MATH 247, FALL 2005

Assignment #1 Due: January 17.

- 1. Show that if a < b in a complete ordered field (\mathbb{O}, P) , then there exists an *irrational* $\eta \in \mathbb{O} \setminus \mathbb{Q}$ with $a < \eta < b$.
- 2. Let P be be the order cone of \mathbb{Q} , and \mathbb{P} the order cone of \mathbb{R} , where we view \mathbb{R} as the family of Dedekind cuts.
 - (a) Verify that for any A in \mathbb{P} , the element

$$A^{-1} = \{q^{-1} : q \in \mathbb{Q} \setminus A \text{ and } q \neq \min(\mathbb{Q} \setminus A)\} \cup (-P) \cup \{0\}$$

satisfies $A \cdot A^{-1} = A_1$ where $A_1 = \{ q \in \mathbb{Q} : q < 1 \}$.

- (b) Verify that \mathbb{R} is complete. [Hint: $A \leq B \Leftrightarrow A \subseteq B$.]
- (c) Verify, for A, B and C, the distributive law: $A \cdot (B + C) = A \cdot B + A \cdot C$. [Hint: Consider case where $A, B, C \in \mathbb{P}$, first.]
- 3. (a) Let (\mathbb{O}, P) be an ordered field. Show that if $0 \le x < y$ in \mathbb{O} and $n \in \mathbb{N}$, then $x^n < y^n$.
 - (b) Show that if $a \geq 0$ in \mathbb{R} and $n \in \mathbb{N}$, then there is a unique z in \mathbb{R} such that

$$z \ge 0$$
 and $z^n = a$.

We write $z = \sqrt[n]{a}$.

[Hint: You may want to use the binomial theorem and the factorization $y^n-x^n=(y-x)\sum_{k=1}^{n-1}y^{n-k}x^{k-1}.$]

4. Let (\mathbb{O}, P) be an Archimedean ordered field. If a < b in \mathbb{O} we let $[a, b] = \{x \in \mathbb{O} : a \le x \le b\}$, and call this a *finite closed interval*.

Show that if \mathbb{O} satisfies the nested intervals property (i.e. if $I_1 \supset I_2 \supset \ldots$ is a sequence of finite closed intervals in \mathbb{O} , then $\bigcap_{j=1}^{\infty} I_j \neq \emptyset$) then \mathbb{O} must be complete (i.e. all bounded above sets have supremums).

[Hint: If $\emptyset \neq S \subset \mathbb{O}$ is bounded above, let a_1 be any element which is not an upper bound for S, and b_1 be any upper bound for S. Bisect the interval $[a_1, b_1]$ to start an induction procedure which "narrows in" on a candidate for $\sup S$.]

Don't forget $q. 5 \dots$

- 5. Show, by way of examples, that a decreasing sequence I_1, I_2, \ldots of intevals in \mathbb{R} in may have $\bigcap_{j=1}^{\infty} I_j = \emptyset$ if
 - (a) the intervals are of finite length but fail to be closed, or
 - (b) the intervals are closed but not of finite length.