
Axiom of Choice, Zorn’s Lemma
and the Well-ordering Principle

Let us briefly revisit the Axiom of Choice.

Proposition.The following statements are equivalent:

(AC) for every family {Ai}i∈I of non-empty sets, the Cartesian product∏
i∈I Ai is non-empty; and

(AC’) given a non-empty set X, there is a “choice function”,
f : P(X) \ {∅} → X, for which f(A) ∈ A for each A in P(X) \ {∅}.

Proof. (AC) ⇒ (AC’). There exists (xA)A∈P(X)\{∅} ∈
∏
P(X)\{∅}A. Let

f(A) = xA.

(AC’) ⇒ (AC). Let X =
⊔

i∈I Ai. Let f : P(X) \ {∅} → X be any choice
function. Then (f(Ai))i∈I ∈

∏
i∈I Ai. �

Definition/Notation. Given any non-empty set, S, a binary relation R is
simply a subset of the Cartesian product S × S. We tend to write “sR t”
instead of “(s, t) ∈ R”.

Definition. Let S be a non-empty set. A binary relation R = “ ≤ ” on S is
called a partial ordering if it satisfies, for s, t, u in S

(i) s ≤ s (reflexivity)
(ii) s ≤ t, t ≤ u ⇒ s ≤ u (transitivity)
(iii) s ≤ t, t ≤ s ⇒ s = t (anti-symmetry)

We call the pair (S,≤) a partially ordered set.

In (S,≤), a chain is any subset C for which any two elements are comparable,
i.e. for any s, t in C, either s ≤ t or t ≤ s. If S itself is a chain in (S,≤), we
say that ≤ is a total ordering on S. If A is any subset of S, an upper bound
for A is any u in S for which s ≤ u for s in A.

A well-ordering is any ordering ≤ on S such that in any non-empty subset
A there is a minimal element, i.e. a in A such that a ≤ s for s in A.

Observe that a well-ordered set is totally ordered.
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Theorem.The following statements are equivalent:

(i) Axiom of Choice (AC’): for every non-empty X, there is a choice func-
tion, i.e. f : P(X) \ {∅} → X such that f(A) ∈ A for each A.

(ii) Hausdorff’s Maximality Principle: in any partially ordered set (S,≤)
there is a maximal chain, i.e. a chain M for which no M ∪ {s} is a
chain for any s in S \M .

(iii) Zorn’s Lemma: if in a partially ordered set (S,≤), each chain has an
upper bound, then there is a maximal element m for S, i.e. m ≤ s
implies m = s.

(iv) Well-ordering Principle: any non-empty set S admits a well-ordering.

Proof. (i) ⇒ (ii). We first consider an ancillary result, based on axiom of
choice.

(I) Consider the partially ordered set (P(X),⊆). Let F ⊆ P(X) satisfy

• ∅ ∈ F , and

• if K ⊆ F is a chain, then
⋃

K∈KK ∈ F .

Then F contains an element M such that M ∪ {x} 6∈ F for any x ∈ X \M .

Let us prove (I). For each A in F let

A∗ = {x ∈ X : A ∪ {x} ∈ F}.

We use our assumption of (AC’) to fix a

choice function f : P(X) \ {∅} → X

and then let

F : F → P(X), F (A) =

{
A ∪ {f(A∗)} if A∗ 6= ∅
A otherwise.

We note that f(A∗) ∈ A∗ for each A in F for which A∗ 6= ∅, and hence
F (A) ∈ F , by definition of A∗; i.e. F : F → F .
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We define an (f,F)-tower to be any subcollection T ⊆ F for which

• ∅ ∈ T ,

• A ∈ T ⇒ F (A) ∈ T

• if K ⊆ T is a chain, then
⋃

K∈KK ∈ T .

Notice that F , itself, is an (f,F)-tower, and that the intersection of any
family of (f,F)-towers is again an (f,F)-tower. Hence

T0 =
⋂
{T : T ⊆ F is an (f,F)-tower}

is an (f,F)-tower, in fact the minimal (f,F)-tower. Notice, ∅ ∈ T0, so T0 is
non-empty.

We aim to show that (T0,⊆) is totally ordered. To this end, we call a set C
in T0 comparable (in T0), if for A in T0, either A ⊆ C or C ⊆ A. For such C
consider the family

TC = {A ∈ T0 : A ( C} ∪ {C} ∪ {A ∈ T0 : F (C) ⊆ A}.

We observe that ∅ ∈ TC . If A ∈ TC then f(A) ∈ T0, and, using the assump-
tion the C is comparable, we see that

• if A ( C, then F (A) ⊆ C, since otherwise, in the case that A∗ 6= ∅, we
would have A ( C ( F (A) = A ∪ {f(A∗)}, which is clearly impossible; or

• if A = C or if F (C) ⊆ A then C ⊆ A ⊆ F (A);

hence f(A) ∈ TC . Moreover, if K is a chain in TC , then let B =
⋃

K∈KK.
Indeed if each K ⊆ C, then B ⊆ C; and if F (C) ⊆ K for some K, then
F (C) ⊆ B. Thus TC is a tower, in which case we must have TC = T0, as T0
is the minimal tower in F .

It follows that F (C) is comparable in T0 if C is. Thus the family of compa-
rable sets, C, satisfies the first two axioms of an (f,F)-tower; it remains to
check the third. If K is a chain in C, let B =

⋃
K∈KK. If A ∈ T0 then either

A ⊆ K for some K, in which case A ⊆ B; or K ⊆ A for all K, in which
case B ⊆ A. Thus B ∈ C. Hence C is itself an (f,F)-tower, and again by
minimality of T0, we see that C = T0. Hence we have that (T0,⊆) is indeed
totally ordered, hence a chain in (F ,⊆).
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Now we let M =
⋃

T∈T0 T ∈ T0. If it were the case that M∗ 6= ∅, we would
have that F (M) = M ∪ {f(M∗)} ∈ T0 since T0 is a tower. But this violates
the fact that f(M∗) 6∈M . Hence M∗ = ∅ which proves (I).

(II) We now use (I) to prove (ii). Given a partially ordered set (S,≤), let F
denote the set of all chains in S. We remark that ∅ is trivially a chain. Any
chain K in (F ,⊆) has that C =

⋃
K∈KK is a chain, i.e. any two elements of

C must live in some K, and hence are comparable. Any M , arising form the
conclusion of (I), is a maximal chain.

(ii) ⇒ (iii). Suppose (S,≤) is a partially ordered set in which each chain
has a maximal element. Let M be a maximal chain in (S,≤) and m be an
upper bound for M . Then M ∪ {m} is a chain, and hence equal to M by
maximality of M , i.e. m ∈ M . Moreover, if any s in S satisfies m ≤ s, then
M ∪ {s} is a chain, from which it again follows that s ∈ M , hence s ≤ m.
But then s = m, so m is a maximal element.

(iii) ⇒ (iv). Let

W = {(A,RA) : A ∈ P(X), RA ⊆ A× A is a well-ordering}.

(Notice we use RA instead of symbol ≤A.) We note that W 6= ∅. Indeed,
any countable set A ⊆ X can be well-orderd. We define a relation on W by

(A,RA) � (B,RB) ⇔ (A,RA) is an initial segment of (B,RB)

which is to say that

• A ⊆ B,

• RB ∩ (A× A) = RA, and

• for a in A and b in B \ A, we have aRBb.

Then � is evidently reflexive, transitive and anti-symmetric, hence a partial
order on W .

Let C be a chain in (W ,�). Let U =
⋃

(C,RC)∈MC and for s, t in U , let sRU t

whenever s, t ∈ C with sRCt, for some (C,RC) ∈ C. Then RU is trivially
well-defined. If A ⊆ U is non-empty, there is some (C,RC) in C for which
A∩C 6= ∅, and thus admits a minimal element aC . Observe that if A∩C ′ 6= ∅
for another (C ′, RC′) in C, then C ⊆ C ′, say, and we see that aC′ = aC , since
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(C,RC) is an initial segment of (C ′, RC′). Hence, (U,RU) ∈ W and is an
upper bound for C.

Hence, by Zorn’s lemma, W admits a maximal element (M,RM). If there
were s in S \ M , we could let M ′ = M ∪ {s} and extend RM to M ′ by
assigning tRM ′s for all t in M . But then (M ′, RM ′) ∈ W , which would
violate the maximlity of (M,RM). Hence RM is a well-ordering on S.

(iv) ⇒ (i). Suppose ≤ is a well-ordering on X. Let f(A) be the minimal
element of A for each A in P(X) \ {∅}. �
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