PMATH 247, WINTER 2007

Assignment #3 Due: February 9

1. If S, T are non-empty subsets of \mathbb{R}^N then we define

$$dist(S, T) := \inf\{||x - y|| : x \in S \text{ and } y \in T\}.$$

- (a) Find examples of closed sets $F,G\subset\mathbb{R}$ (N=1!) for which $\mathrm{dist}(F,G)=0$ but $F\cap G=\varnothing$.
- **(b)** Show that if closed sets $F, G \subset \mathbb{R}$ are connected and $F \cap G = \emptyset$ then $\operatorname{dist}(F, G) > 0$.
- (c) Find examples of bounded sets $K, L \subset \mathbb{R}^N$ for which $\operatorname{dist}(K, L) = 0$ but $K \cap L = \emptyset$. Can one of these be closed?
- 2. If $(x_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R}^N which converges to x_0 in \mathbb{R}^N , show that $K = \{x_n\}_{n=0}^{\infty}$ is compact.
- 3. (a) If $(x_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R}^N for which there is a number $\theta < 1$ such that

$$||x_{n+1} - x_n|| \le \theta ||x_n - x_{n-1}|| \text{ for each } n \ge 2$$

then $(x_n)_{n=1}^{\infty}$ converges.

(b) Can we still conclude the result of (a) if (♠) is replaced by

$$||x_{n+1} - x_n|| < ||x_n - x_{n-1}||$$
 for each $n \ge 2$?

4. Let $U \subseteq \mathbb{R}^N$ be open. Show that for $f: U \to \mathbb{R}$,

for each
$$\lambda$$
 in \mathbb{R} both of the f is continuous on U \Leftrightarrow sets $\{x \in U : f(x) > \lambda\}$ and $\{x \in U : f(x) < \lambda\}$ are open.

[Hint: inverse images have nice properties with respect to unions and intersections.]

5. Show that if $f(x,y) = xy + x^4 - y^4$, then the equation f(x,y) = 0 has at least four solutions on the circle $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = R^2\}$, where R > 0.

Don't forget the next question ...

6. (a) Show that if C is a closed subset of \mathbb{R}^N which satisfies the condition that

$$x, y \in C \quad \Rightarrow \quad \frac{1}{2}(x+y) \in C$$

then C is convex.

[Hint: if $\lambda \in [0, 1]$, then it has a binary representation $\lambda = 0.\varepsilon_1\varepsilon_2....$]

(b) Can the conclusion of (a) hold if C is not closed? Prove or provide counter-example.

Bonus Question. The set $\{(\sin n, \cos \sqrt{n})\}_{n=1}^{\infty}$ in \mathbb{R}^2 has at least one cluster point. (Why?) Find one.