PMATH 800: Assignment 2

Due: Wednesday, 26 February, 2014

- 1. Open Mapping Theorem. The Open Mapping Theorem on \mathbb{C} states that if $D \subset \mathbb{C}$ is a domain and $f: D \to \mathbb{C}$ is a non-constant holomorphic function, then f is open. Show that the theorem extends to Riemann surfaces: If $f: X \to Y$ is a non-constant holomorphic mapping between Riemann surfaces X and Y, then f is open.
- 2. Elliptic functions. Let $\Gamma = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ be a lattice in \mathbb{C} . An elliptic function (relative to the lattice Γ) is a doubly periodic meromorphic function with respect to Γ .
 - (a) Let $\mathbb{C}(\Gamma)$ be the set of all elliptic functions. Show that $\mathbb{C}(\Gamma)$ is a field.
 - (b) The Weierstrass \mathcal{P} -function with respect to Γ is defined by

$$\mathcal{P}_{\Gamma}(z) = \frac{1}{z^2} + \sum_{\omega \in \Gamma \setminus 0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

Show that \mathcal{P}_{Γ} is an elliptic function relative to Γ which has poles at the points of Γ . [*Hint:* First consider the derivative $\mathcal{P}'_{\Gamma}(z) = -2\sum_{\omega \in \Gamma} \frac{1}{(z-\omega)^3}$.]

(c) Let $f \in \mathbb{C}(\Gamma)$ be an elliptic function relative to Γ that has its poles at the points of Γ and which has the following Laurent series expansion about the origin

$$f(z) = \sum_{k=-2}^{\infty} c_k z^k,$$

with $c_{-2} = 1$ and $c_{-1} = c_0 = 0$. Prove that $f = \mathcal{P}_{\Gamma}$. Note: One can show that

$$\mathbb{C}(\Gamma) = \mathbb{C}(\mathcal{P}_{\Gamma}(z), \mathcal{P}'_{\Gamma}(z)).$$

In other words, every elliptic function is a rational combination of \mathcal{P}_{Γ} and \mathcal{P}'_{Γ} . See for example "Elliptic functions" by Serge Lang (on reserve at the DC Library) for details.

- (d) The order of an elliptic function is its number of poles (counted with multiplicity) in any fundamental parallelogram $\{\omega + \alpha\omega_1 + \beta\omega_2 : 0 \le \alpha, \beta < 1\}, \omega \in \Gamma$. Show that a non-constant elliptic function has order at least 2. This implies in particular that, if an elliptic function has a single pole, then its pole must have multiplicity at least 2.
- 3. (a) Show that

$$\tan: \mathbb{C} \to \mathbb{P}^1$$

is a local homeomorphism.

(b) Show that $\tan(\mathbb{C}) = \mathbb{P}^1 \setminus \{\pm i\}$ and

$$\tan: \mathbb{C} \to \mathbb{P}^1 \setminus \{\pm i\}$$

is a covering map.

(c) Let $X = \mathbb{C} \setminus \{it : t \in \mathbb{R}, |t| \ge 1\}$. Show that for every $k \in \mathbb{Z}$ there exists a unique holomorphic function $\arctan_k : X \to \mathbb{C}$ with

$$\tan \circ \arctan_k = \mathrm{id}_X$$

and

$$\operatorname{arctan}_k(0) = k\pi$$

(the k-th branch of arctan).

- 4. Let X be a compact Riemann surfaces.
 - (a) Let f be non-constant meromorphic function on X. Show that f has the same number of zeroes and poles, counting multiplicities.
 - (b) Suppose that there exists a meromorphic function f on X that has a single pole, and that this pole has multiplicity one. Prove that X is isomorphic to \mathbb{P}^1 . Moreover, prove that if X is isomorphic to \mathbb{P}^1 , then X admits a meromorphic function f that has a single pole, and that this pole has multiplicity one.
 - (c) Use (b) to show that \mathbb{C}/Γ cannot be isomorphic to \mathbb{P}^1 for any lattice $\Gamma \subset \mathbb{C}$.
- 5. Sheafification. Let \mathcal{F} be a presheaf on the topological space X. Let $|\mathcal{F}| = \coprod_{x \in X} \mathcal{F}_x$, denote

$$\begin{array}{rccc} p: |\mathcal{F}| & \to & X \\ \mathcal{F}_x \ni \varphi & \mapsto & x \end{array}$$

the natural projection map. Let $U \subset X$ be a subset. A map $s : U \mapsto |\mathcal{F}|$ such that $p \circ s = \mathrm{id}_U$ is called a section of p over U.

- (a) Let $s: U \mapsto |\mathcal{F}|$ be a section of p over U. Show that s is continuous if and only if it satisfies the condition: for every $x \in U$, there exist an open neighbourhood V of x and a section $t \in \mathcal{F}(V)$ such that $s(y) = \rho_y(t)$ for all $y \in V$.
- (b) We associate the following presheaf \mathcal{F}^+ to \mathcal{F} : for any open set $U \subset X$, let $\mathcal{F}^+(U)$ be the set of all continuous section $s: U \to |\mathcal{F}|$ of p over U; moreover, if $V \subset U$ is an open subset, let $\rho_V^U(s) = s|_V$ be usual restriction of functions. Show that \mathcal{F}^+ is a sheaf of abelian group on X, called the *sheafification of* \mathcal{F} .
- (c) Prove that there is a natural isomorphism of the stalks $\mathcal{F}_x \simeq \mathcal{F}_x^+$ for all $x \in X$.
- (d) Let \mathcal{G}_1 and \mathcal{G}_2 be two sheaves of abelian groups on X. A sheaf homomorphism $\alpha : \mathcal{G}_1 \to \mathcal{G}_2$ is a family of group homomorphisms $\alpha_U : \mathcal{G}_1(U) \to \mathcal{G}_2(U)$, for every $U \subset X$ open, which are compatible with the restriction homomorphisms, that is, if $V \subset U$ is open and $(\rho_1)_V^U$, $(\rho_2)_V^U$ are the restriction homomorphisms of \mathcal{G}_1 , \mathcal{G}_2 , respectively, then $(\rho_2)_V^U \circ \alpha_U = \alpha_V \circ (\rho_1)_V^U$. If all the α_U are isomorphisms, then α is called an *isomorphism*, and \mathcal{G}_1 and \mathcal{G}_2 are said to be *isomorphic*, which is denoted $\mathcal{G}_1 \simeq \mathcal{G}_2$. Show that if \mathcal{F} is a sheaf, then $\mathcal{F} \simeq \mathcal{F}^+$.

Hint: Let $U \subset X$ be an open. For any $f \in \mathcal{F}$, let $\hat{f} : U \to |\mathcal{F}|, x \mapsto \rho_x(f)$. Then, $\hat{f} \in \mathcal{F}^+(U)$. Consider the map $\alpha_U : \mathcal{F}(U) \to \mathcal{F}^+(U), f \mapsto \hat{f}$.

- 6. Let X be a Riemann surface.
 - (a) Let $p \in X$. Consider the following collection \mathbb{C}_p of abelian groups

$$\mathbb{C}_p(U) := \begin{cases} \mathbb{C}, & p \in U, \\ 0, & p \notin U, \end{cases}$$

for any open set $U \subset X$, and restriction homomorphisms

$$\rho_V^U(f) := \begin{cases} f, & p \in V, \\ 0, & p \notin V, \end{cases}$$

for all $f \in \mathbb{C}_p(U)$ and open sets $V \subset U$. Show that \mathbb{C}_p is a sheaf, called the *skyscraper sheaf* supported at p, whose stalks are given by $(\mathbb{C}_p)_x = \mathbb{C}$ if x = p, and $(\mathbb{C}_p)_x = 0$ if $x \neq p$.

(b) For any open set $U \subset X$, define

$$\mathcal{F}(U) := \begin{cases} \mathbb{C}, & U \neq \emptyset, \\ 0, & U = \emptyset \end{cases}$$

and restriction homomorphisms

$$\rho_V^U(f) := \begin{cases} f, & V \neq \emptyset, \\ 0, & V = \emptyset, \end{cases}$$

for all $f \in \mathcal{F}(U)$ and open sets $V \subset U$. Show that (\mathcal{F}, ρ) is a presheaf, but not a sheaf. Recall that a function $f: X \to \mathbb{C}$ is called *locally constant* if, for every $x \in X$, there exists and open neighbourhood W of x such that f|W is constant. Prove that the sheafification \mathcal{F}^+ of \mathcal{F} is the sheaf \mathbb{C} of locally constant functions on X (with values in \mathbb{C}), where $\mathbb{C}(U)$ is the set of locally constant functions on the open set $U \subset X$, and the restriction homomorphisms are the usual restriction of functions.

(c) For $U \subset X$ open, let

$$\mathcal{F} := \mathcal{O}^*(U) / \exp \mathcal{O}(U).$$

Show that \mathcal{F} with the usual restriction maps is a presheaf, but not a sheaf.