ERRATUM FOR APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES

DAVID MCKINNON AND MATTHEW SATRIANO

We correct an error in [MS21, Proposition 1.3]: Vojta's Conjecture does not imply canonical boundedness in general. However, the implication does hold for toric varieties. A corrected statement and proof of Proposition 1.3 follows.

Proposition 0.1. Let X be a smooth projective variety over a number field k, and let $P \in X(k)$ be a k-rational point. If the anticanonical divisor class $-K_X$ is big, then Vojta's Main Conjecture implies that X is canonically bounded at P.

Proof. Let dim X = n and fix a place v of k. Let $S = \{v\}$ and let D be the union of any n normal crossings divisors that intersect properly and transversely at P. We claim that there is a constant C such that for all $Q \in X(k)$ outside a proper closed subset Z, we have:

(0.2)
$$m_S(D,Q) \ge -n \log \operatorname{dist}_v(P,Q) + C$$

To see this, note that the divisor D has multiplicity at least n at P, by construction. Thus, if $\phi: Y \to X$ is the blowup of X at P, the divisor $\phi^*D - nE$ is effective, where E is the exceptional divisor of ϕ . This implies that $m_S(\phi^*D - nE, Q)$ is bounded below independently of Q (see [Vo87, Lemma 1.3.3.(b)]), and so

$$m_S(\phi^*D, Q) \ge m_S(nE, Q) + C$$

for some constant C independent of Q. Equation (0.2) then follows from Lemma 1.3.3.(d) of [Vo87].

Since $-K_X$ is big, we may choose an ample \mathbb{Q} -divisor A such that $-K_X - A$ is effective. Fix any $\epsilon > 0$. If Q satisfies Vojta's inequality, then

(0.3)
$$\operatorname{dist}_{v}(P,Q)^{n}H_{-K_{X}}(Q) \geq C_{1}H_{A}(Q)^{-\epsilon}$$

for some positive constant C_1 , independent of Q. Since $-K_X - A$ is effective, we have

$$H_{-K_X-A}(Q) > C_2 > 0$$

for some positive constant C_2 independent of Q, and thus

$$\operatorname{dist}_{v}(P,Q)^{n}H_{-K_{X}}(Q) \geq C_{1}H_{A}(Q)^{-\epsilon} \geq C_{3}H_{-K_{X}}(Q)^{-\epsilon}$$

from which we deduce

$$\operatorname{dist}_{v}(P,Q)^{n}H_{-K_{X}}(Q)^{1+\epsilon} \geq C_{3} > 0.$$

Therefore

$$\operatorname{dist}_{v}(P,Q)^{n-\epsilon'}H_{-K_{X}}(Q) \ge C_{4}$$

for another positive constant C_4 , independent of Q. This implies $\alpha_P(-K_X) \ge n - \epsilon$ for all $\epsilon > 0$. We conclude that $\alpha_P(K_X) \ge n$, as desired.

The authors were partially supported by Discovery Grants from the Natural Sciences and Engineering Research Council. MS was additionally supported by a Math Faculty Research Chair.

References

- [MS21] McKinnon, D. and Satriano, M., *Approximating rational points on toric varieties*, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3557–3577.
- [Vo87] Vojta, P., *Diophantine Approximations and Value Distribution Theory*, Lecture Notes in Mathematics vol. 1239, Springer-Verlag, 1987.

University of Waterloo, Department of Pure Mathematics, Waterloo, Ontario, Canada $\mathrm{N2L}$ 3G1

Email address: dmckinnon@uwaterloo.ca

University of Waterloo, Department of Pure Mathematics, Waterloo, Ontario, Canada $\rm N2L~3G1$

Email address: msatrian@uwaterloo.ca