, x1)

= kn−1d(x2, x1)[km−n−1 + km−n−2 + · · ·+ k + 1]

≤ kn−1d(x2, x1)

1− k

Since kn → 0, it follows that {xn} is Cauchy. As (X, d) is complete {xn} converges to some x0 ∈ X.
Now, It is clear that Γ is continuous. As such we have that Γ(xn)→ Γ(x0). But Γ(xn) = xn+1 → x0, so

it follows that
Γ(x0) = x0.

Finally assume that y0 also satisfies Γ(y0) = y0. Then

d(x0, y0) = d(Γ(x0),Γ(y0)) ≤ kd(x0, y0).

As 0 < k < 1, this implies that d(x0, y0) = 0 and hence that x0 = y0.

Remark 2.11.3. One might be tempted to ask if we could replace the condition d(Γ(x),Γ(y)) ≤ kd(x, y) with
the weaker condition d(Γ(x),Γ(y)) < d(x, y) and still obtain a unique fixed point? Unfortunately, this is not
the case as the example f : [1,∞)→ [1,∞) where f(x) = x+ 1

x shows. (The details are left as an exercise.)

The Banach Contraction Mapping Theorem has many applications to the theory of both integral and
differential equations. We illustrate one such application by solving the problem with which we began this
section.

Example 2.14. Show that there exists a unique f ∈ C[0, 1] so that

(2.2) f(x) = ex +

∫ x

0

sin(t)

2
f(t) dt.

Let Γ : C[0, 1]→ C[0, 1] be defined by

Γ(g) = ex +

∫ x

0

sin(t)

2
g(t) dt

for each g ∈ C[0, 1]. We note that for any x ∈ [0, 1], and f , g ∈ C[0, 1],

|Γ(g)(x)− Γ(f)(x)| =

∣∣∣∣[ex +

∫ x

0

sin(t)

2
g(t) dt

]
−[

ex +

∫ x

0

sin(t)

2
f(t) dt

]∣∣∣∣
=

∣∣∣∣∫ x

0

sin(t)

2
(g(t)− f(t)) dt

∣∣∣∣
≤

∫ x

0

∣∣∣∣ sin(t)

2

∣∣∣∣ |g(t)− f(t)| dt

≤
∫ x

0

∣∣∣∣ sin(t)

2

∣∣∣∣ ‖g − f‖∞ dt,

49



whence by linearity of definite integrals.∫ x

0

∣∣∣∣ sin(t)

2

∣∣∣∣ ‖g − f‖∞ dt = ‖g − f‖∞
∫ x

0

∣∣∣∣ sin(t)

2

∣∣∣∣ dt
≤ ‖g − f‖∞

∫ 1

0

∣∣∣∣ sin(t)

2

∣∣∣∣ dt
≤ ‖g − f‖∞

∫ 1

0

1

2
dt

=
1

2
‖g − f‖∞.

This shows that ‖Γ(g) − Γ(f)‖∞ ≤ 1
2‖g − f‖∞; Γ is a contraction. By the Banach Contraction Mapping

Theorem, there exists a unique function f0 ∈ C[0, 1] such that Γ(f0) = f0. But a function f satisfies the
integral equation 2.2 if and only if Γ(f) = f . Hence f0 is the unique solution to the integral equation 2.2.

Note that not only does the Banach Contraction Mapping Theorem guarantee uniqueness and existence
of fixed points, it also provides a constructive method to find the fixed point; namely, start with any function
f0 ∈ C[0, 1] and iteratively apply the contractive map Γ to it. The limit of this iteration will be the desired
fixed point of Γ.

Example 2.15. Show that there exists a unique function f0(x) ∈ C[0, 1] such that

(2.3) f0(x) = x+

∫ x

0

t2f0(t) dt.

Find a power series representation for this function on [0, 1].

Let Γ : C[0, 1]→ C[0, 1] be defined by

Γ(g)(x) = x+

∫ x

0

t2g(t) dt.

Note that f is a solution to (2.3) if and only if Γ(f) = f . Observe that for any x ∈ [0, 1], and f , g ∈ C[0, 1],
we have that

|Γ(g)(x)− Γ(f)(x)| :=

∣∣∣∣(x+

∫ x

0

t2g(t) dt

)
−
(
x+

∫ x

0

t2f(t) dt

)∣∣∣∣
=

∣∣∣∣∫ x

0

t2(g(t)− f(t)) dt

∣∣∣∣
≤

∫ x

0

|t2| · |g(t)− f(t)| dt

≤
∫ 1

0

|t2| · |g(t)− f(t)| dt

≤
∫ 1

0

t2 · ‖g − f‖∞ dt

= ‖g − f‖∞ ·
∫ 1

0

t2 dt

= ‖g − f‖∞ ·
[
t3

3

]1

0

=
1

3
‖g − f‖∞.

This shows that Γ is contractive. By the Banach Contraction Mapping Theorem, Γ has a unique fixed point
f0 with Γ(f0) = f0, so f0 is the unique solution to (2.3).
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To find the series representation of f0(x), we begin with f1 = 0, and fn+1 = Γ(fn). So

f2 = Γ(f1) = x+

∫ x

0

t2 · 0 dt = x,

f3 = Γ(f2) = x+

∫ x

0

t2 · t dt = x+
t4

4

∣∣∣∣x
0

= x+
x4

4
,

f4 = Γ(f3) = x+

∫ x

0

t2 ·
(
t+

t4

4

)
dt = x+

∫ x

0

(
t3 +

t6

4

)
dt

= x+
x4

4
+

x7

4 · 7
,

f5 = Γ(f4) = x+

∫ 2

0

t2 ·
(
t+

t4

4
+

t7

4 · 7

)
dt

= x+

∫ x

0

(
t3 +

t6

4
+

t9

4 · 7

)
dt

= x+
x4

4
+

x7

4 · 7
+

x10

4 · 7 · 10
,

and so on. We can easily show using induction that for n ≥ 2,

fn(x) =

n−2∑
i=0

x3i+1

1 · 4 · 7 · · · · · (3i+ 1)
.

We know from the Banach contractive mapping theorem that if fn+1 = Γ(fn) for all n ∈ N, then fn → f0

uniformly. This shows that

f0(x) =

∞∑
n=0

x3n+1

1 · 4 · 7 · · · · · (3n+ 1)

is the required power series representation.

Perhaps the most significant application of the Banach Contraction Mapping Theorem is the Picard-
Lindelöf Theorem.

Theorem 2.11.4. [Picard-Lindelöf Theorem]
Let f : [0, b]× R→ R be continuous and Lipschitz in y. That is there exists an α ≥ 0 such that

| f(t, y)− f(t, z) |≤ α | y − z |

for all y, z ∈ R. Let y0 ∈ R. Then there exists a unique function y(t) ∈ C[0, b] such that{
y′(t) = f(t, y(t)) for all t ∈ (0, b),
y(0) = y0

2.12 Baire’s Category Theorem

We begin this section with the following interesting example of a function f : R → R which is continous
every rational point in R, but discontinuous at each irrational.

Example 2.16. [A Strange Function]
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Let

f(x) =


0 if x ∈ R \Q,
1
n if x = m

n , m ∈ Z, n ∈ N, gcd(m,n) = 1, m 6= 0,

1 if x = 0.

For any α ∈ R, there exists a sequence {xn} ⊂ R\Q with lim
n→∞

xn = α due to the density of irrationals. Since

f(xn) = 0 for every n ∈ N, the sequential characterization of continuity shows that if f(x) is continuous at
x = α, then f(α) = 0. This shows that f(x) is discontinuous at x = r for all r ∈ Q.

On the other hand, assume the α ∈ R \Q. Let ε > 0 and choose N0 ∈ N so that 1
N0

< ε. We note that in
the interval [α−1, α+1] there are only finitely any rationals of the form r = m

n where n < N0. As such, and
because α is irrational, we can find a δ > 0 so that if r = m

n ∈ (α − δ, α + δ), then it must be that n ≥ N0.
It follows that if | x− α |< δ, then

| f(x)− f(α) |= f(x) < ε

and hence that f(x) is continuous at α.

In the previous example, we saw a function that is continous every irrational point in R, but discontinuous
at each rational. This leads us to the following natural question:

Problem 15. Does there exist a function f : R → R such that f(x) is continuous at each rational but
discontinuous otherwise?

To answer this question we will first show that the set of discontinuities of a function f : (X, d) → R,
has a particular topological nature. Before we do so we will present a series of definitions that we will need
going forward.

Definition 2.12.1. Let (X, d) be a metric space. A set A ⊆ X is said to be an Fσ set if

A =

∞⋃
n=1

Fn

where {Fn} is a sequence of closed subsets of X.

A set A ⊆ X is said to be a Gδ set if

A =

∞⋂
n=1

Un

where {Un} is a sequence of open subsets of X.

A set A ⊆ X is said to be nowhere dense if int(A) = ∅. A is said to be of 1st category in X if

A =

∞⋃
n=1

An

where {An} is a sequence of nowhere dense subsets of X. Otherwise, we say that A is of second category in X.

We say that A is residual in X if Ac is of 1st category in X.

Remark 2.12.2. 1) It follows from DeMorgan’s Laws that a set A is Fσ in X if and only if Ac is Gδ.

2) The set [0, 1) is both Fσ and Gδ in R even though it is neither open or closed. ( [0, 1) =
∞⋃
n=1

[0, 1− 1
n ]

and [0, 1) =
∞⋂
n=1

(− 1
n , 1).)
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3) Every closed set F ⊂ X is also Gδ, and hence every open set U is Fσ. (Exercise)

4) Nowhere dense subsets, and indeed first category subsets of a metric space are thought to be “topologi-
cally thin” while second category sets, and more so residual sets are seen to be “topogically fat”.

5) The Cantor set is nowhere dense in R but has cardinality c.

6) A closed set F is nowhere dense if and only if U = F c is dense.

Definition 2.12.3. Let f : (X, dX)→ (Y, dY ). Let D(f) denote the set of all points in X at which f is not
continuous.

For each n ∈ N, let

Dn(f) = {x ∈ X | for every δ > 0 there exists y, z ∈ B(x, δ) with DY (f(y), f(z)) ≥ 1

n
}

The next theorem show that the set of discontinuities for a function between metric spaces must be an
Fσ set. The proof is left as an excercise.

Theorem 2.12.4. Let f : (X, dX)→ (Y, dY ). Then for each n ∈ N, Dn(f) is closed in X. Moreover,

D(f) =

∞⋃
n=1

Dn(f).

In particular, D(f) is Fσ.

Theorem 2.12.5. [Baire Category Theorem I]

Let (X, d) be complete metric space. Let {Un} be a sequence of open dense sets. Then
∞⋂
n=1

Un is dense in

X.

Proof. Let W be open and non-empty. Then there exists an x1 ∈ X and 0 < r1 ≤ 1 such that

B(x1, r1) ⊆ B[x1, r1] ⊆W ∩ U1.

Next we can find x2 ∈ X and 0 < r2 <
1
2 such that

B(x2, r2) ⊆ B[x2, r2] ⊆ B(x1, r1) ∩ U2.

We can then proceed recursively to find sequences {xn} ⊆ X and {rn} ⊂ R with 0 < rn ≤ 1
n , and

B(xn+1, rn+1) ⊆ B[xn+1, rn+1] ⊆ B(xn, rn) ∩ Un+1.

Since rn → 0 and B[xn+1, rn+1] ⊆ B[xn, rn], Cantor’s Intersection Theorem implies that there exists an

x0 ∈
∞⋂
n=1

B[xn, rn.]

But then x0 ∈ B[x1, r1] ⊆W and x0 ∈ B[xn, rn] ⊆ Un for each n ∈ N. This shows that

x0 ∈W ∩ (

∞⋂
n=1

Un).
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Remark 2.12.6. The Baire Category Theorem shows that if {Un} is a sequence of open dense sets, then
∞⋂
n=1

Un is dense in X. We also know that
∞⋂
n=1

Un is a Gδ. These dense Gδ subsets of a complete metric space

are always residual, as we will see below, and as such are topogically fat.

Our next corollary shows the connection between the Baire Category Theorem and our notion of category.

Corollary 2.12.7. [Baire Category Theorem II]
Every complete metric space (X, d) is of second category in itself.

Proof. Assume that X is of first category. Then there exists a sequence An of nowhere dense sets so that

X =

∞⋃
n=1

An =

∞⋃
n=1

An.

Now Let Un = (An)c. Then Un is open and dense. But

∞⋂
n=1

Un = ∅

which is impossible.

Corollary 2.12.8. Q is not a Gδ subset of R.

Proof. Suppose the

Q =

∞⋂
n=1

Un

where each Un is open. Let Fn = (Un)c. Since Q ⊆ Un, it follows that Un is dense, and hence that Fn is
nowhere dense. Next Let {r1, r2, r3, . . .} be an enumeration of Q. Let Sn = Fn ∪ {rn}. Then Sn is closed
and nowhere dense. However,

R =

∞⋃
n=1

Sn

contradicting the Baire Category Theorem II.

Corollary 2.12.9. There is no function f : R→ R for which D(f) = R \Q.

We are now able to show that for a sequence {fn} ⊂ C([a, b]) that converges pointwise, the limit function
must be continuous at each point on a residual set. To do this we first introduce a new form of convergence
which lies between pointwise and uniform convergence.

Definition 2.12.10. Let (X, dX), (Y, dY ) be metric spaces. Let {fn : X → Y } be a sequence of functions
that converges pointwise on X to f0. We say that {fn} converges uniformly at x0 ∈ X if for every ε > 0
there exists a δ > 0 and an N0 ∈ N such that if n,m ≥ N0 and if dX(x, x0) < δ, then dY (fn(x), fm(x)) < ε.

The following theorem shows that if fn → f0 uniformly at a point x0, then this is enough to preserve
continuity. The proof is left as a exercise.

Theorem 2.12.11. Let (X, dX), (Y, dY ) be metric spaces. Let {fn : X → Y } be a sequence of functions
that converges pointwise on X to f0. Assume also that {fn} converges uniformly at x0 ∈ X. If each fn is
continuous at x0, then so is f0.
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Theorem 2.12.12. Let fn : (a, b) → R be a sequence of continuous functions that converges pointwise to
f(x). Then there exists an x0 ∈ (a, b) such that fn → f uniformly at x0.

Proof. We first show:

(*) There exists a closed interval [α1, β1] ⊂ (a, b) with α1 < β1, and an N1 ∈ N so that if n,m ≥ N1

and x ∈ [α1, β1], then
| fn(x)− fm(x) |≤ 1.

Suppose that (*) fails and no such interval and N1 exist. Then pick a < t1 < b and n1,m1 ∈ N with

| fn1
(t1)− fm1

(t1) |> 1.

Since fn1
(x) and fm1

(x) are continuous, there exists an open interval I1 with I1 ⊂ (a, b) and

| fn1
(x)− fm1

(x) |> 1

for every x ∈ I1. But then there must exist a t2 ∈ I1 and n2,m2 > max{n1,m1} such that

| fn2(t2)− fm2(t2) |> 1.

As before there exists an open interval I2 with I2 ⊂ I1 and

| fn2
(x)− fm2

(x) |> 1

for every x ∈ I2.
By induction we get a sequence {Ik} of open intervals such that (a, b) ⊃ I1 ⊃ I1 ⊃ I2 ⊃ I2 ⊃ I3 ⊃ · · ·

and two sequences {mk}, {nk} ⊆ N with nk+1,mk+1 > max{nk,mk} and

| fnk(x)− fmk(x) |> 1

for every x ∈ Ik.
Now by the Nested Interval Theorem there exists

t0 ∈
∞⋂
k=1

Ik.

It follows that
| fnk(t0)− fmk(t0) |> 1

for all k ∈ N. This contradicts the fact that {fn(t0)} is Cauchy.
From here we can proceed inductively to construct a sequence {[αk, βk]} of closed intervals with (a, b) ⊃

[α1, β1] ⊃ (α1, β1) ⊃ [α2, β2] ⊃ (α2, β2) ⊃ [α3, β3] ⊃ · · · and a sequence N1 < N2 < N3 < · · · so that if
n,m ≥ Nk and x ∈ [αk, βk], then

| fn(x)− fm(x) |< 1

k
.

Finally, let

x0 ∈
∞⋂
k=1

[αk, βk] =

∞⋂
k=1

(αk, βk)

Now given ε > 0, if 1
k < ε, then if n,m ≥ Nk and x ∈ (αk, βk), then

| fn(x)− fm(x) |< ε.

But since x0 ∈ (αk, βk) we need only choose a δ > 0 so that (x0 − δ, x0 + δ) ⊆ (αk, βk) to conclude that
fn → f uniformly at x0.
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Corollary 2.12.13. Let {fn} ⊂ C([a, b]) be such that fn → f0 pointwise on [a, b]. Then there exists a
residual set A ⊂ [a, b] such that f0(x) is continuous at each x ∈ A.

Proof. It follows from the previous Theorem that the set A on which f0(x) is continuous is dense in [a, b].
However, we also know that D(f0) is an Fσ set so that A is a dense Gδ set.

Corollary 2.12.14. Assume that f(x) is differentiable on R. Then f ′(x) is continuous for every point in
a dense Gδ-subset of R.

Proof. Observe that f ′(x) is the pointwise limit of the sequence of continuous functions { f(x+ 1
n )−f(x)
1
n

}.

2.13 Compactness

In this section we will discuss three important properties of a topological space, namely compactness, se-
quential compactness and the Bolzano-Weierstrass Property. In fact we will show that for metric spaces,
these three properties are equivalent. We begin by defining these three properties.

Definition 2.13.1. [Compactness]
Let (X, d) be a metric space. An (open) cover for X is a colection {Uα}α∈I for which

X =
⋃
α∈I

Uα.

Given a cover {Uα}α∈I a subcover is a collection {Uα}α∈J where J ⊆ I and

X =
⋃
α∈J

Uα.

{Uα}α∈J is a finite subcover if J is finite.

We say that X is compact if every cover {Uα}α∈I has a finite subcover.

A subset A ⊆ X is said to be compact, if for every cover of A, that is a collection {Uα}α∈I of open sets
with

A ⊆
⋃
α∈I

Uα,

there is a finite subcover {Uα1
, Uα2

, Uα3
, . . . , Uαn} or equivalently, if (A, dA) is a compact metric space.}

Definition 2.13.2. [Sequential Compactness]
Let (X, d) be a metric space. We say that X is sequentially compact, if every sequence {xn} ⊆ X has a

convergent subsequence.

If A ⊆ X, we say A is sequentially compact if every sequence {xn} ⊆ A has a subsequence converging to
a point in A.

Definition 2.13.3. [Bolzano-Weierstrass Property]
Let (X, d) be a metric space. We say that X has the Bolzano-Weierstrass Property (BWP) if every

infinite subsets in X has a limit point.

We will begin by showing that a metric space (X, d) is sequentially compact if and only if it has the
BWP.
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Theorem 2.13.4. Let (X, d) be a metric space. Then the following are equivalent:

1) X is sequentially compact.

2) X has the Bolzano-Weierstrass Property.

Proof. 1) ⇒ 2) Assume that X is sequentially compact and let S ⊆ X be infinite. Then we know that we
can extract from S a sequence {xn} consisting of distinct points. But then by sequential compactness, this
sequence has a convergent subsequence {xnk} with xnk → x0. But this means that if ε > 0, then B(x0, ε)
contains infinitely many terms in the sequence xnk and consequently x0 ∈ Lim(S).

2)⇒ 1) Assume that X has the BWP. Assume also that {xn} is a sequence in X. If there is an element
x0 ∈ X which appears infinitely many times in {xn}, then {xn} has a subsequence which is constant and
as such convergent. So we may assume without loss of generality that no such x0 exists. This means that
when viewed as a subset of X, {xn} is infinite. Moreover, by passing to a subsequence if necessary we can
assume that the terms of {xn} are distinct, which we do going forward.

Given that {xn} is an infinite set, there exists x0 ∈ Lim({xn}). We can thus find an n1 ∈ N so
that d(xn1

, x0) < 1. We can then find an n2 > n1 so that d(xn2
, x0) < 1

2 . Indeed if we have chosen
n1 < n2 < n3 < · · · < nk with d(xn1 , x0) < 1

k , then we choose recursively nk+1 > nk with d(xnk+1
, x0) < 1

k+1 .

This gives us a subsequence {xnk} with d(xnk , x0) < 1
k . In particular, xnk → x0.

The next result is useful in establishing some significant restrictions on the nature of compact and
sequentially compact metric spaces and subsets of metric spaces.

Proposition 2.13.5. Let (X, d) be a metric space and A ⊂ X.

1) If A is compact then A is closed and bounded.

2) If A is closed and X is compact, then so is A

3) If A is sequentially compact then A is closed and bounded.

4) If A is closed and X is sequentially compact, then so is A.

5) If X is sequentially compact, then X is complete.

Proof. We may of course assume that X 6= ∅ and that A 6= ∅ in each case.

1) To see that A is bounded choose an x0 ∈ X and then observe that {B(x0, n)}∞n=1 is an open cover of
A. If A is compact it has a finite subcover {B(x0, n1), B(x0, n2), . . . , B(x0, nk)} where we may also
assume that n1 < n2 < n3 < · · · < nk. It follows that A ⊂ B(x0, nk) and hence that A is bounded.

Assume that A is not closed. Then there exists x0 ∈ Lim(A) \A. For each n ∈ N, let Un = B[x0,
1
n ]c.

Then {Un}∞n=1 is an open cover of A with no finite subcover.

2) Assume that A is closed and X is compact. Let {Uα}α∈I be a cover of A. Then {Uα}α∈I ∪ {Ac} is a
cover of X. Hence there exists {Uα1

, Uα2
, Uα3

, . . . , Uαn} such that {Uα1
, Uα2

, Uα3
, . . . , Uαn} ∪ {Ac} is

a cover of X. It follows that {Uα1
, Uα2

, Uα3
, . . . , Uαn} is a finite subcover of a.

3) Assume that A is not bounded. Choose x1 ∈ A. We can then choose x2 ∈ A with d(x1, x2) > 1. As
A is unbounded we can then choose x3 ∈ A with d(xi, x3) > 1 for i = 1, 2. We can then proceed
recursively to define a sequence {xn} ⊂ A with d(xn, xm) > 1 if n 6= m. It is then clear that the
sequence {xn} has no convergent subsequences, and as such that A is not sequentially compact.

Assume that A is not closed. Then there exists a sequence {xn} ⊂ A with xn → x0 and x0 6∈ A.
Clearly {xn} has no subsequence converging in A and so A is not sequentially compact.
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4) Assume that A is closed and X is sequentially compact. Let {xn} ⊂ A. Then there is a subsequence
{xnk} with xnk → x0 in X. But since A is closed x0 ∈ A.

5) Assume that X is sequentially compact and that {xn} is Cauchy. Then {xn} has a convergent subse-
quence by sequential compactness, and hence {xn} converges.

Example 2.17. [Compactness and Sequential Compactness in Rn]
Assume the A is either compact or sequentially compact in Rn. Then A is closed and bounded.
We know that in R a bounded sequence has a convergent subsequence, and as such for R sequential

compactness is equivalent to being closed and bounded. By recognizing that a sequence in Rn converges if and
only if each of its component sequences converge, it is easy to see that a simple inductive process will allow
us to extend this result to Rn.

The next theorem establishes the equivalence of compactnes and closed and boundedness for Rn. Before
we state the result we need the following definition.

Definition 2.13.6. A closed cell in Rn is a set

J = [a1, b1]× [a2, b2]× · · · × [an, bn].

Theorem 2.13.7. [Heine-Borel] A set A ⊆ Rn is compact if and only if A is closed and bounded.

Proof. We need only show that if A is closed and bounded then it is compact.

Assume that A is closed and bounded. Assume also that there exists a cover {Uα}α∈I of A with no finite
subcover. Let F1 = A and let J1 be a closed cell containing A. We can divide J1 into 2n closed subcells
{J1,1, J1,2, J1,3, . . . , J1,2n} by bisecting each of the intervals [ai, bi]. One of these subcells, call it J2, must
be such that F2 = J2 ∩ A cannot be covered by finitely many members of {Uα}α∈I . Observe also that
diam(J2) = 1

2diam(J1).
We can know proceed to construct a sequence of closed cells {Jn} such that

1) Jn+1 ⊂ Jn for each n ∈ N.

2) diam(Jn+1) = 1
2diam(Jn) for each n ∈ N.

3) Fn = Jn ∩A cannot be covered by finitely many members of {Uα}α∈I .

Then {Fn} is a nested sequence of non-empty closed sets with diam(Fn)→ 0. By Cantor’s Intersection
Theorem,

∞⋂
n=1

Fn = {x0}.

Since x0 ∈ A, we have x0 ∈ Uα0 for some α0. But then there exists an ε > 0 such that B(x0, ε) ⊆ Uα0 .
However if n0 is large enough so that diam(Fn0) < ε, then

Fn0
⊂ B(x0, ε) ⊆ Uα0

which is impossible.

The Heine-Borel Theorem and what we know so far about compactness and sequential compactness
suggests the following problem:

Problem 16. Is (X, d) compact if and only if it is sequentially compact? Moreover, is a subset A of X
compact if and only if it is closed and bounded?
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Remark 2.13.8. In fact, it is easy to see that the second statement above is false. Indeed, in every metric
space (X, d) is closed in itself, so in reality all we need is a bounded metric space which is not compact. We
can simply choose any infinite set X and give it the discrete metric d. Clearly X is bounded and closed. But
{x}x∈X is an open cover with no finite subcover.

On the other hand we will eventually be able to show that for metric spaces compactness and sequential
compactness are in fact equivalent.

The next result can be viewed as an upgrade of the Cantor Intersection Theorem for compact metric
spaces.

Definition 2.13.9. Let X be any set. A collection {Aα}α∈I is said to have the Finite Intersection Property
(FIP) if whenever {Aα1 , Aα2 , Aα3 , . . . Aαn} is any finite subcollection of {Aα}α∈I , we have that

n⋂
i=1

Aαi 6= ∅.

Theorem 2.13.10. Let (X, d) be a metric space. Then the following are equivalent:

1) X is compact.

2) If {Fα}α∈I is a collection of closed subsets of X with the FIP, then⋂
α∈I

Fα 6= ∅.

Proof. 1)⇒ 2) Assume that X is compact and that {Fα}α∈I has the FIP. Let Uα = F cα for each α ∈ I.
Assume that ⋂

α∈I
Fα = ∅.

Then ⋃
α∈I

Uα = X.

But then by compactness we can find a finite subcover {Uα1
, Uα2

, Uα3
, . . . , Uαn}. It then follows that

n⋂
i=1

Fαi = ∅

contradicting the assumption that {Fα}α∈I has the FIP.

2)⇒ 1) Assume 2) holds. Let {Uα}α∈I be a cover for X with no finite subcover. Let Fα = U cα for each
α ∈ I. Then ⋂

α∈I
Fα = ∅.

Now since {Uα1
, Uα2

, Uα3
, . . . , Uαn} is not a cover for any finite collection, we get that for any choices of

finitely many elements {Fα1
, Fα2

, Fα3
, . . . , Fαn}

n⋂
i=1

Fαi 6= ∅.

This contradicts the fact that {Fα}α∈I has the FIP.

The first corollary to the previous theorem may be viewed as a generalization of the Nested Interval
Theorem for R.
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Corollary 2.13.11. Assume that (X, d) is a compact metric space. Let {Fn} be a sequence of non-empty
closed substes of X such that Fn+1 ⊆ Fn for each n ∈ N, Then

∞⋂
n=1

Fn 6= ∅.

Corollary 2.13.12. Assume that (X, d) is compact. Then X has the BWP. In particular, X is sequentially
compact.

Proof. Assume that X is compact and that S is infinite. Then we can find a sequence {xn} ⊆ S consisting
of distinct points. Let Fn = {xn, xn+1, xn+2, . . .}. Then {Fn} clearly has the FIP. As such there exists

x0 ∈
∞⋂
n=1

Fn.

But then for every ε > 0, B(x0, ε) ∩ {xn, xn+1, xn+2, . . .} 6= ∅ and hence B(x0, ε) ∩ S is infinite.

We know that in R compactness is equivalent to a set being closed and bounded. We have already
seen that in a general metric space that this equivalence fails. We do know that the metric space must be
complete. We will now present an upgrade on boundedness that will eventually allow us to complete our
characterization of compact sets.

Definition 2.13.13. Let (X, d) be a metric space. Let ε > 0 A collection {xα}α∈I ⊆ X is said to be an
ε-net for X if

X =
⋃
α∈I

B(xα, ε).

We say that (X, d) is totally bounded if for each ε > 0, X has a finite ε-net.

Given a subset A ⊆ X we say that A is totally bounded if it is totally bounded in the induced metric. This
is equivalent to saying that for every ε > 0, there exists finitely many points {x1, x2, x3, . . . , xn} ⊆ A so that

A ⊆
n⋃
i=1

B(xi, ε).

Proposition 2.13.14. Let (X, d) be sequentially compact. Then X is totally bounded.

Proof. Suppose that X is not totally bounded. Thene there exists an ε0 > 0 with no finite ε0-net. But then
we can constrauct a sequence {xn} ⊂ X so that xi 6∈ B(xj , ε0) if i 6= j. Consequently, d(xi, xj) ≥
e0 if i 6= j. Such a sequence cannot have a convergent subsequence.

Remark 2.13.15. 1) Let (N, d) be the natural numbers with the discrete metric. Then N is bounded, but
it is not totally bounded because it has no finite 1

2 -net.

2) If A ⊆ X is totally bounded, then so is A. In fact, if {x1, x2, x3, . . . , xn} is an ε
2 -net for A, then it is

also an ε-net for A.

We will need the following result, which is of independent interest:

Theorem 2.13.16. Let f : (X, dX)→ (Y, dY ) be continuous. If (X, dX) is sequentially compact, then so is
(f(X), dY ).
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Proof. Let {yn} ⊆ f(X). Then yn = f(xn) for some xn ∈ X. It follows that the sequence {xn} has a
subsequence {xnk} which converges to some x0 ∈ X. But then by continuity ynk = f(xnk)→ f(x0) = y0.

Corollary 2.13.17. [Extreme Value Theorem]
Let f : (X, dX)→ R be continous. If (X, dX) is sequentially compact, then there exists c, d ∈ X so that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ X.

Proof. It follows from the previous theorem that f(X) is sequentially compact in R. This means that f(X) is
both closed and bounded, and in particular that glb(f(X)) ∈ f(X) and lub(f(X)) ∈ f(X). Choose c, d ∈ X
so that f(c) = glb(f(X)) and f(d) = lub(f(X)).

Theorem 2.13.18. [Lebesgue]
Let (X, d) be a sequentially compact metric space and let {Uα}α∈I be a cover of X. Then there exists an

ε > 0 such that for every x ∈ X and 0 < δ < ε there is an α0 ∈ I with

B(x, δ) ⊆ Uα0

In this case we call ε a Lebesgue number for the cover {Uα}α∈I .

Proof. If X = Uα for some α, then any ε > 0 will work. So we assume that X 6= Uα for any α.

For each x ∈ X, let
φ(x) = sup{r ∈ R | B(x, r) ⊆ Uα0

for some α0 ∈ I}.
Then it is clear that φ(x) > 0. Moreover, φ(x) <∞ for otherwise because X is bounded, we would have

X = Uα for some α.

Now if x, y ∈ X then the Triangle Inequality shows that

φ(x) ≤ φ(y) + d(x, y)

and hence that
| φ(x)− φ(y) |≤ d(x, y).

From this we conclude that φ : X → R is continuous. But then by the Extreme Value Theorem there exists
an ε > 0 such that φ(x) ≥ ε for all x ∈ X.

Theorem 2.13.19. [Borel-Lebesgue] Let (X, d) be a metric space. Then the following are equivalent:

1) X is compact.

2) X has the BWP.

3) X is sequentially compact.

Proof. We need only show that 3)⇒ 1). The other implications have already been established. Assume that
X is sequentially compact and that {Uα}α∈I is an open cover for X. Then {Uα}α∈I has a Lebesgue number
ε > 0.

Now choose 0 < δ < ε. Since X is also totally bounded, we can find a finite subset {x1, x2, . . . , xn} of X
so that {B(xi, δ)}ni=1} is also a cover of X. However, for each i = 1, 2, . . . , n we can also find an αi ∈ I with

B(xi, δ) ⊆ Uαi .

It follows that {Uαi}ni=1 is a finite subcover of {Uα}α∈I and hence that (X, d) is compact.
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We are now in a position to establish the proper generalization of the Heine-Borel Theorem for general
metric spaces.

Theorem 2.13.20. Let (X, d) be a metric space. Then the following are equivalent:

1) X is compact.

2) X is complete and totally bounded.

Proof. We have already established that 1) ⇒ 2) As such we need only prove that 2) ⇒ 1). Moreover, as
a consequence of the Borel-Lebesgue Theorem, we must only show that 2) implies that X is sequentially
compact.

Assume that 2) holds and that {xn} is a sequence in X. Since X is totally bounded X can be covered
by finitely many open balls of radius 1. It follows that one such ball S1 = B(y1, 1) contains infinitely many
terms in {xn}.

Next we cover X with finitely many open balls of radius 1
2 . We then choose one such ball S2 = B(y2,

1
2 )

which contains infinitely many of the terms in {xn} which also lie in S1.
From here we proceed inductively to construct a sequence of open balls {Sk = B(yk,

1
k )} with the property

that each Sk+1 contains infinitely many terms of the sequence {xn} which are also in S1 ∩ S2 ∩ · · · ∩ Sk. In
particular, we can choose a sequence n1 < n2 < n3 < · · · such that

xnk ∈ S1 ∩ S2 ∩ · · · ∩ Sk.

Since diam(Sk) → 0 and since if k,m > N then xnk , xnm ∈ SN , it follows that {xnk} is Cauchy. From the
completeness of X we conclude that {xnk} converges and therefore that X is sequentially compact.

2.14 Compactness and Continuity

Recall that we have already shown that continous functions preserve sequential compactness. From this we
immediately deduce that following tow results.

Theorem 2.14.1. Let f : (X, dX)→ (Y, dY ) be continuous. If (X, dX) is compact, then so is (f(X), dY ).

Corollary 2.14.2. [Extreme Value Theorem]
Let f : (X, dX)→ R be continous. If (X, dX) is compact, then there exists c, d ∈ X so that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ X.

We will soon show that if (X, d) is compact, then contiuous functions have the following important
property.

Definition 2.14.3. Let f : (X, dX) → (Y, dY ). Then f(x) is said to be uniformly continuous if for every
ε > 0 there exists a δ > 0 so that if dX(x, z) < δ, then dY (f(x), f(z)) < ε.

Remark 2.14.4. 1) It is clear that if f : (X, dX) → (Y, dY ) is uniformly continuous, then f(x) is con-
tinuous.

2) Uniformly continuous functions have the special property that if {xn} is Cauchy in X, then {f(xn)} is
Cauchy in Y . (Exercise)
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We can now state our sequential characterzation of uniform continuity.

Theorem 2.14.5. [Sequential Characterization of Uniform Continuity]
Suppose that f : (X, dX)→ (Y, dY ). Then the following are equivalent.

1) f(x) is uniformly continuous on X.

2) (∗) If {xn}, {zn} are sequences in X with lim
n→∞

dX(xn, zn) = 0, then lim
n→∞

dY (f(xn), f(zn)) = 0.

Proof. 1) ⇒ 2) Suppose 1) holds, and {xn}, {zn} are sequences in X with lim
n→∞

dX(xn, zn) = 0. Let ε > 0.

There exists δ > 0 such that if dX(x, z) < δ, then dY (f(x1), f(x2)). Since lim
n→∞

dX(xn, zn) = 0, we can find

an N ∈ N such that if n ≥ N , then dX(xn, zn) < δ. Hence for all n ≥ N , dY (f(xn), f(zn)) < ε.

2)⇒ 1) We will proceed by contradiction. Suppose to the contrary that hypothesis 2) holds but condition
1) fails. Then there exists an ε0 > 0 such that for every δ > 0, we can find xδ, zδ ∈ X with dX(xδ, zδ) < δ
and yet dY (f(xδ), f(zδ)) ≥ ε0. In particular, for δn = 1

n , we can find xn, zn ∈ X with dX(xn, zn) < δn = 1
n

and dY (f(xn)− f(zn)) ≥ ε0, for all n ∈ N. We now have a pair of sequences {xn}, {zn} ⊆ X that satisfies
lim
n→∞

dX(xn, zn) = 0 but lim
n→∞

dY (f(xn), f(zn)) 6= 0, directly contradicting hypothesis 2).

Theorem 2.14.6. Let f : (X, dX) → (Y, dY ) be continuous. If (X, dX) is compact, then f(x) is uniformly
continuous.

Proof. Assume that f(x) is not uniformly continuous. Then there exists an ε0 > 0 and two sequences
{xn}, {zn} ⊆ X with lim

n→∞
dX(xn, zn) = 0 but dY (f(xn), f(zn)) ≥ ε0 for each n ∈ N.

By compactness {xn} has a convergent subsequence {xnk} with xnk → x0 for some x0 ∈ X. But since
lim
n→∞

dX(xn, zn) = 0, we have znk → x0 as well. By continuity, f(xnk) → f(x0) and f(znk) → f(x0). But

this is impossible since dY (f(xnk), f(znk)) ≥ ε0 for each k ∈ N.

Definition 2.14.7. Let (X.dX) and (Y, dY ) be metric spaces. A function φ : X → Y is called a homoemor-
phism if φ is 1− 1, onto, continuous and φ−1 : Y → X is also continuous.

We say that two metirc spaces (X.dX) and (Y, dY ) are homeomorphic if there is a homeomorphism
φ : X → Y

Remark 2.14.8. If (X.dX) and (Y, dY ) are homeomorphic, then the are essentailly the same topologically
in the sense that U is open in X if and only if φ(U) is open in Y .

The final result of this section shows that compact metric spaces have rather rigid topologies.

Theorem 2.14.9. Let (X.dX) and (Y, dY ) be metric spaces with X compact. Let φ : X → Y be 1− 1, onto
and continuous. Then φ−1 is also continuous.

Proof. Since (φ−1)−1 = φ, we need only show that if U ⊂ X is open, then φ(U) is open in Y . But if U ⊂ X
is open, then F = U c is closed, and hence compact. It follows that φ(F ) is compact in Y and as such is
closed. But then φ(F )c = φ(U) is open.

2.15 Finite Dimensional Normed Linear Space

Recall that a vector space V over R is n-dimensional if it has a basis {v1, v2, . . . , vn} consisting of ex-
actly n elements. In the case of Rn we will denote the standard basis by {e1, e2, . . . , en} where ei =
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(0, 0, . . . , 0, 1, 0, . . . , 0) is the n-tuple with 1 in the i-th component and 0 in each other component.
All n-dimensional vectors spaces are isomprphic as vector space with Rn via the mapping Γn : Rn → V

given by
Γn((a1, a2, . . . , an)) = a1v1 + a2v2 + · · ·+ anvn.

In this section we will show that all n−dimensional normed linear spaces are fundamentally the same, in the
sense that they have the same topological structure and are all complete.

We begin by discussing continuity for linear maps between normed linear spaces. (R3, |‖ · ‖|)

Definition 2.15.1. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear. We
say that T is bounded is

sup
‖x‖V ≤1

{‖ T (x) ‖W } <∞.

In this case, we write
‖ T ‖= sup

‖x‖V ≤1

{‖ T (x) ‖W }.

Otherwise, we say that T is unbounded.

The next result establishes the fundamental criterion for when a linear map between normed linear spaces
is continuous. It’s proof is left as an exercise.

Theorem 2.15.2. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear. Then
the following are equvalent.

1) T is continuous.

2) T is bounded.

Remark 2.15.3. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear. The
following statements are easy to deduce from the p[revious theorem.

1) If T is bounded, then T is uniformly continuous.

2) T is continuous on V if and only if T is coninuous at 0 ∈ V .

3) Recall that if T : Rn → Rm is linear, then T can be represented by an m× n matrix

A =


a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...
am,1 am,2 am,3 · · · am,n

 =



→
a 1
→
a 2
→
a 3

...
→
am


where

→
a i= (ai,1, ai,2, ai,3, · · · , ai,n). If

→
x= (x1, x2, x3, . . . , xn) ∈ Rn), then

T (
→
x) =


a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...
am,1 am,2 am,3 · · · am,n

 ·

x1

x2

x3

...
xn

 =



→
a 1 ·

→
x

→
a 2 ·

→
x

→
a 3 ·

→
x

...
→
am ·

→
x
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Let M = max
i=1,2,...,m

{‖ →a i ‖2}, then it follows from the Cauchy-Schwartz Inequality that if ‖ →x ‖2 ≤ 1 then

‖T (
→
x)‖2 =

√√√√ m∑
i=1

|→a i ·
→
x |2

≤

√√√√ m∑
i=1

M2

=
√
m ·M

The last remark implies the following:

Proposition 2.15.4. Let T : Rn → Rm is linear, then T is bounded, and hence continuous.

The next theorem will be our key tool to establish the link between all n-dimensional normed linear
spaces.

Theorem 2.15.5. Let (V, ‖ · ‖V ) be an n-dimensional normed linear space with basis {v1, v2, . . . , vn}. Let
Γn : Rn → V be given by

Γn((a1, a2, . . . , an)) = a1v1 + a2v2 + · · ·+ anvn.

Then both Γn and Γ−1
n are bounded.

Proof. Let
→
x= (a1, a2, . . . , an) be such that ‖ →x ‖2 ≤ 1. Then | ai |≤ 1 for each i = 1, 2, . . . , n.It follows

from the Triangle Inequality that

‖Γn(
→
x)‖V = ‖a1v1 + a2v2 + · · ·+ anvn‖V

≤
n∑
i=1

‖vi‖

This shows that ‖Γn‖ ≤
n∑
i=1

‖vi‖ and hence that Γn is bounded.

To see that Γ−1
n is continuous we begin with the following observation. Let

S = {→x∈ (Rn, ‖ · ‖2) | ‖ →x ‖2 = 1}.

Then by the Heine-Borel Theorem S is compact in (Rn, ‖ · ‖2). Since Γn is continuous, Γn(S) is compact in
(V, ‖ · ‖V ). Since the mapping v → ‖v‖v is continuous. It follows from the Extreme Value Theorem that

min{‖Γn(
→
x)‖V |

→
x∈ S} = α > 0

It follows that if ‖v‖V ≤ α, then ‖Γ−1
n (v)‖2 ≤ 1. From this we can conclude that ‖Γ−1

n ‖ = 1
α .

Theorem 2.15.6. Let (V, ‖ · ‖V ) be an n-dimensional normed linear space and let (W, ‖ · ‖W ) be an m-
dimensional normed linear space. Let T : V →W be linear. Then T is continuous.

Proof. Let S : (Rn, ‖ · ‖2)→ (Rm, ‖ · ‖2) be defines by S = Γ−1
m ◦ T ◦ Γn as in the diagram bellow:

(V, ‖ · ‖V )
T−−−→ (W, ‖ · ‖W )xΓn

yΓ−1
m

(Rn, ‖ · ‖2)
S−−−→ (Rm, ‖ · ‖2)
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Then S is continuous. But T = Γm ◦ S ◦ Γ−1
n so T is also continuous.

(V, ‖ · ‖V )
T−−−→ (W, ‖ · ‖W )yΓ−1

n

xΓm

(Rn, ‖ · ‖2)
S−−−→ (Rm, ‖ · ‖2)

Corollary 2.15.7. Let (V, ‖ · ‖V ) be an n-dimensional normed linear space and let (W, ‖ · ‖W ) be any
normed linear space. Let T : V →W . be linear. Then T is continuous.

Proof. Let W ′ = T (V ) ⊆ W . Then (W ′, ‖ · ‖W ) is a finite dimensional normed linear space. Hence
T : V →W ′ is continuous and as such T : V →W is continuous.

Remark 2.15.8. Let (W, ‖·‖W ) be an n-dimensional normed linear space. Then Γn : (Rn, ‖·‖2)→ (W, ‖·‖W )
is a homoeomorphism. Moreover, if v ∈ V then v = Γn(Γ−1

n (v)) so

‖v‖ ≤ ‖Γn‖‖Γ−1
n (v)‖2.

We also know that
‖Γ−1

n (v)‖2 ≤ ‖Γ−1
n ‖‖v‖V .

It follows that if α = 1
‖Γ−1
n
‖ and β = ‖Γn‖, then

(∗) α‖Γ−1
n (v)‖2 ≤ ‖v‖V ≤ β‖Γ−1

n (v)‖2

for every v ∈ V .
We can now deduce the following:

1) A set A ⊂ V is closed and bounded in V if and only if Γ−1
n (A) is closed and bounded in (Rn, ‖ · ‖2). In

particular, A is compact if and only if A is closed and bounded.

2) A sequence {vn} converges to v0 in (V, ‖·‖V ) if and only if {Γ−1
n (vn)} converges to Γ−1

n (v0) in (Rn, ‖·‖2).

3) A sequence {vn} is Cauchy in (V, ‖ · ‖V ) is and only if {Γ−1
n (vn)} is Cauchy in (Rn, ‖ · ‖2).

Items 2) and 3) above give us the following important theorem.

Theorem 2.15.9. Let (V, ‖ · ‖V ) be a finite dimensional normed linear space. Then (V, ‖ · ‖V ) is complete.
In particular, if (W, ‖ · ‖W ) is any normed linear space, and V is a finite dimensional subspace of W , the V
is closed in W .

The next corollary follws from the previous theorem and the Baire Category Theorem. It’s proof is left
as an exercise.

Corollary 2.15.10. Let (V, ‖ · ‖V ) be an infinite dimensional Banach space. Let S be a basis for V . Then
S must be uncountable.
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Remark 2.15.11. We know that if two metric spaces (X, dX) and (Y, dY ) are homeomorphic then they are
essentially the same topological space. It would then make sense to conjecture that if (X, dX) is complete so
too would be (Y, dY ). Unfortunately this is FALSE.

Let X = N and Y = {1, 1
2 ,

1
3 , . . . ,

1
n , . . .} both with the metric they inherit from R. In this case both

sets are discrete as metric spaces in the sense that every subset is open in the relative topology. As such
φ : X → Y is a homeomorphism, but X is complete while Y is not.
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Chapter 3

The Space (C(X), ‖·‖∞)

Throughout this chapter unless otherwise stated (X, d) will be a compact metric space. In this case, the Ex-
treme Value Theorem every continuous function f : X → R is bounded. As such we will denote (Cb(X), ‖·‖∞)
simply by (C(X), ‖·‖∞). Moreover, unless otherwise stated we will always assume that when speaking of
C(X) the norm ‖·‖∞ will always be implied.

3.1 Weierstrass Approximation Theorem

We begin with the following problem:

Problem 17. Let f(x) be continuous on [a, b]. Let

M0 =

∫ 1

0

f(t) dt

and for n ∈ N let

Mn =

∫ 1

0

f(t) tndt.

The sequence {Mn} are called the moments of f(x).
Do the moments of the function f(x) completely determine f(x) in the sense that if f(x) and g(x) have

the same moment sequence, then f(x) = g(x)?

In this section we will see that the answer to the previous problem can be deduced from the solution to
the following question concerning polynomial approximations of continuous functions. .

Problem 18. Given a function h ∈ (C([a, b]), ‖·‖∞) and an ε > 0, can we find a polynomial p(x) ∈
(C([a, b]), ‖·‖∞) so that

‖h(x)− p(x)‖∞ < ε?

Remark 3.1.1. Assume that f, g ∈ C([0.1]) and that ‖f − g‖∞ < ε. Then if φ : [a, b] → [0, 1] is given by
φ(x) = x−a

b−a , we have that f ◦ φ, g ◦ φ ∈ C([a, b]) and

‖f ◦ φ− g ◦ φ‖∞ = ‖f − g‖∞.

It is actually easy to show that the mapping Γ : (C([0, 1]), ‖·‖∞)→ (C([a, b]), ‖·‖∞), Γ(f) = f ◦ φ, is an
isometric isomorphism with inverse given by

Γ−1(h) = h ◦ φ−1
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for each h ∈ C([a, b]), where φ−1(x) = (b−a)x+a. Moreover it is also easy to see that Γ(p(x)) is a polynomial
if and only if p(x) is as well. It follows that we can aproximate each f ∈ C[0, 1] by a polynomial with er-
ror at most ε > 0 if and only if we can approximate every h ∈ C[a, b] by a polynomial with error at most ε > 0.

Next observe that if f ∈ C([0, 1]) and we can approximate

g(x) = f(x)− ([f(1)− f(0)] · x+ f(0))

uniformly to within ε > 0 with a polynomial, then we can do so for f(x) as well.

Before we state our main theorem we will need th following lemma:

Lemma 3.1.2. Let n ∈ N. Then
(1− x2)n ≥ 1− nx2

for all x ∈ [0, 1].

Proof. Let f(x) = (1 − x2)n − (1 − nx2). Then f(0) = 0. Moreover, f ′(x) = 2nx(1 − (1 − x2)n−1) > 0 on
(0, 1). The result now follows from the Mean Value Theorem.

Theorem 3.1.3. [Weierstrass Approximation Theorem]
Let f ∈ C[a, b]. Then there exists a sequence pn(x) of polynomials such that pn(x)→ f(x) uniformly on

[a, b]

Proof. First we note that the previous remark shows that without loss of generality we can assume that
[a, b] = [0, 1] and that f(0) = 0 = f(1).

As such we may extend f(x) to a uniformly continuous function on R by defining f(x) = 0 if x ∈
(−∞, 0] ∪ [1,∞).

Now let Qn(x) = cn(1− x2)n where cn is chosen so that∫ 1

−1

Qn(x)dx = 1.

We have that
(1− x2)n ≥ 1− nx2

for all x ∈ [0, 1]. As such ∫ 1

−1

(1− x2)ndx = 2

∫ 1

0

(1− x2)ndx

≥ 2

∫ 1√
n

0

1− nx2dx

=
4

3
√
n

>
1√
n

and hence we have
cn <

√
n.

Now if 0 < δ < 1, then for each x ∈ [−1, δ] ∪ [δ, 1] we have

cn(1− x2)n ≤
√
n(1− δ2)n.
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Let

pn(x) =

∫ 1

−1

f(x+ t)Qn(t)dt

=

∫ 1−x

−x
f(x+ t)Qn(t)dt

=

∫ 1

0

f(u)Qn(u− x)du

From Leibniz’s rule we have that

d2n+1

dx2n+1
(pn(x)) =

∫ 1

0

f(u)
∂2n+1

∂x2n+1
Qn(u− x)du = 0.

It follows that pn is a polynomial of degree 2n+ 1 or less.
Let ε > 0. Let M =‖ f ‖∞. Choose 0 < δ < 1 so that if | x− y |< δ, then | f(x)− f(y) |< ε

2 . Now∫ 1

−1

Qn(t)dt = 1⇒ f(x) =

∫ 1

−1

f(x)Qn(t)dt.

Moreover, if x ∈ [0, 1],

| pn(x)− f(x) | = |
∫ 1

−1

[f(x+ t)− f(x)]Qn(t)dt |

≤
∫ 1

−1

| f(x+ t)− f(x) | Qn(t)dt

=

∫ −δ
−1

| f(x+ t)− f(x) | Qn(t)dt+

∫ δ

−δ
| f(x+ t)− f(x) | Qn(t)dt+

∫ 1

δ

| f(x+ t)− f(x) | Qn(t)dt

≤ 2M
√
n(1− δ2)n +

ε

2
+ 2M

√
n(1− δ2)n

= 4M
√
n(1− δ2)n +

ε

2

Hence if we choose n large enough so that 4M
√
n(1− δ2)n < ε

2 , then

‖ pn − f ‖∞< ε.

Corollary 3.1.4. Let f(x) ∈ C([0, 1]) be such that∫ 1

0

f(t) dt = 0

and for n ∈ N let ∫ 1

0

f(t) tndt = 0.

Then f(x) = 0 for all x ∈ [0, 1]

Proof. The proof will be left as an exercise.

Corollary 3.1.5. (C([a, b]), ‖·‖∞) is separable.
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Proof. For each n ∈ N let
Pn = {a0 + a1x+ a2x

2 + · · ·+ anx
n|ai ∈ R}.

Let
Qn = {r0 + r1x+ r2x

2 + · · ·+ rnx
n|ai ∈ Q}.

Then Qn = Pn. And since by the Weierstrass Approximation Theorem
∞⋃
n=1
Pn is dense, so is the countable

set
∞⋃
n=1
Qn .

We will now show that the set of continuous nowhere differentiable functions is residual in (C([a, b]), ‖·‖∞)
.

Lemma 3.1.6. Let n ∈ N. Define

Fn = {f ∈ C([0, 1])| there exists x0 ∈ [0, 1− 1

n
] such that |f(x0 + h)− f(x0)| ≤ nh for all 0 < h ≤ 1− x0}.

Then Fn is closed in (C([0.1]), ‖·‖∞) and nowhere dense.

Proof. Assume that {fk} ⊆ Fn and that fk → f . For each k ∈ N let xk ∈ [0, 1− 1
n ] be such that

(∗) |f(xk + h)− f(xk)| ≤ nh for all 0 < h ≤ 1− xk.

By replacing {xk} by a subsequence if necessary we can assume without loss of generality that xk → x0 ∈
[0, 1− 1

n ].
Let 0 < h < 1− x0. Then since xk → x0, we can find an N0 ∈ N so that if k ≥ N0, then 0 < h < 1− xk.

Now if ε > 0, we can also choose N0 to be large enough so that if k ≥ N0, then

1) |f(x0 + h)− f(xk + h)| < ε
4 (continuity of f)

2) |f(x0)− f(xk)| < ε
4 (continuity of f)

3) ‖fk − f‖∞ < ε
4 (uniform convergence)

Then

|f(x0 + h)− f(x0)| ≤ |f(x0 + h)− f(xk + h)|+ |f(xk + h)− fk(xk + h)|+ |fk(xk + h)− fk(xk)|
+|fk(xk)− f(xk)|+ |f(xk)− f(x0)|

≤ ε

4
+
ε

4
+ nh+

ε

4
+
ε

4
= nh+ ε

Since ε > 0 was arbitary, we have
|f(x0 + h)− f(x0)| ≤ nh

for all 0 < h < 1− x0 and f ∈ Fn.
To see that Fn is nowhere dense let f ∈ (C([0.1]), ‖·‖∞) and let ε > 0. We know that we can find a

polynomial p(x) so that ‖f − p‖∞ < e
2 .

Let

ϕ(x) =

{
x if x ∈ [0, 1]
2− x if x ∈ [1, 2]

.

and then extend ϕ to all of R by letting ϕ(x+ 2) = ϕ(x).
Let

g(x) =

∞∑
n=0

(
3

4
)nϕ(4nx).
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Let F = g|[0,1] . Pick α > 0 so that ‖αF‖∞ < e
2 . Then p(x) + αF (x) ∈ Fcn for each n ∈ N, and

‖f − (p(x) + αF (x))‖∞ < ε.

Theorem 3.1.7. [Banach-Mazurkiewicz Theorem]
The set ND([0, 1]) of continuous nowhere differentiable functions is residual in (C([0.1]), ‖·‖∞)

Proof. This follows immediately from the Baire Category Theorem and the observation that

ND([0, 1]) ⊆
∞⋂
n=1

Fn.

Remark 3.1.8. In the Banach-Mazurkiewicz Theorem there is nothing special about [0, 1]. In particular, the
same result holds for [a, b].

3.2 Stone-Weierstrass Theorem

Throughout this section, unless stated otherwise, (X, d) will be a compact metric space.
In the previous section we saw that the collection

P = {a0 + a1x+ a2x
2 + · · ·+ anx

n|ai ∈ R, n ∈ N ∪ {0}}.

of all polynomials is dense in (C([a, b]), ‖·‖∞). In this section we will identify other classes of functions that
can be shown to be dense in (C(X), ‖·‖∞) when (X, d) is a compact metric space.

Definition 3.2.1. Let (X, d) be a compact metric space. Let Φ ⊆ C(X). We say that Φ is point separating
if whenever x, y ∈ X with x 6= y, there exists an f ∈ Φ such that f(x) 6= f(y).

Remark 3.2.2. 1) (X, d) is a compact metric space. Let a, b ∈ X, with a 6= b. Then the function
f(x) = d(x, a) is such that f ∈ C(X) and f(a) 6= f(b). As such C(X) is point separating

2) Assume that (X, d) is a compact metric space with at least two points x 6= y. If Φ ⊆ C(X) is such that
f(x) = f(y) for every f ∈ Φ. then g(x) = g(y) for every g ∈ Φ. This shows that if Φ is dense in C(X)
it must be point separating.

Definition 3.2.3. A linear subspace Φ ⊆ C(X) is called a lattice if for every f, g ∈ Φ we have f ∨ g ∈ Φ
and f ∧ g ∈ Φ where

f ∨ g(x) = max{f(x), g(x)}
and

f ∧ g(x) = min{f(x), g(x)}.

Remark 3.2.4. 1) Let f, g ∈ C(X). Then

f ∨ g(x) =
(f(x) + g(x)) + |f(x)− g(x)|

2

and
f ∧ g(x) = −(−f ∨ −g)(x).

It follows that both f ∨ g and f ∧ g are in C(X). That is C(X) is a lattice. Moreover, if Φ ⊆ C(X) is
a linear subspace, then Φ is a lattice if f ∨ g ∈ Φ for every f, g ∈ Φ.
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Example 3.1. A function f : [a, b] → R is said to be piecewise linear if there is a partition P = {a = t0 <
t1 < t2 < · · · < tn = b} of [a, b] such that

f|[ti−1,ti]
= mix+ di.

It is piecewise polynomial if

f|[ti−1,ti]
= c0,i + c1,ix+ c2,ix

2 + · · ·+ cni,ix
ni .

Let
Φ1 = {f ∈ C([a, b])|f is piecewise linear}

and
Φ2 = {f ∈ C([a, b])|f is piecewise polynomial}.

Both Φ1 and Φ2 are lattices.
Note: If f is piecewise polynomial, then the order of f is the highest degree of any of the individual

polynomials. f is called a spline of order k if it has order k as a piecewise polynomial, and if it is k−1-times
differentiable at each ti for i = 1, 2, . . . , n.

We have just seen that the collection of either piecewise linear or piecewise polynomial continuous func-
tions are lattices in C([a, b]). We will now see that they are both dense in (C([a, b]), ‖·‖∞).

Theorem 3.2.5. [Stone-Weierstrass Theorem: Lattice Version]
Let (X, d) be a compact metric space and let Φ be a linear subspace of (C(X), ‖·‖∞) such that

1) The constant function 1 ∈ Φ.

2) Φ separates points.

3) If f, g ∈ Φ, then so is f ∨ g.

Then Φ is dense in (C(X), ‖·‖∞).

Proof. We begin with the following observation: Let α, β ∈ R and let x 6= y ∈ X. If φ(t) is a function in Φ
with φ(x) 6= φ(y) then the function

g(t) = α+ (β − α)
φ(t)− φ(x)

φ(y)− φ(x)

is such that g ∈ Φ, g(x) = α and g(y) = β.

Let ε > 0 and let f ∈ C(X).
Step 1: Fix x ∈ X. For each y ∈ X there exists φx,y(t) ∈ Φ such that φx,y(x) = f(x) and φx,y(y) = f(y).

Now for any y ∈ X, since φx,y(y)− f(y) = 0, we can find a δy > 0 such that for every t ∈ B(y, δy) we have

−ε < φx,y(t)− f(t) < ε.

By compactness, we can find finitely many points {y1, y2, . . . , yn} so that {B(yi, δyi)} is a cover of X. Now
let

φx(t) = φx,y1 ∨ φx,y2 ∨ · · · ∨ φx,yn ∈ Φ.

Now if z ∈ X, then z ∈ B(yi, δyi) for some i and as such

f(z)− ε < φx,yi(z) ≤ φx(z).

Step 2: For each x ∈ X we have
φx(x)− f(x) = 0.
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As before we can find for each x ∈ X a δx > 0 so that if t ∈ B(y, δx) we have

−ε < φx(t)− f(t) < ε.

And as before we can find {x1, x2, . . . , xk} so that {B(xj , δxj )} is a cover of X. This time if we let

φ(t) = φx1
∧ φx2

∧ · · · ∧ φxk ∈ Φ,

then for any z ∈ X we have
f(z)− ε < φ(z) < f(z) + ε.

Corollary 3.2.6. Let
Φ1 = {f ∈ C([a, b])|f is piecewise linear}

and
Φ2 = {f ∈ C([a, b])|f is piecewise polynomial}.

Then both Φ1 and Φ2 are dense in (C([a, b]), ‖·‖∞).

Proof. Both Φ1 and Φ2 are lattices containing the constant function 1. Since both also contain the function
f(x) = x, both satisfy all three conditions for the Stone-Weierstrass Theorem.

The second version of the Stone-Weierstrass Theorem can be viewed as a generalization of the Weirstrass
Approximation Theorem.

Definition 3.2.7. A subspace Φ ⊆ C(X) is said to be a subalgebra if f · g ∈ Φ for every f, g ∈ Φ.

Remark 3.2.8. 1) Let P = {c0 + cx + c2x
2 + · · · + cnx

n| ci ∈ R, n = 0, 1, 2, . . .} be the collection of all
polyomials. Then P is a sublagebra of C([a, b]).

2) Assume that Φ ⊆ C(X) is a subalgebra. Then so is Φ̄. To see this let {fn}, {gn} ⊆ Φ with fn → f and
gn → g. It is clear that fn + gn → f + g and αfn → αf . Moreover, it is also clear that f · g ∈ C(X).

Note that since {gn} is bounded we have that

‖fngn − fg‖∞ = ‖(fngn − fgn) + (fgn − fg)‖∞
≤ ‖fngn − fgn‖∞ + ‖fgn − fg‖∞
= ‖gn‖∞‖fn − f‖∞ + ‖f‖∞‖gn − g‖∞ → 0.

Theorem 3.2.9. [Stone-Weierstrass Theorem: Subalgebra Version]
Let (X, d) be a compact metric space and let Φ be a linear subspace of (C(X), ‖·‖∞) such that

1) The constant function 1 ∈ Φ.

2) Φ separates points.

3) If f, g ∈ Φ, then so is fg.

Then Φ is dense in (C(X), ‖·‖∞).
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Proof. We first observe that since Φ̄ also satisfies the three conditions above we may assume without loss of
generality that Φ is closed.

Let f ∈ Φ and let ε > 0.

Choose M > 0 so that |f(x)| ≤ M for each x ∈ X. Then we know from the Weierstrass Approximation
theorem that there is a polynomial

p(t) = c0 + c1t+ c2t
2 + · · ·+ cnt

n

so that for each t ∈ [−M,M ], we have
||t| − p(t)| < ε.

Next observe that
p ◦ f = c01 + c1f + c2f

2 + · · ·+ cnf
n ∈ Φ

and that for each x ∈ X, we have
||f(x)| − p(f(x))| < ε.

Since ε is arbitrary it follows that |f | ∈ Φ̄ = Φ.
Finally since if f, g ∈ Φ then

f ∨ g(x) =
(f(x) + g(x)) + |f(x)− g(x)|

2

we see that Φ is also a Lattice and hence by the Lattice version of the Stone-Weierstrass Theorem, Φ = C(x).

So far we have focused entirely on real valued functions. However we could also consider

C(X,C) = {f : X → C| f(x) is continuous on X}

with the norm
‖f‖∞ = sup{|f(x)||x ∈ X}.

Remark 3.2.10. We say that a subspace Φ ⊆ C(X,C) is self-adjoint if f ∈ Φ implies f̄ ∈ Φ. We also note
that if Φ is self adjoint then for each f ∈ Φ

Re(f) =
f + f̄

2
∈ Φ

and

Im(f) =
f − f̄

2i
∈ Φ.

This observation allows one to deduce the following complex version of the Stone-Weierstrass Theorem:

Theorem 3.2.11. [Stone-Weierstrass Theorem: Complex Version]
Let (X, d) be a compact metric space and let Φ be a self-adjoint linear subspace of (C(X,C), ‖·‖∞) such

that

1) The constant function 1 ∈ Φ.

2) Φ separates points.

3) If f, g ∈ Φ, then so is fg.

Then Φ is dense in (C(X,C), ‖·‖∞).
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Example 3.2. 1) Let Π = {λ ∈ C| |λ| = 1}. Define a map ψ : Π→ [0, 2π) by

ψ(eiθ) = θ

Define the metric on [0, 2π) to be

d∗(θ1, θ2)
def
= the shortest arc length between eiθ1 and eiθ2 .

Then ψ is a homeomorphism between Π with the usual metric and ([0, 2π), d∗). Moreover, ([0, 2π), d∗)
is compact with respect to this metric.We also have

C(Π) ∼= C([0, 2π)) = {f ∈ C([0, 2π])|f(0) = f(2π)}

A trigonometric polynomial is an element of

Trig([0, 2π)) = span{1, sin(nx), cos(mx)|n,m ∈ N}

Then Trig([0, 2π)) is a point separating subalgebra of C([0, 2π)). In particular, Trig([0, 2π)) is dense
in C([0, 2π)).

In the complex world we have

TrigC([0, 2π)) = span{f(θ) = einθ|n ∈ Z}.

In this case TrigC([0, 2π)) is a self-adjoint, point separating subalgebra of C([0, 2π),C). In particular,
TrigC([0, 2π)) is dense in C([0, 2π),C) ∼= C(Π,C).

2) Let

Ψ = {F (x, y) ∈ C([0, 1]× [0, 1] | F (x, y) =

k∑
i=1

fi(x)gi(y)}

where in the sum above the functions fi and gi are continuous on [0, 1]. Then Ψ is dense in C([0, 1]×
[0, 1]). (Exercise)

3.3 Compactness in (C(X), ‖·‖∞) and the Ascoli-Arzela Theorem

This section has not been proof readed for typos.
The central problem of this section is the following:

Problem 19. Can we characterise the compact subsets of (C(X), ‖·‖∞)?

In fact we will look not at the compact subsets of (C(X), ‖·‖∞), but rather at those subsets with compact
closure. This leads us to the following definition:

Definition 3.3.1. Let (X, d) be a metric space. We say that A ⊂ X is relatively compact if Ā is compact.

Remark 3.3.2. Assume that (X, d) is complete. Then since the closure of a totally bounded set A is also
totally bounded, we have that A ⊂ X is relatively compact if and only if A is totally bounded.

Definition 3.3.3. Let (X, d) be a metric space. Let F ⊆ Cb(X). Let x0 ∈ X. We say that F is equicon-
tinuous at x0 if for every ε > 0 there exists a δ > 0 such that if d(x, x0) < δ, then

|f(x)− f(x0)| < ε
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for every f ∈ F .
We say that F is equicontinuous if F is equicontinuous at each x0 ∈ X.
We say that F is uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that if d(x, y) < δ,

then
|f(x)− f(y)| ≤ ε

for every f ∈ F .

Remark 3.3.4. Let F ⊆ C(X) be finite. Then it is clear that F is equicontinuous.

We know that know that if (X, d) is compact and if f ∈ C(X), then f is uniformly continuous. We
can now show that this uniform behaviour extends to an equicontinuous family. The proof of this result also
provides an alternative way of showing that continous functions on compact sets are uniformly continuous.

Proposition 3.3.5. Let (X, d) be a compact metric space and let F ⊆ C(X) be equicontinuous. Then F is
uniformly equicontinuous.

Proof. Let ε > 0. For each x0 ∈ X there exists δx0
> 0 such that if d(x, x0) < δ, then

|f(x)− f(x0)| < ε

2

for every f ∈ F .
Since {B(x0, δx0)}x0∈X is a cover of X, there is a δ0 > 0 such that for any y ∈ X we can find a point

x0 ∈ X so that B(y, δ0) ⊆ B(x0, δx0
). In particular, if z ∈ B(y, δ0), then

|f(y)− f(z)| ≤ |f(y)− f(x0)|+ |f(x0)− f(z)|

<
ε

2
+
ε

2
= ε.

Definition 3.3.6. Let F ⊆ C(X). We say that F is pointwise bounded if {f(x0)|f ∈ F} ⊆ R is bounded
for each x0 ∈ X.

Proposition 3.3.7. Let (X, d) be a compact metric space. Let F ⊆ C(X) be equicontinuous and pointwise
bounded. Then F is uniformly bounded.

Proof. We know that F is uniformly equicontinuous. As such we can find a δ > 0 such that if d(x, y) < δ,
then

|f(x)− f(y)| < 1

for all f ∈ F . Now let {x1, x2, . . . , xn} be a δ-net for X and assume that

|f(xi)| ≤Mi

for each f ∈ F . Let M0 = max{M1,M2, . . . ,Mn}. If x ∈ X, then there exists an xi with d(x, xi) < δ so
that

|f(x)| ≤ |f(x)− f(xi)|+ |f(xi)| ≤ 1 +M0.

We are now ready to give our characterization of relatively compact subsets of (C(X), ‖·‖∞).
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Theorem 3.3.8. [Arzelá-Ascoli]
Let (X, d) be a compact metric space and let F ⊆ (C(X), ‖·‖∞). Then the following are equivalent:

1) F is relatively compact.

2) F is equicontinuous and pointwise bounded.

Proof. 1)⇒ 2). If F is relatively compact then it is bounded. As such it is clearly pointwise bounded.
Next let ε > 0. Since F is relatively compact, it is totally bounded. As such there exists a finite ε

3 -net
{f1, f2, . . . , fn} ⊆ F . Since {f1, f2, . . . , fn} is uniformly equicontinuous, we can find a δ > 0 such that if
d(x, y) < δ, then

|fi(x)− fi(y)| < ε

3
for all i = 1, 2, . . . , n.

Now assume that d(x, y) < δ and f ∈ F . Then we can find an io ∈ {1, 2, . . . , n} so that ‖f − fi0‖∞ < ε
3 .

Hence

|f(x)− f(y)| ≤ |f(x)− fi0(x)|+ |fi0(x)− fi0(y)||fi0(y)− f(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

2) ⇒ 1). Since (X, d) is compact, we have that F is uniformly equicontinous and uniformly bounded.
That is there is an M > 0 so that f(x) ∈ [−M,M ] for each f ∈ F and x ∈ X.

Let ε > 0. Let P = {−M = y0 < y1 < · · · < ym = M} be a partition of [−M,M ] with

‖P‖ = max
j=1,2,...,m

{yj − yj−1} <
ε

3
.

Now since F is uniformly equicontinuous we can find a δ > 0 such that if d(x, z) < δ, then

|f(x)− f(z)| < ε

3

for all f ∈ F . Let {x1, x2, . . . , xn} be a δ-net for X.

Let
Φ = {σ|σ : {1, 2, . . . , n} → {1, 2, . . . ,m}}.

Then
Φ = {σ1, σ2, . . . , σl}

where l = mn. In particular, Φ is finite.

Next, for each k = 1, 2, . . . , l, let

Fk = {f ∈ F|f(xi) ∈ [yσk(i)−1, yσk(i)] for all i = 1, 2, . . . , n}.

Note that some Fk’s may be empty but

F =

l⋃
k=1

Fk.

For each of the non-empty sets choose fk ∈ Fk. We claim that {fk} is a finite ε-net for F . In fact, let
f ∈ F and let w ∈ X. Then f ∈ Fk for some k and w ∈ B(xi, δ) for some i. It follows that

|f(w)− fk(w)| ≤ |f(w)− f(xi)|+ |f(xi)− fk(xi)|+ |fk(xi)− fk(w)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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In particular, ‖f − fk‖∞ < ε.

Definition 3.3.9. [Compact Operators]
We say that a linear map Γ : (X, ‖·‖X)→ (Y, ‖·‖Y ) is compact if Γ(BX [0, 1]) is relatively compact in Y .

Example 3.3. Consider (X, ‖·‖X) = (C([a, b]), ‖·‖∞) = (Y, ‖·‖Y ). Let K : [a, b]× [a, b] → [a, b] be continu-
ous. Define for each f ∈ C([a, b].

Γ(f)(x) =

∫ b

a

K(x, y)f(y)dy.

We claim that Γ(f) ∈ C([a, b]). This is clear if f = 0. Otherwise, we observe that since K is uniformly
continuous, given ε > 0 we can find a δ > 0 such that if ‖(x1, y1)− (x2, y2)‖2 < δ then

|K(x1, y1)−K(x2, y2)| < ε

(b− a)‖f‖∞
.

Hence if if |x− z| < δ, then

|Γ(f)(x)− Γ(f)(z)| = |
∫ b

a

[K(x, y)−K(z, y)]f(y)dy|

≤
∫ b

a

|K(x, y)−K(z, y)|‖f‖∞dy

≤
∫ b

a

ε‖f‖∞
(b− a)‖f‖∞

dy

= ε

It is also clear that Γ : C([a, b])→ C([a, b]) is a linear map.
Moreover, if we let ε > 0, we can chose δ1 > 0 such that if |x− z| < δ1, then

|K(x, y)−K(z, y)| < ε

b− a

for every y ∈ [a, b]. Now let |x− z| < δ1. Then for any f ∈ C([a, b]) with ‖f‖∞ ≤ 1, we have

|Γ(f)(x)− Γ(f)(z)| = |
∫ b

a

[K(x, y)−K(z, y)]f(y)dy|

≤
∫ b

a

|K(x, y)−K(z, y)|‖f‖∞dy

≤
∫ b

a

ε

b− a
dy

= ε

This shows that Γ(BX [0, 1]) is uniformly equicontinuous.
Finally, if f ∈ C([a, b]) with ‖f‖∞ ≤ 1, then

|Γ(f)(x) = |
∫ b

a

K(x, y)f(y)dy| ≤
∫ b

a

Mdy = M(b− a)

where M is chosen so that |K(x, y)| ≤ M for each (x, y) ∈ [a, b] × [a, b]. In particualr, Γ(BX [0, 1]) is also
uniformly bounded. By the Arzelá-Ascoli Theorem Γ is compact.
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The next theorem establishes one of the fundamental applications of the Arzelá-Ascoli Theorem.

Theorem 3.3.10. [Peano’s Theorem]
Let f be continuous on an open subset D of R2 and let (x0, y0) ∈ D. Then the differential equation

y ′ = f(x, y)

has a local solution passing through the point (x0, y0).

Proof. Let R be a closed rectangle contained in D with (x0, y0) in its interior. Since f(x, y) is continuous on
the compact set R, there exists an M ≥ 1 such that | f(x, y) |≤M on R. Let

W = {(x, y) ∈ R :| y − y0 |≤M | x− x0 |}.

Let I = [a, b] = {x : (x, y) ∈W for some y}.
By uniform continuity, given an ε > 0, there exists a 0 < δ < 1 such that if (x1, y1), (x2, y2) ∈ W with

| x1 − x2 |< δ and | y1 − y2 |< δ, then | f(x1, y1)− f(x2, y2) |< ε. Choose x0 < x1 < · · · < xn = b with

| xi − xi−1 |<
δ

M
.

Define a function kε on [x0, b] by

i) kε(x0) = y0 and on [x0, x1], kε(x) is linear with slope f(x0, y0);
ii) on [x1, x2], kε(x) is linear with slope f(x1, kε(x1)) ;

and proceed in this manner to define the piecewise linear function kε(x) on [x0, b]. Thus the graph of kε(x)
is a polygonal arc that is contained in W with

(∗) | kε(x)− kε(x) |≤M | x− x |

for each x, x ∈ [x0, b]. Let x ∈ [x0, b] with x 6= xi for any i. Then there exists a j such that xj−1 < x < xj .
However since | xj − xj−1 |< δ

M ,

| kε(x)− kε(xj−1) |≤M | x− xj−1 |< δ.

And hence that
| f(xj−1, kε(xj−1))− f(x, kε(x)) |< ε.

Therefore since k′ε(xj−1) = f(xj−1, kε(xj−1))

(∗∗) | k′ε(xj−1)− f(x, kε(x)) |< ε.

We have that the inequality (∗∗) holds but for at most finitely many points in [x0, b].
Let K = {kε(x) : ε > 0}. Then K is pointwise bounded since each function has a graph contained in W .

Moreover, by (∗) K is also equicontinuous. It follows that K is compact in C[x0, b]. Furthermore for each
x ∈ [x0, b]

(∗ ∗ ∗) kε(x) = y0 +

∫ x

x0

k′ε(t)dt

= y0 +

∫ x

x0

(f(t, kε(t)) + (k′ε(t)− f(t, kε(t)))dt.

By compactness, the sequence k 1
n

(x) has a subsequence k 1
nk

(x) that converges uniformly on [x0, b] to some

k(x). Since f is uniformly continuous on W , {f(t, k 1
nk

(t))} converges uniformly to f(t, k(t)) on [x0, b]. Finally,

(∗ ∗ ∗) shows that

k(x) = y0 +

∫ x

x0

f(t, k(t))dt

for all x ∈ [x0, b] and hence that k(x) is a solution to the DE on [x0, b]. A similar argument can be used to
get a solution k∗(x) on [a, x0].
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