PMATH 247, WINTER 2007

Assignment #2 Due: January 31

- 1. Determine if the following sets are *open*, *closed* or *neither*. Justify your answers.
 - (a) $(a_1, b_1) \times ... \times (a_N, b_N) \subset \mathbb{R}^N$ where $a_j < b_j$ in \mathbb{R} for j = 1, ..., N.
 - **(b)** $\{(x_1, ..., x_N) \in \mathbb{R}^N : x_1 + \dots + x_N \in \mathbb{Q}\}$
 - (c) $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = 1\}.$
- 2. Let $S \subseteq \mathbb{R}^N$. Let the derived set be given by

 $S' = \{x \in \mathbb{R}^N : x \text{ is a cluster point of } S\}.$

- (a) Show that if $x_0 \in S'$, then every neighbourhood U of x_0 contains an infinite number of points from S.
- (b) Show that S' is closed.
- (c) A set F is called *perfect* if F = F'. Find examples of closed sets, one which is perfect, and one which is not.
- 3. For each of the following sets S, state (without proof) \overline{S} , S° , S', ∂S , i.e. the *closure*, *interior*, *derived set* and *boundary*, respectively
 - (a) $S_1 = \{x \in \mathbb{R}^N : 0 < ||x|| \le 1\}$
 - **(b)** $S_2 = \left\{ \left(\frac{1}{m}, \frac{1}{n} \right) : m, n \in \mathbb{N} \right\} \subset \mathbb{R}^2$
 - (c) $S_3 = \mathbb{Q} \times \mathbb{R} \subset \mathbb{R}^2$
 - (d) $S_4 = \mathbb{Z}^3 \subset \mathbb{R}^3$
- 4. If $\emptyset \neq S \subsetneq \mathbb{R}^N$ show that $\partial S \neq \emptyset$. Deduce that \emptyset and \mathbb{R}^N are the only simultaneously open and closed sets in \mathbb{R}^N .

[Hint: if $x \in S$, $y \in S^c$, find a convex combination of x and y in ∂U .]

Don't forget q. 5 ...

5. Prove that if U is an open subset of \mathbb{R} , then there exists a sequence of open intervals $\{I_j\}_{j\in J}$ (here, either J is finite or $J=\mathbb{N}$) such that

$$I_j \cap I_k = \emptyset$$
 if $j \neq k$ in J , and $U = \bigcup_{j \in J} I_j$.

[Hint: if $x \in U$ let $a_x = \inf\{a : (a,x] \subset U\}$ and $b_x = \sup\{b : [x,b) \subset U\}$. Show that either $a_x = a_y$ and $b_x = b_y$ or $(a_x,b_x) \cap (a_y,b_y) = \emptyset$.]