
PMATH 800: Assignment 2

Due: Wednesday, 26 February, 2014

1. Open Mapping Theorem. The Open Mapping Theorem on C states that if D ⊂ C is a domain and
f : D → C is a non-constant holomorphic function, then f is open. Show that the theorem extends
to Riemann surfaces: If f : X → Y is a non-constant holomorphic mapping between Riemann
surfaces X and Y , then f is open.

2. Elliptic functions. Let Γ = {mω1 +nω2 : m,n ∈ Z} be a lattice in C. An elliptic function (relative
to the lattice Γ) is a doubly periodic meromorphic function with respect to Γ.

(a) Let C(Γ) be the set of all elliptic functions. Show that C(Γ) is a field.

(b) The Weierstrass P-function with respect to Γ is defined by

PΓ(z) =
1
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+
∑
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)
.

Show that PΓ is an elliptic function relative to Γ which has poles at the points of Γ. [Hint:
First consider the derivative P ′Γ(z) = −2

∑
ω∈Γ

1
(z−ω)3 .]

(c) Let f ∈ C(Γ) be an elliptic function relative to Γ that has its poles at the points of Γ and
which has the following Laurent series expansion about the origin

f(z) =

∞∑
k=−2

ckz
k,

with c−2 = 1 and c−1 = c0 = 0. Prove that f = PΓ.

Note: One can show that
C(Γ) = C(PΓ(z),P ′Γ(z)).

In other words, every elliptic function is a rational combination of PΓ and P ′Γ. See for example
“Elliptic functions” by Serge Lang (on reserve at the DC Library) for details.

(d) The order of an elliptic function is its number of poles (counted with multiplicity) in any
fundamental parallelogram {ω+αω1 + βω2 : 0 ≤ α, β < 1}, ω ∈ Γ. Show that a non-constant
elliptic function has order at least 2. This implies in particular that, if an elliptic function has
a single pole, then its pole must have multiplicity at least 2.

3. (a) Show that
tan : C→ P1

is a local homeomorphism.

(b) Show that tan(C) = P1\{±i} and

tan : C→ P1\{±i}

is a covering map.

(c) Let X = C\{it : t ∈ R, |t| ≥ 1}. Show that for every k ∈ Z there exists a unique holomorphic
function arctank : X → C with

tan ◦ arctank = idX

and
arctank(0) = kπ

(the k-th branch of arctan).



4. Let X be a compact Riemann surfaces.

(a) Let f be non-constant meromorphic function on X. Show that f has the same number of
zeroes and poles, counting multiplicities.

(b) Suppose that there exists a meromorphic function f on X that has a single pole, and that
this pole has multiplicity one. Prove that X is isomorphic to P1. Moreover, prove that if X is
isomorphic to P1, then X admits a meromorphic function f that has a single pole, and that
this pole has multiplicity one.

(c) Use (b) to show that C/Γ cannot be isomorphic to P1 for any lattice Γ ⊂ C.

5. Sheafification. Let F be a presheaf on the topological space X. Let |F| =
∐

x∈X Fx, denote

p : |F| → X
Fx 3 ϕ 7→ x

the natural projection map. Let U ⊂ X be a subset. A map s : U 7→ |F| such that p ◦ s = idU is
called a section of p over U .

(a) Let s : U 7→ |F| be a section of p over U . Show that s is continuous if and only if it satisfies the
condition: for every x ∈ U , there exist an open neighbourhood V of x and a section t ∈ F(V )
such that s(y) = ρy(t) for all y ∈ V .

(b) We associate the following presheaf F+ to F : for any open set U ⊂ X, let F+(U) be the set
of all continuous section s : U → |F| of p over U ; moreover, if V ⊂ U is an open subset, let
ρUV (s) = s|V be usual restriction of functions. Show that F+ is a sheaf of abelian group on
X, called the sheafification of F .

(c) Prove that there is a natural isomorphism of the stalks Fx ' F+
x for all x ∈ X.

(d) Let G1 and G2 be two sheaves of abelian groups on X. A sheaf homomorphism α : G1 → G2

is a family of group homomorphisms αU : G1(U) → G2(U), for every U ⊂ X open, which are
compatible with the restriction homomorphisms, that is, if V ⊂ U is open and (ρ1)UV , (ρ2)UV
are the restriction homomorphisms of G1, G2, respectively, then (ρ2)UV ◦ αU = αV ◦ (ρ1)UV . If
all the αU are isomorphisms, then α is called an isomorphism, and G1 and G2 are said to be
isomorphic, which is denoted G1 ' G2.

Show that if F is a sheaf, then F ' F+.

Hint: Let U ⊂ X be an open. For any f ∈ F , let f̂ : U → |F|, x 7→ ρx(f). Then, f̂ ∈ F+(U).

Consider the map αU : F(U)→ F+(U), f 7→ f̂ .

6. Let X be a Riemann surface.

(a) Let p ∈ X. Consider the following collection Cp of abelian groups

Cp(U) :=

{
C, p ∈ U,
0, p /∈ U,

for any open set U ⊂ X, and restriction homomorphisms

ρUV (f) :=

{
f, p ∈ V,
0, p /∈ V,

for all f ∈ Cp(U) and open sets V ⊂ U . Show that Cp is a sheaf, called the skyscraper sheaf
supported at p, whose stalks are given by (Cp)x = C if x = p, and (Cp)x = 0 if x 6= p.

(b) For any open set U ⊂ X, define

F(U) :=

{
C, U 6= ∅,
0, U = ∅,
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and restriction homomorphisms

ρUV (f) :=

{
f, V 6= ∅,
0, V = ∅,

for all f ∈ F(U) and open sets V ⊂ U . Show that (F , ρ) is a presheaf, but not a sheaf. Recall
that a function f : X → C is called locally constant if, for every x ∈ X, there exists and open
neighbourhood W of x such that f |W is constant. Prove that the sheafification F+ of F is
the sheaf C of locally constant functions on X (with values in C), where C(U) is the set of
locally constant functions on the open set U ⊂ X, and the restriction homomorphisms are the
usual restriction of functions.

(c) For U ⊂ X open, let
F := O∗(U)/ expO(U).

Show that F with the usual restriction maps is a presheaf, but not a sheaf.

3


