Axiom of Choice, Zorn's Lemma and the Well-ordering Principle

Let us briefly revisit the Axiom of Choice.

Proposition. The following statements are equivalent:

- (AC) for every family $\{A_i\}_{i \in I}$ of non-empty sets, the Cartesian product $\prod_{i \in I} A_i$ is non-empty; and
- (AC') given a non-empty set X, there is a "choice function", $f: \mathcal{P}(X) \setminus \{\emptyset\} \to X$, for which $f(A) \in A$ for each A in $\mathcal{P}(X) \setminus \{\emptyset\}$.

Proof. (AC) \Rightarrow (AC'). There exists $(x_A)_{A \in \mathcal{P}(X) \setminus \{\emptyset\}} \in \prod_{\mathcal{P}(X) \setminus \{\emptyset\}} A$. Let $f(A) = x_A$.

 $(AC') \Rightarrow (AC).$ Let $X = \bigsqcup_{i \in I} A_i$. Let $f : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ be any choice function. Then $(f(A_i))_{i \in I} \in \prod_{i \in I} A_i$.

Definition/Notation. Given any non-empty set, S, a binary relation R is simply a subset of the Cartesian product $S \times S$. We tend to write "s R t" instead of " $(s,t) \in R$ ".

Definition. Let S be a non-empty set. A binary relation $R = " \leq "$ on S is called a *partial ordering* if it satisfies, for s, t, u in S

(i) $s \leq s$ (reflexivity)(ii) $s \leq t, t \leq u \Rightarrow s \leq u$ (transitivity)(iii) $s \leq t, t \leq s \Rightarrow s = t$ (anti-symmetry)

We call the pair (S, \leq) a partially ordered set.

In (S, \leq) , a *chain* is any subset C for which any two elements are comparable, i.e. for any s, t in C, either $s \leq t$ or $t \leq s$. If S itself is a chain in (S, \leq) , we say that \leq is a *total ordering* on S. If A is any subset of S, an *upper bound* for A is any u in S for which $s \leq u$ for s in A.

A well-ordering is any ordering \leq on S such that in any non-empty subset A there is a minimal element, i.e. a in A such that $a \leq s$ for s in A.

Observe that a well-ordered set is totally ordered.

Theorem. The following statements are equivalent:

- (i) Axiom of Choice (AC'): for every non-empty X, there is a choice function, *i.e.* $f : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ such that $f(A) \in A$ for each A.
- (ii) Hausdorff's Maximality Principle: in any partially ordered set (S, \leq) there is a maximal chain, i.e. a chain M for which no $M \cup \{s\}$ is a chain for any s in $S \setminus M$.
- (iii) Zorn's Lemma: if in a partially ordered set (S, \leq) , each chain has an upper bound, then there is a maximal element m for S, i.e. $m \leq s$ implies m = s.
- (iv) Well-ordering Principle: any non-empty set S admits a well-ordering.

Proof. (i) \Rightarrow (ii). We first consider an ancillary result, based on axiom of choice.

- (I) Consider the partially ordered set $(\mathcal{P}(X), \subseteq)$. Let $\mathcal{F} \subseteq \mathcal{P}(X)$ satisfy
- $\emptyset \in \mathcal{F}$, and
- if $\mathcal{K} \subseteq \mathcal{F}$ is a chain, then $\bigcup_{K \in \mathcal{K}} K \in \mathcal{F}$.

Then \mathcal{F} contains an element M such that $M \cup \{x\} \notin \mathcal{F}$ for any $x \in X \setminus M$.

Let us prove (I). For each A in \mathcal{F} let

$$A^* = \{ x \in X : A \cup \{ x \} \in \mathcal{F} \}.$$

We use our assumption of (AC') to fix a

choice function
$$f : \mathcal{P}(X) \setminus \{\emptyset\} \to X$$

and then let

$$F: \mathcal{F} \to \mathcal{P}(X), \quad F(A) = \begin{cases} A \cup \{f(A^*)\} & \text{if } A^* \neq \emptyset \\ A & \text{otherwise.} \end{cases}$$

We note that $f(A^*) \in A^*$ for each A in \mathcal{F} for which $A^* \neq \emptyset$, and hence $F(A) \in \mathcal{F}$, by definition of A^* ; i.e. $F : \mathcal{F} \to \mathcal{F}$.

We define an (f, \mathcal{F}) -tower to be any subcollection $\mathcal{T} \subseteq \mathcal{F}$ for which

- $\emptyset \in \mathcal{T}$,
- $A \in \mathcal{T} \Rightarrow F(A) \in \mathcal{T}$
- if $\mathcal{K} \subseteq \mathcal{T}$ is a chain, then $\bigcup_{K \in \mathcal{K}} K \in \mathcal{T}$.

Notice that \mathcal{F} , itself, is an (f, \mathcal{F}) -tower, and that the intersection of any family of (f, \mathcal{F}) -towers is again an (f, \mathcal{F}) -tower. Hence

$$\mathcal{T}_0 = \bigcap \{ \mathcal{T} : \mathcal{T} \subseteq \mathcal{F} \text{ is an } (f, \mathcal{F}) \text{-tower} \}$$

is an (f, \mathcal{F}) -tower, in fact the minimal (f, \mathcal{F}) -tower. Notice, $\emptyset \in \mathcal{T}_0$, so \mathcal{T}_0 is non-empty.

We aim to show that $(\mathcal{T}_0, \subseteq)$ is totally ordered. To this end, we call a set C in \mathcal{T}_0 comparable (in \mathcal{T}_0), if for A in \mathcal{T}_0 , either $A \subseteq C$ or $C \subseteq A$. For such C consider the family

$$\mathcal{T}_C = \{ A \in \mathcal{T}_0 : A \subsetneq C \} \cup \{ C \} \cup \{ A \in \mathcal{T}_0 : F(C) \subseteq A \}.$$

We observe that $\emptyset \in \mathcal{T}_C$. If $A \in \mathcal{T}_C$ then $f(A) \in \mathcal{T}_0$, and, using the assumption the C is comparable, we see that

• if $A \subsetneq C$, then $F(A) \subseteq C$, since otherwise, in the case that $A^* \neq \emptyset$, we would have $A \subsetneq C \subsetneq F(A) = A \cup \{f(A^*)\}$, which is clearly impossible; or

• if A = C or if $F(C) \subseteq A$ then $C \subseteq A \subseteq F(A)$;

hence $f(A) \in \mathcal{T}_C$. Moreover, if \mathcal{K} is a chain in \mathcal{T}_C , then let $B = \bigcup_{K \in \mathcal{K}} K$. Indeed if each $K \subseteq C$, then $B \subseteq C$; and if $F(C) \subseteq K$ for some K, then $F(C) \subseteq B$. Thus \mathcal{T}_C is a tower, in which case we must have $\mathcal{T}_C = \mathcal{T}_0$, as \mathcal{T}_0 is the minimal tower in \mathcal{F} .

It follows that F(C) is comparable in \mathcal{T}_0 if C is. Thus the family of comparable sets, \mathcal{C} , satisfies the first two axioms of an (f, \mathcal{F}) -tower; it remains to check the third. If \mathcal{K} is a chain in \mathcal{C} , let $B = \bigcup_{K \in \mathcal{K}} K$. If $A \in \mathcal{T}_0$ then either $A \subseteq K$ for some K, in which case $A \subseteq B$; or $K \subseteq A$ for all K, in which case $B \subseteq A$. Thus $B \in \mathcal{C}$. Hence \mathcal{C} is itself an (f, \mathcal{F}) -tower, and again by minimality of \mathcal{T}_0 , we see that $\mathcal{C} = \mathcal{T}_0$. Hence we have that $(\mathcal{T}_0, \subseteq)$ is indeed totally ordered, hence a chain in (\mathcal{F}, \subseteq) . Now we let $M = \bigcup_{T \in \mathcal{T}_0} T \in \mathcal{T}_0$. If it were the case that $M^* \neq \emptyset$, we would have that $F(M) = M \cup \{f(M^*)\} \in \mathcal{T}_0$ since \mathcal{T}_0 is a tower. But this violates the fact that $f(M^*) \notin M$. Hence $M^* = \emptyset$ which proves (I).

(II) We now use (I) to prove (ii). Given a partially ordered set (S, \leq) , let \mathcal{F} denote the set of all chains in S. We remark that \emptyset is trivially a chain. Any chain \mathcal{K} in (\mathcal{F}, \subseteq) has that $C = \bigcup_{K \in \mathcal{K}} K$ is a chain, i.e. any two elements of C must live in some K, and hence are comparable. Any M, arising form the conclusion of (I), is a maximal chain.

(ii) \Rightarrow (iii). Suppose (S, \leq) is a partially ordered set in which each chain has a maximal element. Let M be a maximal chain in (S, \leq) and m be an upper bound for M. Then $M \cup \{m\}$ is a chain, and hence equal to M by maximality of M, i.e. $m \in M$. Moreover, if any s in S satisfies $m \leq s$, then $M \cup \{s\}$ is a chain, from which it again follows that $s \in M$, hence $s \leq m$. But then s = m, so m is a maximal element.

(iii) \Rightarrow (iv). Let

$$\mathcal{W} = \{(A, R_A) : A \in \mathcal{P}(X), R_A \subseteq A \times A \text{ is a well-ordering}\}.$$

(Notice we use R_A instead of symbol \leq_A .) We note that $\mathcal{W} \neq \emptyset$. Indeed, any countable set $A \subseteq X$ can be well-orderd. We define a relation on \mathcal{W} by

 $(A, R_A) \preceq (B, R_B) \iff (A, R_A)$ is an *initial segment* of (B, R_B)

which is to say that

- $A \subseteq B$,
- $R_B \cap (A \times A) = R_A$, and
- for a in A and b in $B \setminus A$, we have aR_Bb .

Then \leq is evidently reflexive, transitive and anti-symmetric, hence a partial order on \mathcal{W} .

Let \mathcal{C} be a chain in (\mathcal{W}, \preceq) . Let $U = \bigcup_{(C,R_C) \in \mathcal{M}} C$ and for s, t in U, let $sR_U t$ whenever $s, t \in C$ with $sR_C t$, for some $(C, R_C) \in \mathcal{C}$. Then R_U is trivially well-defined. If $A \subseteq U$ is non-empty, there is some (C, R_C) in \mathcal{C} for which $A \cap C \neq \emptyset$, and thus admits a minimal element a_C . Observe that if $A \cap C' \neq \emptyset$ for another $(C', R_{C'})$ in \mathcal{C} , then $C \subseteq C'$, say, and we see that $a_{C'} = a_C$, since (C, R_C) is an initial segment of $(C', R_{C'})$. Hence, $(U, R_U) \in \mathcal{W}$ and is an upper bound for \mathcal{C} .

Hence, by Zorn's lemma, \mathcal{W} admits a maximal element (M, R_M) . If there were s in $S \setminus M$, we could let $M' = M \cup \{s\}$ and extend R_M to M' by assigning $tR_{M's}$ for all t in M. But then $(M', R_{M'}) \in \mathcal{W}$, which would violate the maximility of (M, R_M) . Hence R_M is a well-ordering on S.

(iv) \Rightarrow (i). Suppose \leq is a well-ordering on X. Let f(A) be the minimal element of A for each A in $\mathcal{P}(X) \setminus \{\emptyset\}$.

WRITTEN FOR STUDENTS OF PMATH 351, AT UNIVERSITY OF WATER-LOO.