PMATH 800: Assignment 1

Due: Friday, 31 January, 2014

1. (a) One point compactification of \mathbb{R}^n . For $n \ge 1$, let ∞ be a symbol not belonging to \mathbb{R}^n . Introduce the following topology on the set $X := \mathbb{R}^n \cup \{\infty\}$. A set $U \subset X$ is open, by definition, if one of the two following conditions is satisfies:

i. $\infty \notin U$ and U is open in \mathbb{R}^n with respect to the usual topology on \mathbb{R}^n .

ii. $\infty \in U$ and $K := X \setminus U$ is compact in \mathbb{R}^n with respect to the usual topology on \mathbb{R}^n .

Show that X is a compact Hausdorff topological space.

(b) Stereographic projection. Consider the unit n-sphere

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n+1}^{2} = 1\}$$

and the stereographic projection

$$\sigma: S^n \to \mathbb{R}^n \cup \{\infty\}$$

given by

$$\sigma(x_1, \dots, x_{n+1}) := \begin{cases} \frac{1}{1 - x_{n+1}} (x_1, \dots, x_n), & \text{if } x_{n+1} \neq 1, \\ \infty, & \text{if } x_{n+1} = 1. \end{cases}$$

Show that σ is a homeomorphism of S^n onto X; this proves in particular that the Riemann sphere \mathbb{P}^1 is homeomorphic to S^2 (after identifying \mathbb{R}^2 with \mathbb{C} in the natural way).

2. The complex projective line. The complex projective line is defined as the quotient

$$\mathbb{CP}^1 := (\mathbb{C}^2 - \{0\}) / \sim,$$

where $(z_1, z_2) \sim (\alpha z_1, \alpha z_2)$ for all $\alpha \in \mathbb{C}^*$, and corresponds to the set of all lines through the origin 0 in \mathbb{C}^2 .

- (a) Prove that \mathbb{CP}^1 endowed with the quotient topology is a topological surface.
- (b) Let $U_i := \{(z_1, z_2) : z_i \neq 0\}, i = 1, 2, \text{ and consider the maps}$

$$\begin{array}{rccc} \varphi_1: U_1 & \longrightarrow & \mathbb{C} \\ (z_1, z_2) & \longmapsto & z_2/z_1 =: z \\ \\ \varphi_2: U_2 & \longrightarrow & \mathbb{C} \\ (z_1, z_2) & \longmapsto & z_1/z_2 =: z'. \end{array}$$

and

Show that
$$\mathcal{U} := \{(U_1, \varphi_1), (U_2, \varphi_2)\}$$
 is a holomorphic atlas on \mathbb{CP}^1 , thus inducing a complex structure Σ on \mathbb{CP}^1 .

- (c) Prove that (\mathbb{CP}^1, Σ) is isomorphic to the Riemann sphere \mathbb{P}^1 .
- 3. Let f(z) be a continuous complex function with real part u and imaginary part v. Recall that f is holomorphic at z_0 if and only if the partials of u and v exist and satisfy the Cauchy-Riemann equations

$$u_x = v_y, \ u_y = -v_x$$

in an open neighbourhood of z_0 (this is known as Looman-Menchoff's Theorem, see).

Note that $x = \frac{1}{2}(z + \bar{z})$ and $y = \frac{1}{2i}(z - \bar{z})$, so that u and v can be considered as functions of z and \bar{z} . Verify that

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x),$$

and conclude that f is holomorphic at z_0 if and only if $\partial f/\partial \bar{z} = 0$ in an open neighbourhood of z_0 .

4. Let X and Y be Riemann surfaces, and $f: X \to Y$ be a holomorphic map. Consider the induced *pullback* map

$$\begin{array}{cccc} f^*: \mathcal{O}(Y) & \longrightarrow & \mathcal{O}(X) \\ \varphi & \longmapsto & \varphi \circ f. \end{array}$$

Note that $f^*(\varphi) := \varphi \circ f$ is called the *pullback of* φ *under* f. Prove that f^* is a well-defined ring homomorphism, which is a monomorphism if f is non-constant.

- 5. Let $\Gamma = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ and $\Gamma' = \{m\omega'_1 + n\omega'_2 : m, n \in \mathbb{Z}\}$ be two lattices in \mathbb{C} .
 - (a) Prove that \mathbb{C}/Γ is homeomorphic to $S^1 \times S^1$, where the homeomorphism is given by $\lambda \omega_1 + \mu \omega_2 \mapsto (e^{2\pi i \lambda}, e^{2\pi i \mu})$ with $\lambda, \mu \in \mathbb{R}$. Note that we consider $S^1 \times S^1$ as a subset of $\mathbb{C} \times \mathbb{C}$ with the induced metric topology, given by $\{(e^{2\pi i \lambda}, e^{2\pi i \mu}) : \lambda, \mu \in \mathbb{R}\}$; moreover, since ω_1, ω_2 are \mathbb{R} -linearly independent, $\mathbb{C} = \{\lambda \omega_1 + \mu \omega_2 : \lambda, \mu \in \mathbb{R}\}$.
 - (b) Show that $\Gamma = \Gamma'$ if and only if there exists a matrix $A \in SL(2, \mathbb{Z}) := \{A \in GL(2, \mathbb{Z}) : \det A = 1\}$ such that

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = A \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} \text{ or } \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = A \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}.$$

(c) Suppose $\alpha \in \mathbb{C}^*$ is such that $\alpha \Gamma \subset \Gamma'$. Show that the multiplication map $\mathbb{C} \to \mathbb{C}, z \mapsto \alpha z$, induces a holomorphic map

$$\mathbb{C}/\Gamma \to \mathbb{C}/\Gamma'$$

which is biholomorphic if and only if $\alpha \Gamma = \Gamma'$.

(d) Show that every torus $X = \mathbb{C}/\Gamma$ is isomorphic to a torus of the form

$$X(\tau) := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau),$$

where τ satisfies $Im(\tau) > 0$.

(e) Suppose
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$
 and $Im(\tau) > 0$. Let

$$\tau' := \frac{a\tau + b}{c\tau + d}.$$

Show that the tori $X(\tau)$ and $X(\tau')$ are isomorphic.

6. (Optional) A topological surface X is said to be smooth if it admits an atlas

$$\mathcal{U} = \{ (U_{\alpha}, \varphi_{\alpha} : U_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^2) : \alpha \in A \}$$

such that

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$$

is smooth for all $\alpha, \beta \in A$, and the atlas \mathcal{U} is called a *smooth structure* on X. Furthermore, if X admits a smooth structure \mathcal{U} such that $\det(Jac(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})) > 0$ for all $\alpha, \beta \in A$, then X is said to be *orientable* (with *orientation* given by \mathcal{U}). Prove that every Riemann surface is orientable.