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Resumo

Dado um inteiro �xo k ≥ 2, o problema da k-partição conexa balanceada (BCPk) con-
siste em particionar um grafo em k subgrafos conexos mutuamente disjuntos e com pesos
similares. Formalmente, dado um grafo conexo G com pesos não-negativos nos vérti-
ces, desejamos encontrar uma partição {Vi}ki=1 de V (G) tal que cada classe Vi induz um
subgrafo conexo em G, e o peso da classe com menor peso é o maior possível. Esse
problema, conhecido por ser NP-difícil, foi muito investigado por diversas abordagens e
perspectivas: algoritmos exatos, algoritmos de aproximação para alguns valores de k ou
classes de grafos, variantes próximas do problema e resultados de inaproximabilidade. Do
ponto de vista prático, o BCPk é utilizado para modelar problemas em processamento de
imagens, análise de clusters, sistemas operacionais e robótica. Nesse trabalho, propomos
duas formulações baseadas em Programação Linear Mista e uma formulação baseada em
Programação Linear Inteira para o BCPk. As primeiras duas formulações são baseadas
em �uxos e possuem um número polinomial de variáveis e restrições. A última formulação
contém somente variáveis binárias e um número potencialmente grande de desigualdades
que podem ser separadas em tempo polinomial. Introduzimos novas desigualdades válidas
para esse último modelo e projetamos algoritmos de separação polinomial correspondentes.
Além disso, apresentamos resultados poliédricos associados a essa formulação. Pelo que
sabemos, não existem resultados dessa natureza para o BCPk na literatura. Utilizando a
plataforma OpenStreetMap e os dados públicos sobre a criminalidade em certas regiões,
geramos novas instâncias baseadas na aplicação de patrulhamento policial. Experimentos
computacionais mostram que os algoritmos exatos baseados nas nossas formulações são
superiores aos melhores métodos exatos presentes na literatura.



Abstract

Given a �xed integer k ≥ 2, the balanced connected k-partition problem (BCPk) consists
of partitioning a graph into k mutually vertex-disjoint subgraphs of similar weight. More
formally, given a connected graph G with non-negative weights on the vertices, we want
to �nd a partition {Vi}ki=1 of V (G) such that each class Vi induces a connected subgraph
of G, and the weight of a class with the minimum weight is as large as possible. This
problem, known to be NP-hard, has been largely investigated under di�erent approaches
and perspectives: exact algorithms, approximation algorithms for some values of k or
special classes of graphs, close variants of the problem, and inapproximability results. On
the practical side, BCPk is used to model many applications arising in image processing,
cluster analysis, operating systems and robotics. We propose two MILP formulations and
one ILP formulation for BCPk. The �rst two are based on �ows and have a polynomial
number of constraints and variables. The last formulation contains only binary variables
and a potentially large number of constraints that can be separated in polynomial time
in the corresponding linear relaxation. We introduce new valid inequalities for this last
model and design corresponding polynomial-time separation routines. Furthermore, we
present polyhedral results based on this ILP formulation. To our knowledge, this is the
�rst polyhedral study for BCPk in the literature. Using the OpenStreetMap platform and
public crime data, we generated new instances based on a police patrolling application.
Our computational experiments show that the exact algorithms based on the proposed
formulations outperform the other exact methods presented in the literature.
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Chapter 1

Introduction

Let G be a connected undirected graph with vertex set V (G) and edge set E(G). When
the graph G is clear from the context, we use the notation V and E, instead. For an
integer t, the symbol [t] denotes the set {1, 2, . . . , t} if t ≥ 1 and ∅ otherwise. Let k be
a �xed positive integer. A k-partition of G is a collection {Vi}i∈[k] of nonempty subsets
of V such that

⋃k
i=1 Vi = V (G), and Vi ∩ Vj = ∅, for all i, j ∈ [k], i 6= j. We say that each

set Vi is a class of the partition. Moreover, when the classes are indexed, we sometimes
refer to Vi as the i-th class. From now on, we assume that |V | ≥ k, otherwise G does
not admit a k-partition. We say that a k-partition {Vi}i∈[k] of G is connected if, for every
i ∈ [k], the subgraph of G induced by Vi is connected.

For any set of numbers S, we denote by S≥ (resp. S>) the set of non-negative (resp.
positive) elements of S. Let w : V → Q≥ be a function that assigns weights to the vertices
of G. For every subset V ′ ⊆ V , we de�ne w(V ′) =

∑
v∈V ′ w(v). For the sake of simplicity,

for any subgraph H of G, we use w(H) meaning w(V (H)). In the balanced connected

k-partition problem (BCPk), we are given a vertex-weighted connected graph, and we
seek a connected k-partition that maximizes the weight of the lightest class.

Problem 1 Balanced Connected k-Partition (BCPk)

Instance: a connected graph G and a vertex-weight function w : V → Q≥.
Find: a connected k-partition {Vi}i∈[k] of V (G).

Goal: maximize mini∈[k]{w(Vi)}.

Based on the work of Assunção and Furtado [4], we now illustrate an application of
this problem in the context of police patrolling. Suppose we are given a map of a city
that is divided into patrolling areas. Moreover, this map contains points representing
crime occurrences. We can easily create a graph Gp for such a map. The set of vertices
V (Gp) corresponds to the patrolling areas, and an edge {p1, p2} is in E(Gp) if and only
if patrolling area p1 is adjacent to p2. Next, we de�ne a function wp : V (Gp) → Q≥ that
indicates the criminality in an area. Solving BCPk in (Gp, wp) is equivalent to attributing
contiguous patrolling areas to k police teams, in a way that the criminality is balanced
between the teams (see Figure 1.1).

Besides police patrolling, there are several other problems in image processing, data
base, operating systems, cluster analysis, education, robotics and metabolic networks that
can be modeled as a balanced connected partition problem [7, 30, 31, 34�36, 50]. These
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(a) A toy example of a map. The black lines delimit the patrolling areas and the red dots
represent crime occurrences.

(b) A corresponding instance (Gp, wp) and a solution for BCP2.

Figure 1.1: BCPk application to police patrolling.

di�erent real-world applications indicate the importance of designing algorithms for BCPk
and reporting on the computational experiments with their implementations. Not less
important are the theoretical studies of the rich and diverse mathematical formulations
and the polyhedral investigations BCPk leads to.

1.1 Contributions and Outline

Chapter 2 presents brie�y common concepts and notations from the areas of graph theory,
integer programming and polyhedral combinatorics. This chapter establishes a common
ground for the rest of the thesis. Chapter 3 discusses known results in the literature
for BCPk. We give special attention to the mixed integer linear programming formulations
proposed by Mati¢ [37] and Zhou et al. [50].

The subsequent chapters present novel results that advance the state of the art on
exact algorithms for BCPk. Chapter 4 introduces novel �ow and multicommodity �ow
based formulations for the problem. Both formulations are compact, that is, they have a
polynomial amount (on the size of the input graph) of variables and constraints.

Chapter 5 presents a novel cut-based ILP formulation. We also show two strong valid
inequalities for this formulation. One of these inequalities is shown to be easily separable
in polynomial-time. For the other inequality, we design an algorithm that separates it in
polynomial time when the input graph is planar � a property that is common among
graphs that arise from real world applications. We combine these separation routines in a



17

branch-and-cut algorithm for BCPk. A further polyhedral study based on this formulation
is presented in Section 5.4. To the best of our knowledge, these are the �rst polyhedral
results for BCPk described in the literature.

Lastly, we report on computational experiments in Chapter 6. In the same chapter,
we also propose new benchmark instances, based on police patrolling applications. These
instances were generated using OpenStreetMap [43] and real-world crime data available
for the public. Our computational results show that the exact algorithms based on the
proposed formulations outperform signi�cantly the previous solving methods due to Mati¢
and Zhou et al. Particularly, we solve grid instances with sizes over 400 times larger than
the sizes of the largest instances solved by the previous state-of-the-art exact algorithms.

This work gave rise to two papers. One of them is a short version of this thesis
and was published in the proceedings of the International Symposium on Combinatorial
Optimization (ISCO 2020) [39]. The other paper is more complete and was published in
the European Journal of Operational Research (EJOR) [40].
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Chapter 2

Preliminaries

In this chapter, we give a brief overview of concepts and notations from the areas of Graph
Theory, Linear Programming and Polyhedral Combinatorics. The reader familiar with
these areas can safely skip it. The de�nitions here follows the terminology presented by
Wakabayashi and Ferreira [17] and Nemhauser and Wolsey [42].

2.1 Graph Theory

A graph G is a tuple (V (G), E(G)) where V (G) denotes its vertex set and E(G) its edge
set. When the graph G is clear from the context, we use the simpli�ed notation V and E
instead of V (G) and E(G). Unless otherwise stated, we assume that n = |V | andm = |E|.
Throughout this text, G is always a graph.

We denote each edge in our graph by {u, v}, where u, v ∈ V are the endpoints of the
edge. Two vertices u and v in G are said to be adjacent or neighbors if the graph contains
an edge e = {u, v}; moreover, we say that e is incident to both u and v. Sometimes,
we may simply write e = uv to refer to an edge with endpoints u and v. For any set of
vertices W ⊆ V , we de�ne the neighborhood of W as being the set of vertices adjacent
to W , formally N(W ) = {v ∈ V \W : {u, v} ∈ E, u ∈ W}. When W contains exactly
one vertex v, we use N(v) instead of N({v}). In order to refer to the set of edges
that connect vertices in W with vertices in N(W ), we use the notation δ(W ). In other
words, δ(W ) = {{u, v} ∈ E : u ∈ W, v ∈ V \W}.

When H is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G), we say that H is
a subgraph of G and denote this relationship by H ⊆ G. Let W ⊆ V , we use G[W ] to
designate the subgraph of G with vertex set W and edge set {{u, v} ∈ E : u, v ∈ W}.
The notation G − W is used to refer to the subgraph G[V \ W ]. Similarly, we use
G − H, for any H ⊆ G, to refer to the subgraph with vertex set V \ V (H) and edge
set {{u, v} ∈ E \ E(H) : u, v ∈ V (G−H)}.

Let p ∈ Z≥, a path P is a non-empty graph such that p ≤ n, V (P ) = {v1, v2, . . . , vp},
|V (P )| = p and E(P ) = {{v1, v2}, {v2, v3}, . . . , {vp−1, vp}}. We say that P connects v1

and vp or that P is a (v1, vp)-path. The graph G is said to be connected if and only if for
any pair of distinct vertices u, v ∈ V , there exists a path in G that connects u and v, that
is, there exists P ⊆ G such that P is a (u, v)-path. Let P be a path, the graph C with
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vertex set V (C) = V (P ) and edge set E(C) = E(P ) ∪ {{v1, vp}} is called a cycle. A tree

is a connected graph without cycles; a subtree is a tree that is a subgraph of a tree. We
say that a tree T spans the set of vertices V (T ). Moreover, a tree T ⊆ G is a spanning

tree of G if it spans V (G).
In this dissertation we also work with digraphs. A digraph D is a tuple (V (D), A(D)),

where V (D) is its vertex set and A(D) its arc set. An arc a = (u, v) ∈ A(D), is similar
to an edge, but it also has an orientation according to the pair order. Therefore, all the
de�nitions presented for (undirected) graphs, that do not depend on the notion of an
orientation, also applies for digraphs. For any arc (u, v) ∈ A(D), we say that vertex u is
the source while v is the target of the arc.

Let W ⊆ V (D), we denote by δ−(W ) = {(u, v) ∈ A(D) : u /∈ W, v ∈ W} the incoming
arcs of W . Similarly, δ+(W ) = {(u, v) ∈ A(D) : u ∈ W, v /∈ W} represents the outcoming
arcs of W .

Let p ≤ n, a directed path P is a non-empty digraph such that V (P ) = {v1, v2, . . . , vp},
|V (P )| = p and A(P ) = {(v1, v2), (v2, v3), . . . , (vp−1, vp)}. An arborescence

−→
T can be seen

as a directed tree; it is a digraph in which there exists a root r ∈ V (
−→
T ) such that, for any

v ∈ V (
−→
T ) \ {r}, there is exactly one directed path in

−→
T that connects r and v.

2.2 Integer Linear Programming

A linear program (LP) is a mathematical tool to formulate optimization problems with
linear objective function and linear constraints. All linear programs can be written as

[LP] max cTx

s.t. Ax ≤ b,

x ≥ 0,

where c ∈ Rn and b ∈ Rm are vector of coe�cients, x ∈ Rn is a vector of variables, and
A ∈ Rm×n is a matrix of coe�cients. In the forthcoming discussion, the vectors mentioned
are always column vectors. Moreover, we denote by xi the value of the i-th coordinate of
vector x. When a vector has all coordinates equals to 1, we denote it by 1, and when it
has all coordinates as zeroes by 0. In this section, we use brackets [ ] to indicate that we
are referring to formulations (as in [LP]).

Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0}. For reasons that will be clear in Section 2.3.1, P is
said to be the polyhedron associated with formulation [LP]. We sometimes refer to [LP]
as maximizing cTx over P . A linear program is infeasible if its associated polyhedron
P is empty. In the context of linear programs, we might say that a vector x ∈ Rn is a
solution. A solution is feasible for P if x ∈ P . Likewise, x is infeasible for P if x /∈ P .
An optimal solution x∗ is a feasible solution such that cTx∗ = max{cTx : x ∈ P}.

Many methods have been proposed to solve linear programs, like the interior point
and the ellipsoid method, but in this thesis we assume we solve linear programs with the
simplex method. Although its time complexity is exponential, the simplex method is still
used on many linear programming applications, due to its e�ciency in solving practical
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problems. In addition, Spielman and Teng [45] derived a theoretical explanation for the
excellent practical performance of the simplex method. Using probability theory, they
showed that the smoothed time complexity of the method is polynomial on the size of the
input.

Frequently, combinatorial optimization problems seek integer solutions. In this case,
the formulation have additional integrality constraints ; that is, constraints of the type xi ∈
Z, for some i ∈ [n]. When all of the variables in the formulation have to assume integer
values, the formulation is said to be an integer linear program (ILP); when only some of
the variables have to be integer, it is called a mixed integer linear program (MILP). Below
we give a generic formulation for an ILP.

[ILP] max cTx

s.t. Ax ≤ b,

x ≥ 0,

x ∈ Zn.

Usually solving ILP's or MILP's is NP-hard. In order to handle this di�culty, we
might consider the linear relaxation of the formulations. A linear relaxation of a problem
can be obtained by dropping o� the integrality constraints (notice that the previous
formulation [LP] is a linear relaxation of [ILP]). Linear relaxations are important tools
that appear frequently in solving methods for ILP's (or MILP's).

x1

x2

c

(a) Linear program.

x1

x2

c

(b) Integer linear program. The black dots and
red dots are the integer points in P.

Figure 2.1: Graphical representation of a linear program in R2. The shaded area corre-
sponds to P and the dashed lines indicate the linear constraints. The red arrow indicates
the direction of growth of vector c and the red dots denote optimal solutions.

2.2.1 Branch-and-bound

The branch-and-bound method is a generic fundamental scheme, and it is based on apply-
ing a systematic enumeration of all the candidate solutions. To do so, it has a routine that
partitions the solution set into smaller sets (branch), and a second routine, that prunes



21

branches by verifying the upper and lower bounds (bound). In this section, we illustrate
how the branch-and-bound method can be applied to solve integer linear programs.

Suppose we want to solve the previous [ILP] formulation. Let x∗ be an optimal
solution for the linear relaxation [LP] and assume that x∗ is not integer. In other words,
there exists i ∈ [n] such that x∗i ∈ (z, z+1) for some z ∈ Z. Aiming to avoid the fractional
vector x∗, we create two subproblems ([LP1] and [LP2]) that partitions (branch) the set
of solutions of the original linear relaxation (see Figure 2.2(a)).

[LP1] max cTx

s.t. Ax ≤ b,

x ≥ 0,

xi ≤ z.

[LP2] max cTx

s.t. Ax ≤ b,

x ≥ 0,

xi ≥ z + 1.

x1

x2

cx∗

(a) Branching procedure. The blue and green
lines represent the branching inequalities. Note
how the branching invalidates the fractional so-
lution x∗.

LP

LP1 LP2

xi ≥ z + 1xi ≤ z

(b) Branch-and-bound tree.

Figure 2.2: Illustration of the branch-and-bound method.

Applying this strategy recursively, we would end up obtaining a tree-like structure for
the generated subproblems, where each node v of the tree corresponds to a linear program
[LPv] (Figure 2.2(b)). We refer to this tree as the branch-and-bound tree. Since it might
have an exponential number of nodes, it is important to avoid exploring unnecessary
nodes. For this reason, there are three conditions in which we do not branch and prune
(bound) a node v. Let x∗v be an optimal solution for [LPv] (here the subscript simply
indicates the corresponding branch-and-bound node and not the coordinate of the vector).
The conditions are the following.

1 - if [LPv] is unfeasible;

2 - if the optimal solution x∗v for [LPv] is integer;

3 - if the optimal solution for [LPv] is worse (with respect to the objective function)
than the best solution already found.
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Conditions 1 and 2 are easy to justify. Let Pv be the set of feasible solutions for
[LPv] and P ′v be the set of feasible solutions for [LPv] with some additional integrality
constraints. Since P ′v ⊆ Pv, if Pv is empty, then so is P ′v. Therefore, branching would give
no bene�ts in this case, and the node can be pruned (condition 1). Similarly, the node
can also be pruned if x∗v is integer, since then x

∗
v is also optimal for P ′v (condition 2).

Note that condition 2 follows from the straightforward statement that an optimal
solution for P ′v cannot be better than an optimal solution for Pv. This observation points
us towards a third pruning condition. During the execution of the method, we store in
a variable y the best integer solution found so far, and use f(y) = cTy as a lower bound
on the cost of an optimal solution. If x∗v is such that f(x∗v) ≤ f(y), we can safely prune
node v (condition 3).

Finally, in our discussion, we partitioned the solution space imposing the inequalities,
or branching rules, xi ≤ z and xi ≥ z + 1. Naturally, other inequalities that partition
the solution space and invalidate the fractional solution x∗v could also be used in the
branch-and-bound method.

2.2.2 Branch-and-cut

Suppose we have the following ILP:

[B&C] max cTx

s.t. Ax ≤ b,

Cx ≤ d,

x ≥ 0,

x ∈ Zn,

where A has a polynomial number of lines, but C has an exponential number of lines.
The number of constraints encoded in matrix C can be enormous, and therefore, it

might not be feasible to solve the linear relaxation of this formulation. One way of treating
this di�culty is with the cutting plane method. We remark here that this method can
be used to solve LP's as well as ILP's. However, we address here the situation where
the cutting plane method is being used to solve LP's with an exponential number of
constraints. In Section 2.3.2 we elaborate on the fact that solving ILP's is equivalent to
solving LP's with a very large number of (probably unknown) inequalities.

Geometrically, we can think of the cutting plane method in the following way. Let P
be the polyhedron associated with the linear relaxation of [B&C]. Additionally, letQ ⊇ P
be a relaxation of P , described by all the lines in matrix A and only some of the lines in
matrix C. Let y be an optimal solution for Q obtained by our linear programming solver
(which might use the simplex method), we have then two cases: (i) y ∈ P or (ii) y /∈ P .

If y is an optimal solution for Q and y ∈ P (i), then y must be an optimal solution for
P . On the other hand, if y /∈ P (ii), there must exists an inequality πTx ≤ π0 such that,
if we add this inequality to Q, obtaining Q′, we would have that y does not belong to Q′.
In other words, y /∈ Q′ where Q′ = {x ∈ Rn : x ∈ Q, πTx ≤ π0}. Thus, we can update Q
to Q′, and repeat the process until we arrive at case (i).
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. . .

y0 y1
y2Q

P

c

P P P

Q′

Figure 2.3: Iterations of the cutting plane method. Figure based on Miyazawa [38].

Since the inequality πTx ≤ π0 separates y from the relaxed polyhedron Q, we say that
such inequality is a cutting plane. Moreover, we refer to the algorithm that �nds such a
cutting plane by the name of separation routine.

We should note here that �nding a cutting plane that separates a vector that does not
belong to P is polynomially equivalent to solving the separation problem (SEP); on the
other hand, �nding an optimal solution for a polyhedron P , is polynomially equivalent to
solving the optimization problem (OPT). An important result from Grötschel, Lovász and
Schrijver [21] shows that, if all the considered numbers are rational, (SEP) and (OPT)
have the same computational complexity. Hence, if we could solve (SEP) in polynomial
time, we could also create a polynomial-time algorithm for solving (OPT) � although
such an algorithm might not be of practical interest, due to its dependence on the ellipsoid
method [17].

To conclude, when we combine the cutting plane method with the branch-and-bound
procedure � executing the cutting plane method in each node of the branch-and-bound
tree � we obtain an algorithm of type branch-and-cut.

2.3 Polyhedral Combinatorics

2.3.1 Linear Algebra and Polyhedral Theory

Let t be a positive integer. Given a subset S ⊆ Rn, a vector x ∈ Rn is a linear combination
of vectors x1, . . . , xt in S if x =

∑t
i=1 λix

i for some (λ1, . . . , λt) ∈ Rt. Furthermore, if
besides x being a linear combination, we also have that

∑t
i=1 λi = 1 and (λ1, . . . , λt) ∈

Rt
≥, x is said to be a convex combination of x1, . . . , xt. The convex hull of S, denoted

by conv(S), is the set of all vectors that are a convex combination of �nitely many vectors
in S.
The vectors x1, . . . , xt are linearly independent (LI) if and only if

∑t
i=1 λix

i = 0 implies
that λi = 0, for all i ∈ [t]. In a similar way, the vectors x1, x2, . . . , xt are called a�nely

independent (AI) if and only if
∑t

i=1 λix
i = 0 and

∑t
i=1 λi = 0 implies that λi = 0, for all

i ∈ [t]. Notice that linear independence implies a�ne independence, but the converse is
not valid. The rank of S, denoted by rank(S), is the maximum number of LI vectors in
S. Similarly, the a�ne-rank of S or affine-rank(S), is the maximum number of AI vectors
in S. The dimension of S is given by dim(S) = affine-rank(S)− 1, and we say that S has
full dimension if dim(S) = n.
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A halfspace is a set of the form {x ∈ Rn : aTx ≤ b} for a ∈ Rn and b ∈ R. A
polyhedron P ⊆ Rn is the intersection of m ∈ Z≥ halfspaces, i.e. P = {x ∈ Rn : Ax ≤ b},
where A ∈ Rm×n and b ∈ Rm. If there exists a real value α ≥ 0 such that |xi| ≤ α, for all
x ∈ P and i ∈ [n], we say that P is a polytope. A point x ∈ P is said to be a vertex of P
if and only if it cannot be written as a convex combination of points in P \ {x}.

An inequality πTx ≤ π0, also denoted by (π, π0), is said to be a valid inequality for P
if it is satis�ed by all vectors in P . Consider a scalar α ∈ R>, since the inequalities (π, π0)

and (απ, απ0) describe the same set, we say that they are identical. Let (π, π0) and (µ, µ0)

be two valid inequalities (for P) that are not identical, we say that (π, π0) dominates

(µ, µ0) if {x ∈ Rn : πTx ≤ π0} ⊆ {x ∈ Rn : µTx ≤ µ0}. A valid inequality (π, π0) is
redundant in the description of P , if there exist k ≥ 2 valid inequalities (πi, πi0), for i ∈ [k],
such that (

∑
i∈[k] αiπ

i)Tx ≤ (
∑

i∈[k] αiπ
i
0) dominates πTx ≤ π0, where αi ∈ R>, i ∈ [k].

Observe that, if (π, π0) is redundant, the following inclusion holds

{x ∈ Rn : (πi)Tx ≤ πi0, ∀i ∈ [k]} ⊆ {x ∈ Rn : πTx ≤ π0}.

In the context of combinatorial optimization, one of the objectives of studying polyhe-
dral theory is on �nding inequalities that are non-redundant to a polyhedron P . If (π, π0)

is a valid inequality for P and F = {x ∈ P : πTx = π0}, then F is said to be a face of P .
A face F of P is said to be a facet of P , if dim(F ) = dim(P) − 1. An important result
from polyhedral theory says that, if P is full dimensional, (π, π0) de�nes a facet of P if
and only if every set of inequalities that describe P contains an inequality that is identical
to (π, π0). Thus, if dim(P) = n, inequalities that de�ne facets of P are guaranteed to be
non-redundant.

Given the previous de�nitions, we can now show that an inequality (π, π0) 6= (0, 0)

de�nes a facet F of a full dimensional polyhedron P by �nding n vectors x1, . . . , xn ∈ F
that are AI, since then it follows that dim(F ) = n− 1. An equivalent way of establishing
that (π, π0) induces a facet of P is by selecting t ≥ n vectors x1, . . . , xt ∈ F and solving
the system of linear equations

n∑
j=1

µjx
i
j = µ0 ∀ i ∈ [t],

for the n+ 1 variables µ and µ0. If the only solution for this system is of the type µ = λπ

and µ0 = λπ0 for a constant λ 6= 0, then the inequality (π, π0) de�nes a facet.

2.3.2 A short example

Up to now, we only de�ned concepts from linear algebra and polyhedral theory. The
branch of mathematics entitled polyhedral combinatorics applies these concepts to solve
problems in combinatorics. In this section, we illustrate one of these applications.

Many combinatorial optimization problems (including NP-hard ones) can be for-
mulated as an integer linear programming problem max{cTx : x ∈ P ∩ Z}, where
P = {x ∈ Rn : Ax ≤ b, x ≥ 0}. Let PI = conv(P ∪ Z), it is not hard to see that,
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if P is a polytope, then

max{cTx : x ∈ P ∩ Z} = max{cTx : x ∈ PI}.

Hence, given that we can solve a linear programming problem in polynomial time
using the ellipsoid method [28], if we had the de�ning inequalities for PI , we would be
able to solve e�ciently many combinatorial optimization problems, including NP-hard
problems. Therefore, we usually do not expect to be easy or even feasible to obtain a
complete description of PI . On the other hand, we can investigate if the inequalities in
our formulation (represented by the linear system Ax ≤ b) induces facets of PI , since
as we discussed previously, these inequalities are guaranteed to be non-redundant (see
Figure 2.4).

x1

x2

a1

a2

a3

a4

Figure 2.4: Example of P and PI with n = 2. The shaded and dashed area correspond
to P and PI , respectively. Note how a3 corresponds to a facet of PI , but a1 does not.

We now give a classical example (taken from Nemhauser and Wolsey [42]) that illus-
trates how to apply the previous ideas to a famous NP-complete problem: the maximum
independent set problem. Given an undirected graph G = (V,E), an independent set

is a set of vertices S ⊆ V , such that no two vertices in S are adjacent. The maximum

independent set problem asks for an independent set of maximum cardinality.

v1 v2

v5 v6

v3

v4

Figure 2.5: Example of a maximum independent set. The gray vertices denote vertices in
the independent set.

For any vertex v ∈ V , let xv be a binary variable that is equal to one if and only if v
is in the independent set. Consider the following formulation for this problem.
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max
∑
v∈V

xv

s.t. xu + xv ≤ 1 ∀{u, v} ∈ E, (2.1)

xv ∈ {0, 1} ∀v ∈ V. (2.2)

Let n = |V | and let PS be the convex hull of the feasible solutions for the above
formulation, i.e. PS = conv({x ∈ Bn : x satis�es (2.1)}). We �rst show that PS is full-
dimensional (dim(PS) = n). Next, we derive a valid inequality that has dimension n− 1,
and therefore, de�nes a facet of PS.

Proposition 2.3.1 dim(PS) = n.

Proof. Let V = {v1, . . . , vn} and consider the set Si = {vi}, for i ∈ [n]. Clearly Si is
an independent set, since it contains exactly one vertex. Furthermore, it is trivial that
the empty set is also an independent set. For any i ∈ [n], de�ne ei as being a vector
where only its i-th coordinate is one and all the other coordinates are zeroes. Because
of our interpretation for variables x, ei corresponds to the solution Si. In this sense, we
say that ei is the incidence vector of Si. Moreover, 0 is the incidence vector of the empty
set. Thus, we found n+ 1 vectors in PS, it remains to show that these vectors are a�nely
independent.

Consider the matrix M whose columns are given by e1, . . . , en, in this order. We
represent this matrix by M = [e1, . . . , en]. Note that M is an identity matrix with
dimension n. Hence, the vectors {ei}i∈[n] are linearly independent and together with the
null vector we found n+ 1 a�nely independent vectors that belong to PS.

Let us break down the previous proof. In order to enumerate the desired number of
a�nely independent vectors, we �rst constructed feasible combinatorial solutions for the
original problem. These were very simple solutions: an empty set and sets with exactly
one vertex. Next, we transformed the solutions into incidence vectors and analyzed the
geometrical properties of these vectors. In our case, each vector was parallel to a di�erent
axis of the standard coordinate system, so it was easy to argue that they were linearly
independent. This type of reasoning, which explores the relationship between properties
of combinatorial solutions and geometrical aspects of its incidence vectors, is commonly
used in polyhedral combinatorics.

Before we proceed, let us introduce a new concept. A clique C ⊆ V is a set of vertices
such that each pair of nodes in C is connected by an edge. We say that a clique C is
maximal if there is no clique C ′ in G such that C ⊂ C ′. In the following proposition,
we use the notion of a maximal clique to derive a new facet-de�ning inequality. Usually,
when one proposes new inequalities, one �rst has to show that these inequalities are valid.
However, in this case, the validity is trivial and we omit the details.

Proposition 2.3.2 Let C be a maximal clique of G, then the inequality
∑

v∈C xv ≤ 1

de�nes a facet of PS.
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Proof. Let F be the face associated with the above inequality, hence

F =

{
x ∈ PS :

∑
v∈C

xv = 1

}
.

We need to show that the dimension of F is n− 1.
Without loss of generality we assume that V = {v1, . . . , vn} and C = {v1, . . . , vk}.

First we observe that, for any vertex vp, with p ∈ [n] \ [k], there exists a vertex `(vp) ∈ C
such that {`(vp), vp} /∈ E (if there was no such vertex, the clique would not be maximal).
Let αp be the incidence vector of the independent set {`(vp), vp}, for all p ∈ [n] \ [k].
Notice that ({e1, . . . , ek} ∪ {αk+1, . . . , αn}) is contained in F . Now we need to show that
these vectors are a�nely independent.

Consider matrix M = [e1, . . . , ek, αk+1, . . . , αn] and observe that M is an upper trian-
gular matrix. Therefore, all of its columns are linearly independent vectors. Since M has
n columns, dim(F ) = n− 1.

Polyhedral studies of combinatorial optimization problems led to major achievements
in the area. The strong inequalities derived for the travelling salesman problem moti-
vated a very e�cient branch-and-cut algorithm. This algorithm solved instances with
around dozens of thousands of vertices [3], while before using polyhedral techniques, the
algorithms were able to solve only up to 120 vertices. Although more convoluted, the
polyhedral study we conduct on Section 5.4 uses arguments that are similar to the ones
presented in this section.
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Chapter 3

Known Results

Problems regarding the partition of vertex-weighted graphs into connected subgraphs with
similar weights have been largely investigated in the literature since the early eighties.
Such partitions are generally called balanced, and several di�erent functions have been
considered to measure this feature; such as minimize the weight of the heaviest class, or
minimize the maximum di�erence of weights between the classes. The balanced connected
k-partition problem, which is the focus here, is one of those problems. It is closely
related to another problem, referred to as min-max BCPk, whose objective function is
to minimize the weight of the heaviest class. When k = 2, for any instance, an optimal
2-partition for BCPk is also an optimal solution for min-max BCPk. However, when
k > 2 the corresponding optimal connected k-partitions may di�er (Figure 3.1).

3.1 Hardness and Approximation

The unweighted BCPk (to be denoted by 1-BCPk) is the restricted version of BCPk in
which all the vertices have unit weight. This restricted problem is NP-hard on bipartite
graphs for every �xed k ≥ 2, as proven by Dyer and Frieze [15]. Chlebíková [12] showed
that 1-BCP2 is NP-hard to approximate within an absolute error guarantee of n1−ε, for
all ε > 0, where n = |V |. For the weighted case, Becker, Lari, Lucertini and Simeone [6]
proved that BCP2 is already NP-hard on (nontrivial) grid graphs. Chataigner, Salgado,
and Wakabayashi [10] showed that, for each k ≥ 2, BCPk is NP-hard in the strong sense,
even on k-connected graphs, and therefore does not admit an FPTAS, unless P = NP.
Wu [49] observed that BCPk is NP-hard on interval graphs for any �xed k ≥ 2.

Before we proceed with the approximation results for BCPk and its variants, we �rst
need to establish the used notation. Consider an algorithm A for an optimization problem

v1
3

v2
50

v3
10

v4
10

v5
10

Figure 3.1: Example adapted from Lucertini, Perl, and Simeone [31]. For k = 3, note
that {{v1}, {v2}, {v3, v4, v5}} is an optimal solution for min-max BCPk but it is not for
BCPk.
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and let I be a feasible instance of such a problem. We denote by A(I) the cost of the
solution returned by A on the instance I. Moreover, we use opt(I) to refer to the cost
of an optimal solution for the instance I. Let α ≥ 1, the algorithm A is said to be
an α-approximation for a minimization problem if, for any feasible instance I, it holds
that A(I) ≤ α opt(I). Similarly, A is an α-approximation for a maximization problem
if A(I) ≥ 1

α
opt(I), for every feasible instance I.

Chlebíková [12] designed a 4/3-approximation algorithm for BCP2. For BCP3 (resp.
BCP4) on 3-connected (resp. 4-connected) graphs, algorithms with approximation ra-
tio 2 were proposed by Chataigner et al. [10]. The case k = 3 on general graphs was
recently investigated by Chen, Chen, Chen, Lin, Liu, and Zhang [11]. They presented
a 5/3-approximation for BCP3 and a 3/2-approximation for min-max BCP3. Wu [49]
designed a fully polynomial-time approximation scheme (FPTAS) for BCP2 on interval
graphs. When k is part of the input, Borndörfer, Elijazyfer and Schwartz [9] designed
∆-approximation algorithms for both max-min and min-max versions of the balanced
connected partition problem, where ∆ is the maximum degree of an arbitrary spanning
tree of the input graph G. Speci�cally for the max-min version, their ∆-approximation
only holds for instances in which the largest weight is at most w(G)/(∆ k).

Both BCPk and min-max BCPk can be solved in linear time on trees as shown by
Frederickson [18]. One may easily check that 1-BCP2 on 2-connected graphs can be
solved in polynomial time. This problem also admits polynomial-time algorithms on
graphs such that each block has at most two articulation vertices [1, 12]. In special,
when the input graph is k-connected, polynomial-time algorithms and other interesting
structural results have been obtained for BCPk by Ma and Ma [32], Györi [24], and
Lovász [29]. Many other results on the mentioned problems and variants have appeared
in the literature [2, 41, 44,46].

Mixed integer linear programming formulations for BCP2 were proposed by Mati¢ [37]
and for min-max BCPk by Zhou, Wang, Ding, Hu, and Shang [50]. Mati¢ also pre-
sented a VNS-based heuristic for BCP2, and Zhou et al. devised a genetic algorithm
for min-max BCPk. Both works reported on the computational results obtained with
the proposed formulations and heuristics, but presented no polyhedral study.

3.2 A note on Minimum Spanning Trees

Mati¢ and Zhou et al. formulations use �ows to guarantee that each class is connected.
Such an idea is very common in the literature and can be easily described in the context
of the minimum spanning tree (MST) problem. In a sense, BCPk and MST's are loosely
related, since checking if a subgraph is connected is equivalent to checking if the subgraph
contains a spanning tree. For any V ′ ⊆ V , G[V ′] is connected if and only if there is a tree
T ⊆ G[V ′] such that T spans the set of vertices V ′. Therefore, for any solution {Vi}i∈[k]

for BCPk, there is a corresponding forest {Ti}i∈[k], such that Ti spans Vi.
The forthcoming formulations come from the excellent chapter written by Magnanti

and Wolsey [33]. Recall that a spanning tree of G is a subgraph that is a tree and spans
all the vertices in G. Given a connected graph G = (V,E) with weights on the edges
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given by a function w : E 7→ Q≥, the minimum spanning tree problem asks for a spanning
tree T such that w(T ) =

∑
e∈E(T ) w(e) is minimum.

When formulating problems that aim to �nd a tree, we usually have a binary vari-
able xe, for each edge e ∈ E, that indicates if the edge belongs to the tree. Thus, it
is important to consider how to guarantee that the graph induced by the x variables is
connected. In this section, we present two formulations that handle this requirement in
di�erent ways. The �rst model is more natural, but needs a large number of inequalities;
while the second formulation is compact, but introduces new �ow variables.

Below is an ILP formulation with a possibly exponential number of constraints. To
simplify, for any set of edges E ′ ⊆ E, we use the notation x(E ′) =

∑
e∈E′ xe.

min
∑
e∈E

w(e) xe

s.t. x(E) = n− 1, (3.1)

x(δ(S)) ≥ 1 ∀S ⊂ V, S 6= ∅, (3.2)

xe ∈ {0, 1} ∀e ∈ E. (3.3)

Constraint (3.1) implies that exactly n − 1 edges are going to be chosen. Inequal-
ities (3.2) guarantee that the graph induced by the x variables is connected. Overall,
the formulation above is very simple, it just states that a spanning tree is a connected
subgraph with n− 1 edges.

Another way of ensuring a solution is connected is to choose a vertex s ∈ V to be
a source, and send �ow from s to every other vertex in the graph. Since the �ow has a
direction � for any edge {u, v}, it either goes from u to v or from v to u � we create a
digraphD from the original graphG. The set of vertices ofD is the same asG, and for each
edge in G, we add two anti-parallel arcs to D; that is, A(D) = {(u, v), (v, u) : {u, v} ∈ E}.

An arc (u, v) ∈ A(D) will be allowed to have �ow passing through it only if the
correspondent edge e = {u, v} ∈ E was chosen by the xe variable. Moreover, each vertex
in V \ {s} will not produce any �ow and consume exactly one unit of it. Thus, every
vertex must be connected to s, and thereby, the subgraph induced by the x variables must
be connected. Henceforth, we refer to an arc (u, v) simply as uv; and we denote by f(A′)

the sum of variables
∑

a∈A′ fa, where A
′ ⊆ A(D).

min
∑
e∈E

w(e) xe

s.t. x(E) = n− 1, (3.1)

f(δ+(s))− f(δ−(s)) = n− 1, (3.4)

f(δ−(v))− f(δ+(v)) = 1 ∀v ∈ V \ {s}, (3.5)

fuv ≤ (n− 1)xe ∀e = {u, v} ∈ E, (3.6)

fvu ≤ (n− 1)xe ∀e = {u, v} ∈ E, (3.7)

fa ≥ 0 ∀a ∈ A(D), (3.8)

xe ∈ {0, 1} ∀e ∈ E. (3.9)
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Constraint (3.1) is the same as in the previous model. Equality (3.4) guarantees that
the source outputs n−1 units of �ow. Constraints (3.5) ensure that each vertex consumes
exactly one unit of �ow. Finally, inequalities (3.6) and (3.7) imply that a positive �ow
will pass only through arcs that were selected by the correspondent x variables. This
formulation has a polynomial number of constraints, but it also introduces new variables.

Although both of the formulations presented correctly �nd an MST; the polytope
associated with their linear relaxations can be quite larger than the convex hull of incidence
vectors of spanning trees. Magnanti and Wolsey [33] present further ideas to strengthen
these formulations. To avoid deviating from the main topic of this thesis, we refer the
reader to their work for more details.

3.3 MILP formulations

We now present the formulations of Mati¢ [37] and Zhou et al. [50]. These models are all
based on the idea of using additional �ow variables to guarantee the connectedness of the
classes. To the best of our knowledge, these are the only formulations in the literature
for variants of the BCPk problem. For presentation purposes, we de�ne ri as being the
root (or representative) of class Vi.

Formulation of Mati¢

The formulation proposed by Mati¢ was designed for min-max BCP2, which, as we stated
earlier, is equivalent to BCP2. The model construct a directed graphDM from the original
graph G in the following (non-standard) way:

(i). V (DM) = V ∪ {s}, where s is a vertex that represents a source;

(ii). A(DM) = {(u, v) : {u, v} ∈ E} ∪ {(s, v) : v ∈ V }, note that we arbitrarily �xed an
orientation for each edge in the original graph.

Due to how we are �xing the orientation of the arcs in the digraph DM , when talking
about Mati¢ formulation, we speak of trees � ignoring the direction of the arcs � instead
of arborescences. Let Ti be a tree that spans Vi, for i ∈ {1, 2}. Let T ′i = Ti ∪ (s, ri). The
formulation variables are as follows:

� xv: if xv = 1, vertex v belongs to V1, otherwise, v ∈ V2,

� ya: indicates if a ∈ A(T ′1),

� za: indicates if a ∈ A(T ′2),

� fa: indicates the �ow on arc a, if the �ow is negative, it is going contrary to the arc
direction.

For any vertex v ∈ V (DM), the �ow variables should obey the following equations

∑
a∈δ+(v)

fa =

n, v = s,(∑
a∈δ−(v) fa

)
− 1, otherwise,

(3.10)
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which is very similar to how we used the �ow variables for obtaining spanning trees. A
source vertex outputs enough �ow for every other vertex, and each vertex that is not
a source consumes one unit of it. The following is the formulation proposed by Mati¢.
Again, for A′ ⊆ A(DM), we use shorthand notations of the type f(A′) =

∑
a∈A′ fa. This

notation is also used for the summation of y and z variables.

min − w(G) + 2
∑
v∈V

w(v) xv

s.t. 2
∑
v∈V

w(v) xv ≥ w(G), (3.11)

2yuv ≤ xu + xv ∀(u, v) ∈ A(DM)\δ+(s), (3.12)

2zuv ≤ 2− xu − xv ∀(u, v) ∈ A(DM)\δ+(s), (3.13)

ysv ≤ xv ∀(s, v) ∈ δ+(s), (3.14)

zsv ≤ 1− xv ∀(s, v) ∈ δ+(s), (3.15)

fa ≤ nya + nza ∀a ∈ A(DM), (3.16)

fa ≥ −nya − nza ∀a ∈ A(DM), (3.17)

f(δ−(v))− f(δ+(v)) = 1 ∀v ∈ V, (3.18)

f(δ+(s)) = n, (3.19)

y(A(DM) \ δ+(s)) + z(A(DM) \ δ+(s)) = n− 2, (3.20)

y(δ+(s)) + z(δ+(s)) = 2, (3.21)

xv,∈ {0, 1} ∀v ∈ V, (3.22)

ya, za ∈ {0, 1} ∀a ∈ A(DM), (3.23)

fa ∈ R ∀a ∈ A(DM). (3.24)

Constraint (3.11) guarantees that V1 is the heaviest class. Constraints (3.12) indicate
that if a = (u, v) ∈ A(T ′1), then vertices u and v are in V1; similarly, constraints (3.13)
indicate that if a = (u, v) ∈ A(T ′2), then u and v are not in V1, and thus, u, v ∈ V2.
Constraints (3.14) indicate that if an arc (s, v) ∈ A(T ′1), then v ∈ V1; and constraints
(3.15) similarly do the same when v ∈ V2. Inequalities (3.16) and (3.17) attribute upper
and lower bounds for the �ow that passes through an arc a ∈ A(DM), in other words,
if a ∈ T ′1 or a ∈ T ′2, then fa ∈ [−n, n]; otherwise, fa = 0. Constraints (3.18) and (3.19)
attribute the �ow according to the equations (3.10). Inequality (3.20) indicates that the
total number of arcs in the graph T1∪T2 must be n−2. Finally, constraints (3.21) impose
that exactly 2 arcs that outgoes s must be selected.

Let m = |E| and n = |V |, the formulation proposed by Mati¢ has 2m + 3n binary
variables, m + n real variables and 4m + 5n + 4 constraints. In his paper [37], Mati¢
reports that, with a time limit of 2 hours, this formulation could only �nd provably
optimal solutions in graphs with up to 70 vertices.



33

Formulation of Zhou et al.

The formulation proposed by Zhou et al. [51] solvesmin-max BCPk with k ≥ 2. Although
not explicitly stated in their paper, this formulation is also based on a digraph DZ de�ned
over the input graph G = (V,E); with the di�erence that it creates two anti-parallel arcs
for each edge in E (the standard way). Formally,

(i). V (DZ) = V ∪ {s}, where s is a vertex that represents a source,

(ii). A(DZ) = {(u, v), (v, u) : {u, v} ∈ E} ∪ {(s, v) : v ∈ V }.

The following variables are used by the model:

� xv,i: indicates if vertex v ∈ Vi,

� rv,i: indicates if v = ri,

� yuv,i: if (u, v) ∈ A(DZ) \ δ+(s), this variable indicates if u, v ∈ Vi, otherwise, it
indicates if v ∈ Vi,

� fa: indicates the �ow on arc a, its value is not allowed to be negative.

Below is the formulation for min-max BCPk proposed by Zhou et al.

min t

s.t. t ≥
∑

v∈V (G)

w(v) xv,i ∀i ∈ [k], (3.25)

k∑
i=1

xv,i = 1 ∀v ∈ V, (3.26)

rv,i ≤ xv,i ∀v ∈ V, i ∈ [k], (3.27)

n rv,i ≤ (n+ 1−
v∑

u=1

xu,i) ∀v ∈ V, i ∈ [k], (3.28)

f(δ+(s)) = n, (3.29)

f(δ−(v))− f(δ+(v)) = 1 ∀v ∈ V (G), (3.30)

fsv ≤ n
k∑
i=1

rv,i ∀(s, v) ∈ δ+(s), (3.31)

fuv ≤ n

k∑
i=1

yuv,i ∀(u, v) ∈ A(DZ)\δ+(s), (3.32)

yuv,i ≤ xu,i ∀(u, v) ∈ A(DZ)\δ+(s), i ∈ [k], (3.33)

yuv,i ≤ xv,i ∀(u, v) ∈ A(DZ)\δ+(s), i ∈ [k], (3.34)

yuv,i ≥ xu,i + xv,i − 1 ∀(u, v) ∈ A(DZ)\δ+(s), i ∈ [k], (3.35)

xv,i, rv,i ∈ {0, 1} ∀v ∈ V, i ∈ [k], (3.36)

ya,i ∈ {0, 1} ∀a ∈ A(DZ)\δ+(s), i ∈ [k], (3.37)

fa ∈ R≥ ∀a ∈ A(DZ), (3.38)

t ∈ R≥. (3.39)
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Just as in Mati¢ formulation, the source s sends n units of �ow, and each vertex in
V consume one unit. Furthermore, we assume the set of vertices in V are labeled from 1

to n.
Constraints (3.25) force the objective function to minimize the weight of the heaviest

class. Constraint (3.26) means that each vertex must belong to exactly one class. For
each class i ∈ [k] and vertex v ∈ V , inequalities (3.27) indicate that vertex v can be the
root ri for class i only if v belongs to Vi. Furthermore, constraints (3.28) imply that ri is
the vertex in Vi with minimum label. Constraints (3.29) force the source s to output n
units of �ow, while constraints (3.30) impose that each vertex v ∈ V consumes one unit
of �ow. For every arc (s, v) ∈ δ+(s), inequalities (3.31) say that the �ow fsv can only be
non-zero if v = ri. Similarly, for every arc a = (u, v) /∈ δ+(s), constraints (3.32) state
that fa > 0 implies that u and v belong to the same class. Finally, constraints (3.33),
(3.34) and (3.35) tie together the x variables with the y variables.

This model has 2nk + 2mk binary variables, 1 + 2m + n real variables and O(mk)

constraints. Computational results by Zhou et al. show that this formulation is consider-
ably faster than the one proposed by Mati¢, and it was able to solve instances for BCP2

with up to 170 vertices within the time limit of 2 hours. Moreover, when k > 2, they
conducted experiments only in a single graph with 70 vertices. In one hour, they were
able to solve this single instance for k = 2, 3, 4, 5, but failed when k = 6.
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Chapter 4

Flow Formulations

Building on the concept of using �ow variables for obtaining k disjoint trees, we designed
two mixed integer linear programming formulations for BCPk. Let (G,w) be an input
for BCPk, we denote these formulations by Fk(G,w) and F̄k(G,w). Sometimes, we refer
to them simply by F and F̄ , respectively.

4.1 Flow Formulation

In order to de�ne formulation Fk(G,w) we construct a digraph DF from the input
graph G = (V,E) as follows. First, we add to G a set of k new vertices S = {s1, . . . , sk}.
Each vertex in S represents a source of �ow. Second, we replace every edge of G with
two anti-parallel arcs. Finally, we add an arc from each source to each vertex in V (see
Figure 4.1(a)). More formally, the vertex set of DF is V (DF) = V ∪ S and its arc set is

A(DF) = {(u, v), (v, u) : {u, v} ∈ E} ∪ {(si, v) : i ∈ [k], v ∈ V }.

Let {
−→
Ti}i∈[k] be a set of arborescences such that {V (

−→
Ti)}i∈[k] is a connected k-partition

of G. We are now ready to present the formulation variables:

� ya: indicates if an arc a ∈ A(D) belongs to A(
−→
Ti) ∪ {(si, ri)}, for some i ∈ [k];

� fa: represents the �ow on arc a, each vertex v will consume w(v) units of �ow.

The corresponding formulation is shown below.

Fk(G,w) max f(δ+(s1))

s.t. f(δ+(si)) ≤ f(δ+(si+1)) ∀i ∈ [k − 1], (4.1)

f(δ−(v))− f(δ+(v)) = w(v) ∀v ∈ V, (4.2)

fa ≤ w(G)ya ∀a ∈ A(DF), (4.3)

y(δ+(si)) ≤ 1 ∀i ∈ [k], (4.4)

y(δ−(v)) ≤ 1 ∀v ∈ V, (4.5)

ya ∈ {0, 1} ∀a ∈ A(DF), (4.6)

fa ∈ R≥ ∀a ∈ A(DF). (4.7)
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Constraints (4.2) imply that each vertex v ∈ V consumes w(v) �ow units. Inequali-
ties (4.3) impose that a strictly positive �ow can only pass through an arc that was selected
by the y variables. By constraints (4.4), at most one arc leaving a source transports pos-
itive �ow. Inequalities (4.5) require that every non-source vertex receives a positive �ow
from at most one vertex of DF . Lastly, inequalities (4.1) impose that the �ows sent by
the sources are in a non-decreasing order. This explains the objective function.

1

1

2

3

1 3

4 2

s1 s2

(a) The digraph DF obtained from the graph G shown
in Figure 1.1. Vertices s1 and s2 dominates all vertices
in the dashed circle. The numbers inside the vertices
are the weights.

1

1

2

3

1 3

4 2

s1 s2
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9
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(b) A feasible solution: the arcs represent non-
zero y-variables, and the �ow in each of them
is indicated on their side.

Figure 4.1: Digraph DF and a feasile solution for formulation F2.

Since the �ow sent by a source needs to be totally consumed, it follows that the
�ow sent through an arc (si, ri) corresponds exactly to the weight of the i-th class (see
Figure 4.1(b)).

In a feasible solution, vertices with weight zero may not receive any �ow, and thus
they may not belong to any of the k arborescences. If this happens, each such a vertex
can be added to one of the classes found by the formulation (including �rst those at
distance 1 to one of the classes, then the remaining ones with the same procedure w.r.t.
the connected classes that are obtained). This inclusion leads to a solution that de�nes
a connected k-partition as desired, without increasing the weight of each class. It follows
from these remarks that a solution obtained with formulation Fk(G,w) leads to a solution
of BCPk.

The proposed formulation Fk(G,w) has a total of 2nk + 4m variables (half of them
binary), and only O(n + m + k) constraints, where n = |V | and m = |E|. The possible
drawbacks of this formulation are the large number of symmetric solutions and the de-
pendency of inequalities (4.3) on the weights assigned to the vertices. To overcome such
disadvantages, we propose in the next section another model based on multicommodity
�ows; it considers a total order of the vertices to avoid symmetries and uncouple the
weights assigned to the vertices from the �ow circulating in the digraph.
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4.2 Asymmetric Flow Formulation

Our second formulation for BCPk, denoted by F̄k(G,w), is also based on a digraph, which
we denote by DF̄ . This digraph has vertex set V (DF̄) = V ∪ {s} and arc set

A(DF̄) = {(u, v), (v, u) : {u, v} ∈ E} ∪ {(s, v) : v ∈ V }.

As we mentioned, we assume there is a total ordering � de�ned on the vertices of G.
In this formulation, we consider �ows of type i corresponding to the classes i ∈ [k]

that they will de�ne. For each a ∈ A(DF̄) and i ∈ [k], we create a real variable fa,i that
corresponds to the amount of �ow of type i that passes through arc a. Furthermore, we
use binary variables ya,i to indicate if arc a ∈ A(DF̄) belongs to A(

−→
Ti) ∪ {(s, ri)}. The

�ow variable fa,i can only assume positive values if ya,i = 1. The root ri will receive |Vi|
units of �ow and each vertex in V will consume a single unit of �ow. The ordering of the
vertices imposes that, among the vertices of each arborescence, the root is the smallest
one (this helps breaking symmetries).

For simplicity, for any A′ ⊆ A(DF̄) and integer i ∈ [k], we use the short nota-
tion y(A′, i) to replace the sum

∑
a∈A′ ya,i. We use similar notation for the summation of

�ow variables.

F̄k(G,w) max
∑

v∈V (DF′ )

w(v) y(δ−(v), 1)

s.t.
∑
v∈V

w(v) y(δ−(v), i) ≤
∑
v∈V

w(v) y(δ−(v), i+ 1) ∀i ∈ [k − 1], (4.8)

y(δ+(s), i) ≤ 1 ∀i ∈ [k], (4.9)∑
i∈[k]

y(δ−(v), i) ≤ 1 ∀v ∈ V, (4.10)

ysv,i + y(δ−(u), i) ≤ 1 ∀u, v ∈ V, v � u, i ∈ [k], (4.11)

fa,i ≤ n ya,i ∀a ∈ A(D), i ∈ [k], (4.12)

f(δ+(v), i) ≤ f(δ−(v), i) ∀v ∈ V, i ∈ [k], (4.13)∑
i∈[k]

f(δ−(v), i)−
∑
i∈[k]

f(δ+(v), i) = 1 ∀v ∈ V, (4.14)

ya,i ∈ {0, 1} ∀a ∈ A(D), i ∈ [k], (4.15)

fa,i ∈ R≥ ∀a ∈ A(D), i ∈ [k]. (4.16)

To show that the above formulation indeed models BCPk correctly, let us consider
the following polytope.

Qk(G,w) = conv({(y, f) ∈ B(n+2m)k × R(n+2m)k : (y, f) satis�es ineq. (4.8)− (4.16)}).

Let V = {Vi}i∈[k] be a connected k-subpartition of G such that w(Vi) ≤ w(Vi+1) for

all i ∈ [k − 1]. Then, for each integer i ∈ [k], there exists in DF̄ an arborescence
−→
Ti
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rooted at ri such that V (
−→
Ti) = Vi and v � ri for all v ∈ Vi \ {ri}. Now, let gi be the

function gi : A(
−→
Ti) ∪ {(s, ri)} → R≥ de�ned as follows:

gi((u, v)) =

{
1, if v is a leaf of

−→
Ti ,

1 +
∑

(v,z)∈A(
−→
Ti)
gi((v, z)), otherwise.

It follows from this de�nition that gi((s, ri)) = |Vi|.
We now de�ne vectors ρ(V) ∈ B(n+2m)k and τ(V) ∈ R(n+2m)k such that, for every arc

a ∈ A(DF̄) and i ∈ [k], we have

ρ(V)a,i =

{
1, if a ∈ A(

−→
Ti) ∪ {(s, ri)},

0, otherwise,
τ(V)a,i =

{
gi(a), if a ∈ A(

−→
Ti) ∪ {(s, ri)},

0, otherwise.

We are now ready to prove the claimed statement on Qk(G,w).

Proposition 4.2.1 The polytope Qk(G,w) is precisely the polytope

conv({(ρ(V), τ(V)) ∈ B(n+2m)k × R(n+2m)k : V is a connected k-partition of G}).

Proof. Let (y, f) be an extreme point of Qk(G,w). For every i ∈ [k], de�ne the set
Ui = {v ∈ V : y(δ−(v), i) = 1}. It follows from inequalities (4.10) that, for every vertex
v ∈ V , at most one of the arcs entering it is chosen. Observe that inequalities (4.12)
force that a �ow of type i can only pass through an arc of type i if this arc is chosen.
Hence, every vertex receives at most one type of �ow from its in-neighbors. Furthermore,
inequalities (4.13) and (4.14) guarantee that the �ow that enters a vertex and leaves
it are of the same type, and that each vertex consumes exactly one unit of such �ow.
Inequalities (4.9) imply that all �ow of a given type passes through at most one arc that
has a tail at the source s. Therefore, we have that {Ui}i∈[k] is a connected k-partition
of G.

To prove the converse, let V = {Vi}i∈[k] be a connected k-partition of G. We assume
without loss of generality that w(Vi) ≤ w(Vi+1) for all i ∈ [k − 1]. Let (y, f) be a vector
such that y = ρ(V) and f = τ(V). For each i ∈ [k], every vertex in

−→
Ti has in-degree

at most one, and ri is the smallest vertex in V (
−→
Ti) with respect to the order �. Thus,

inequalities (4.10) and (4.11) hold for (y, f). From the de�nition of ρ(V), the entry of y
indexed by (s, ri) and i equals one, for all i ∈ [k]. Consequently, (y, f) also satis�es
inequalities (4.9). Recall that gi((s, ri)) = |Vi| for every i ∈ [k]. This clearly implies that
inequalities (4.12) are satis�ed by (y, f).

Note that, for every i ∈ [k], the function gi assigns to each arc (u, v) ∈ A(
−→
Ti)∪{(s, ri)}

the value one plus the sum of the sizes of the sub-arborescences of
−→
Ti rooted at the

out-neighbors of v in
−→
Ti . Hence, inequalities (4.13) and (4.14) hold for (y, f). Finally,

inequalities (4.8) are satis�ed, as we assumed that the elements of partition V are in a
non-decreasing order of weights. Therefore, we conclude that (y, f) belongs to Qk(G,w).
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4.3 Relaxed formulations

Formulations F and F̄ order the classes of a solution by their weights and then the
objective function maximizes the weight of the �rst class. Quite trivially, we can create
similar formulations F ′ and F̄ ′ in a way that they do not impose such an ordering. In
these new formulations, we change the objective function to maximize a variable z ≥ 0.
For F ′ we remove constraints (4.1) and add constraints z ≤ f(δ+(si)), for every i ∈ [k].
Similarly, we construct formulation F̄ ′ by removing inequalities (4.8) and adding the
inequalities z ≤

∑
v∈V w(v) y(δ−(v), i), for i ∈ [k].

These modi�cations are clearly valid; however these new z-versions of the formulations
may have a signi�cant amount of symmetric solutions. For example, take any connected k-
partition {Vi}i∈[k] induced by a solution for F , we could easily create an �equivalent�
solution {V ′i }i∈[k] simply by relabeling the classes, that is, by assigning V ′i = Vj, i 6= j,
such that {Vi}i∈[k] = {V ′i }i∈[k]. Thus, each feasible solution for F have k! symmetric
feasible solutions in F ′.

Avoiding symmetries reduces the space of feasible solutions without compromising the
correctness of the formulation. Therefore, it is a very common practice among the integer
linear programming community. However, a formulation with fewer symmetries will not
always have a better practical performance. In fact, on some classes of instances, such a
phenomenon was observed in our computational experiments (see Chapter 6).
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Chapter 5

Cut Formulation

In this Chapter, we introduce a cut-based ILP formulation for BCPk. This Cut formula-
tion � denoted by Ck(G,w), or simply C � is de�ned directly on the input graph and it
has a large number of inequalities. We derive valid inequalities, design polynomial-time
separation routines and implement a branch-and-cut algorithm. Furthermore, we conduct
a polyhedral study based on this Cut formulation.

5.1 De�nitions and valid inequalities

Let (G,w) be an input forBCPk, the ILP formulation we propose forBCPk, called Ck(G,w),
is based on the following central concept. Let u and v be two non-adjacent vertices in
a graph G. We say that a set S ⊆ V \ {u, v} is a (u, v)-separator if u and v belong
to di�erent components of G − S. We denote by Γ(u, v) the collection of all minimal
(u, v)-separators in G.

In the formulation, we use a binary variable xv,i, for every v ∈ V and i ∈ [k], that is
set to one if and only if v belongs to the i-th class.

Ck(G,w) max
∑
v∈V

w(v) xv,1

s.t.
∑
v∈V

w(v) xv,i ≤
∑
v∈V

w(v) xv,i+1 ∀i ∈ [k − 1], (5.1)∑
i∈[k]

xv,i ≤ 1 ∀v ∈ V, (5.2)

xu,i + xv,i −
∑
z∈S

xz,i ≤ 1 ∀uv /∈ E, S ∈ Γ(u, v), i ∈ [k], (5.3)

xv,i ∈ {0, 1} ∀v ∈ V and i ∈ [k]. (5.4)

Inequalities (5.1) impose a non-decreasing weight ordering of the classes. Inequali-
ties (5.2) require that every vertex is assigned to at most one class. Inequalities (5.3)
guarantee that every class induces a connected subgraph (see Figure 5.1). The objective
function maximizes the weight of the �rst class. Observe that, just like we did for the �ow
based formulations, we could easily create a formulation C ′ that do not require ordering
the classes by their weights. More details on this formulation in Section 5.4.2.
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SG

u v

Figure 5.1: Illustration for a (u, v)-separator S. The dotted line represents a (u, v)-path.

In Section 5.2 we show that the separation problem for inequalities (5.3) can be solved
in polynomial time. Thus, in view of the equivalence of separation and optimization
problems [22], the linear relaxation of C can be solved in polynomial time.

Since feasible solutions of formulation Ck(G,w) may have empty classes and nodes
not assigned to any class, to refer to these solutions we introduce the following concept.
We say that V = {Vi}ki=1 is a connected k-subpartition of G, if it is a connected k-
partition of a subgraph (not necessarily proper) of G, and additionally, w(Vi) ≤ w(Vi+1)

for all i ∈ [k − 1]. For such a connected k-subpartition V , we denote by ξ(V) ∈ Bnk

the binary vector such that its non-null entries are precisely ξ(V)v,i = 1 for all i ∈ [k]

and v ∈ Vi (that is, ξ(V) denotes the incidence vector of V). To show our next results,
let us de�ne the polytope

Pk(G,w) = conv({x ∈ Bnk : x satis�es inequalities (5.1)− (5.3) of Ck(G,w)}).

We �rst prove that formulation Ck(G,w) correctly models BCPk. Then, we present classes
of valid inequalities that strengthen the formulation.

Proposition 5.1.1

Pk(G,w) = conv({ξ(V) ∈ Bnk : V is a connected k-subpartition of G}).

Proof. Consider �rst an extreme point x ∈ Pk(G,w). For each i ∈ [k], we de�ne the
set of vertices Ui = {v ∈ V : xv,i = 1}. It follows from inequalities (5.1) and (5.2)
that U := {Ui}ki=1 is a k-partition of a subgraph of G such that w(Ui) ≤ w(Ui+1) for
all i ∈ [k− 1]. To prove that U is a connected k-subpartition, we suppose to the contrary
that there exists i ∈ [k] such that G[Ui] is not connected. Hence, there exist vertices u
and v belonging to two di�erent components of G[Ui]. Moreover, there is a minimal set
of vertices S that separates u and v and such that S ∩ Ui = ∅. Thus, vector x violates
inequalities (5.3), a contradiction.

To show the converse, consider now a connected k-subpartition V = {Vi}ki=1 of G.
Clearly ξ(V), satis�es inequalities (5.1) and (5.2). Take a �xed i ∈ [k]. For every pair u,v
of non-adjacent vertices in Vi, and every (u, v)-separator S in G, it holds that S ∩ Vi 6= ∅,
because G[Vi] is connected. Therefore, ξ(V) satis�es inequalities (5.3).

Before showing the next results, we state the claim below.
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Claim 5.1.2 The inequalities∑
v∈V

w(v) xv,j ≤
w(G)

(k − j + 1)
∀j ∈ [k], (5.5)

are valid for Pk(G,w).

Proof. Because of the weight ordering imposed by inequality (5.1), the following inequal-
ities are valid for any j ∈ [k] (Figure 5.2):

(k − j + 1)
∑
v∈V

w(v) xv,j ≤
∑

i∈[k]\[j−1]

∑
v∈V

w(v) xv,i ≤ w(G).

. . .

Vj Vj+1 Vk

w(Vj)

Figure 5.2: Illustration for claim 5.1.2. Each bar has unit width and a height that
corresponds to the weight of a class. The claim follows from computing the dashed area.

Because of the structure of inequalities (5.5), we can take advantage of the extensive
work regarding strong inequalities for the 0-1 knapsack polytope. We elaborate more on
this matter in Section 5.3.1. In addition, this derived upper bound can also be used to
perform a lifting of inequalities (5.3).

Proposition 5.1.3 Let u and v be two non-adjacent vertices of G, and let S be a minimal

(u, v)-separator. Let i ∈ [k], and let L = {z ∈ S : w(Pz) > w(G)/(k − i + 1)}, where Pz
is a minimum-weight path between u and v in G that contains z. The following inequality

is valid for Pk(G,w):

xu,i + xv,i −
∑
z∈S\L

xz,i ≤ 1. (5.6)

Proof. Consider an extreme point x of Pk(G,w), and de�ne Vi = {v ∈ V : xv,i = 1} for
each i ∈ [k]. Since inequalities (5.5) are valid, if u and v belong to Vi, then there exists a
vertex z ∈ S \ L such that z also belongs to Vi. Therefore, x satis�es inequality (5.6).

While the result above shows a class of inequalities that dominates the inequali-
ties (5.3), the next class is of a di�erent nature. It was inspired by a result proposed
by de Aragão and Uchoa [13] for a connected assignment problem.

Proposition 5.1.4 Let q ≥ 2 be a �xed integer, and let S be a subset of vertices of G

containing q distinct pairs of vertices {si, ti}, i ∈ [q], all mutually disjoint. Let N(S) be

the set of neighbors of S in V \S. Moreover, let σ : [q]→ [k] be an injective function, and
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let I = {σ(i) : i ∈ [q]}. If there is no collection of q vertex-disjoint (si, ti)-paths in G[S],

then the following inequality is valid for Pk(G,w):∑
i∈[q]

(
xsi,σ(i) + xti,σ(i)

)
+
∑

v∈N(S)

∑
i∈[k]\I

xv,i ≤ 2q + |N(S)| − 1. (5.7)

Proof. Suppose to the contrary that there exists an extreme point x of Pk(G,w) that vio-
lates inequality (5.7). De�ne A =

∑
i∈[q]

(
xsi,σ(i) + xti,σ(i)

)
and B =

∑
v∈N(S)

∑
i∈[k]\I xv,i.

From inequalities (5.2), we have that A ≤ 2q. Since x violates (5.7), it follows that
B > |N(S)| − 1. Thus, since x satis�es inequalities (5.2), it follows that B = |N(S)|.
Hence, every vertex in N(S) belongs to a class that is di�erent from those indexed by I.
This implies that every class indexed by I contains precisely one of the q distinct pairs
{si, ti}. Therefore, there exists a collection of q vertex-disjoint (si, ti)-paths in G[S], a
contradiction (see Figure 5.3).

s1 t1

s2

t2

S N(S)

Figure 5.3: Illustration for Proposition 5.1.4 when q = 2. Assume s1 and t1 belong to
class V1. Since there is no (s2, t2)-path disjoint from a (s1, t1)-path in G[S], s2 and t2
belong to V2 only if N(S) ∩ V2 6= ∅.

Kawarabayashi et al. [27] proved that, given an n-vertex graph G and a set of q pairs
of terminals in G, the problem of deciding whether G contains q vertex-disjoint paths
linking the given pairs of terminals can be solved in time O(n2), for a �xed value of q.
Hence, inequalities (5.7) can be separated in polynomial time when S = V .

5.2 Separation routines

We implemented a branch-and-cut approach based on the Cut formulation Ck(G,w). In
this section, we describe the separation routines for inequalities (5.3) and (5.7) that are
embedded in this algorithm. We report on the computational results obtained with this
solving method in Chapter 6.

5.2.1 Connectivity inequalities

Let us focus �rst on the class of inequalities (5.3), henceforth called connectivity inequali-

ties. We address here its corresponding separation problem: given a vector x̃ ∈ Rnk, �nd
connectivity inequalities that are violated by x̃ or prove that this vector satis�es all such
inequalities.
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We address this problem with a construction that is similar to the one used for proving
the directed version of Menger's theorem. Given the input graph G = (V,E), for each
i ∈ [k], we de�ne a digraph Di with capacities ci : A(Di)→ Q≥∪{∞} assigned to its arcs,
in the following manner. We set V (Di) = {v1, v2 : v ∈ V } and A(Di) = A1 ∪ A2, where
A1 = {(u2, v1), (v2, u1) : {u, v} ∈ E} and A2 = {(v1, v2) : v ∈ V }. We de�ne ci(a) = x̃v,i
if a = (v1, v2) ∈ A2; and ci(a) = ∞, if a ∈ A1. Note that each arc in Di with a �nite
capacity (i.e. each arc in A2) is associated with a vertex of G. Now, for every pair of
non-adjacent vertices u, v ∈ V such that x̃u,i + x̃v,i > 1, we �nd in Di a minimum (u1, v2)-
separating cut. If the weight of such a cut is smaller than x̃u,i + x̃v,i − 1, then it is �nite
and the vertices of G associated with the arcs in this cut give an (u, v)-separator S in G
that violates the connectivity inequality x̃u,i + x̃v,i −

∑
z∈S x̃z,i ≤ 1 (see Figure 5.4).

u b

c

v

xu,i = 1.0 xb,i = 0.2

xc,i = 0.2

xv,i = 1.0

u1 u2

a

xa,i = 0.2
G S

a1 a2

b1 b2

c1 c2

v1 v2

0.2

0.2

0.2

1.0 1.0

Di S

Figure 5.4: Separation of connectivity inequalities. Observe that the connectivity inequal-
ity xu,i + xv,i − (xa,i + xb,i + xc,i) ≤ 1 is violated in G.

Given an (u, v)-separator S, let Hu (resp. Hv) be the connected component of G− S
containing u (resp. v). We now describe a procedure for performing the lifting of the
connectivity inequalities by removing iteratively unnecessary vertices from S. First, we
remove every vertex z from S such that the neighborhood of z does not intersect with Hu

and Hv (lines 2-4). Since removing a vertex from S changes the components of G − S,
we use a Union-Find data structure to update the components. Next, we use Dijkstra's
algorithm to remove from S the set L, as de�ned in Proposition 5.1.3 (lines 5-9).
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Algorithm 1 Reduce Separator Algorithm
1: procedure ReduceSeparator(G,w, i, u, v, S)
2: for z ∈ S do

3: if N(z) ∩Hv = ∅ or N(z) ∩Hu = ∅ then
4: S ← S \ {z}
5: for z ∈ S do

6: `uz ← ShortestPath(G, u, z)

7: `vz ← ShortestPath(G, v, z)

8: if `uz + `vz − w(z) > w(G)
k−i+1

then

9: S ← S \ {z}
return S

The time complexity to separate the connectivity inequalities depends on the algorithm
used to �nd a minimum cut. We use Goldberg's pre�ow algorithm [20] for maximum �ow,
whose time complexity isO(ñ2

√
m̃), for a digraph with ñ vertices and m̃ arcs. Thus, in the

worst-case, checking for every i ∈ [k], and candidate pairs u,v in Di, the time complexity
of this separation algorithm is O(kn4

√
n+m). Despite the high time complexity, we

note that, in the computational experiments, only a very small portion of the vertices are
fractional. Hence, we can perform arc contractions on all arcs of Di such that both of
its endpoints correspond to vertices associated with variables of integer value. In other
words, an arc (u2, v1) ∈ A1 is contracted if x̃u,i = x̃v,i = 1, and an arc (u1, u2) ∈ A2

is contracted if x̃u,i = 1. After such arc contractions, the graphs usually have a small
number of vertices and arcs, and so the proposed separation algorithm runs quickly in
practice.

5.2.2 Cross inequalities

Now we turn to the separation of inequalities (5.7) on planar graphs G = (V,E), restricted
to the case S = V . Consider a plane embedding of G, and let F be the boundary of a
face with at least 4 distinct vertices and with no repeated vertices. Take four di�erent
vertices, say s1, s2, t1, t2, that appear in a clockwise order in F . Since G is planar, it does
not contain vertex-disjoint paths P1 and P2, with endpoints s1, t1 and s2, t2, respectively.
For S = V , inequalities (5.7) simpli�es to

xs1,σ(1) + xs2,σ(2) + xt1,σ(1) + xt2,σ(2) ≤ 3. (5.8)

We refer to these inequalities as cross inequalities (Figure 5.5 explains the name).
For the separation problem of the cross inequalities induced by the vertices in F , where

|F | = f , we implemented an O(fk2) time complexity algorithm (the same complexity
mentioned by Barboza [5], without much detail; the algorithms are possibly di�erent).
Next, we give more details on this separation algorithm.

Let x̃ ∈ Rnk be a fractional solution of formulation C. Consider a linear ordering
of the vertices in F which is obtained by traversing its vertices in clockwise order from
an arbitrary �xed vertex. For every j ∈ [f ], we denote by F (j) the jth vertex of F in
such an ordering. Furthermore, de�ne matrices L and R such that, for each j ∈ [f ] and
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s1

s2

t1

t2

Figure 5.5: Drawing of the cross inequalities. The dotted lines represent the boundary F
and we drew the graph in a way that the face considered is external. If s1 and t1 belong
to V1, then s2 and t2 cannot belong to V2 (otherwise, there would be crossing edges).

each i ∈ [k],

L(j, i) = max
j′∈[j]

{
x̃F (j′),i

}
and R(j, i) = max

j′∈[f ]\[j−1]

{
x̃F (j′),i

}
.

In other words, L(j, i) (resp. R(j, i)) corresponds to the maximum value in an entry
of x̃ indexed by i and by a vertex that appears before (resp. after) F (j) in the ordering.
Clearly, L and R can be created in O(fk).

For every j ∈ [f ] \ {1}, and every i1, i2 ∈ [k] with i1 6= i2, we de�ne:

L2(j, i1, i2) =

{
x̃F (1),i1 + x̃F (2),i2 , if j = 2,

max
{
L2(j − 1, i1, i2); L(j − 1, i1) + x̃F (j),i2

}
, otherwise.

Note that, given j ≥ 2 and i1, i2 ∈ [k], L2(j, i1, i2) is the maximum value of x̃F [j′],i1 +

x̃F [j′′],i2 for all j′, j′′ ∈ [j] with j′ < j′′. Our algorithm works as follows: for every
j ∈ {3, . . . , f − 1} and every i1, i2 ∈ [k] with i1 6= i2, it checks whether L2(j − 1, i1, i2) +

x̃F (j),i1 + R(j + 1, i2) > 3, that is, whether there is a violated cross inequality (w.r.t. F )
such that σ(1) = i1, σ(2) = i2 and t1 = F (j). Clearly, one may also keep track of the
violated inequalities (if any).

Algorithm 2 Cross inequalities separation algorithm.
1: procedure CrossSeparation(F,L2, R, x̃)
2: for j ∈ [f − 1] \ [2] do

3: for i1 ∈ [k] do

4: for i2 ∈ [k] \ {i1} do
5: if L2(j − 1, i1, i2) + x̃F (j),i1 +R(j + 1, i2) > 3 then

6: return True (found violated cross inequality)
return False

Proposition 5.2.1 Let F , L2, R and x̃ be as de�ned. Then, Algorithm 2 returns true if

and only if there exists a cross inequality with respect to F that is violated by x̃.

Proof. First we show that if there exists a cross inequality that is violated by x̃, Algo-
rithm 2 returns true. Let xs1,σ(1) +xs2,σ(2) +xt1,σ(1) +xt2,σ(2) > 3. Assume, without loss of
generality, that s1, s2, t1, t2 ∈ F are such that (s1, s2, t1, t2) = (F (j1), F (j2), F (j3), F (j4)),
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with 1 ≤ j1 < j2 < j3 < j4 ≤ f . As we stated previously, for any j ≥ 2 and i1, i2 ∈ [k],

L2(j, i1, i2) = max{x̃F [j′],i1 + x̃F [j′′],i2 : ∀j′, j′′ ∈ [j], j′ < j′′}.

Hence, the inequality xs1,σ(1) + xs2,σ(2) ≤ L2(j3 − 1, σ(1), σ(2)) holds. Moreover, because
of how we de�ned matrix R, it is also true that xt2,σ(2) ≤ R(j3 + 1, σ(2)). Consider the
iteration of the algorithm where j = j3, i1 = σ(1) and i2 = σ(2) � if the algorithm returns
true before this iteration, we are done. It follows from our remarks, that the condition on
line 5 is satis�ed, and the algorithm returns true.

Suppose now that there is no violated cross inequality but the algorithm returns true.
Assume this happens at an iteration where j = j3, i1 = a and i2 = b. Let j1, j2, j4 ∈ [f ] be
such that L2(j3−1, a, b) = x̃F [j1],a+ x̃F (j2),b and R(j3 +1, b) = x̃F [j4],b. Then, the algorithm
returning true contradicts the assumption that xF (j1),a + xF (j2),b + xF (j3),a + xF (j4),b ≤ 3.

5.3 Enhancing the branch-and-cut algorithm

In this section, we elaborate on further techniques that we used to improve the perfor-
mance of the branch-and-cut algorithm based on the Cut formulation.

5.3.1 Cover inequalities

Consider an input instance (G,w) of BCPk. As we have previously mentioned, the fol-
lowing inequalities are valid for Pk(G,w).

∑
v∈V

w(v) xv,i ≤
w(G)

k − i+ 1
∀i ∈ [k − 1]. (5.5)

Note that, for each i ∈ [k − 1], the corresponding inequality (5.5) de�nes a knapsack
problem with capacity w(G)/(k − i + 1). Hence, we can take advantage of the extensive
work regarding strong inequalities for the 0/1 knapsack polytope as follows.

For each inequality of class (5.5), we use the heuristics implemented by Wolter [48] to
separate lifted minimal cover inequalities and extended weight inequalities. For complete-
ness, we now shortly discuss some fundamental ideas surrounding lifted cover inequalities.

We begin by de�ning the knapsack problem. Given a capacity b ∈ R≥ and t items,
where each item i ∈ [t] has weight ai ∈ R≥ and pro�t ci ∈ R≥; the knapsack problem asks
for a set of items that maximize the pro�t subject to the knapsack capacity. Formally, it
can be written simply as max{cx : ax ≤ b, x ∈ Bt}, where xi, for i ∈ [t], indicates if item i

should be selected or not.
A set C ⊆ [t] is called a cover if

∑
i∈C ai > b, in lay terms, it is simply a set of items

that do not �t in the knapsack. Furthermore, a minimal cover C ⊆ [t], is a cover such
that, for any i ∈ C, the set C \ {i} is not a cover. Any (minimal) cover C, de�nes a
corresponding (minimal) cover inequality∑

i∈C

xi ≤ |C| − 1. (5.9)
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To obtain lifted cover inequalities we start from a minimal cover inequality (5.9), and
then �nd coe�cients αi ≥ 0, for i ∈ [t] \ C, such that the resulting inequality∑

i∈C

xi +
∑
i∈[t]\C

αixi ≤ |C| − 1 (5.10)

is valid. Clearly, if αi > 0, for some i ∈ [t] \ C, inequality (5.10) dominates (5.9).
Now, let p be the weight of a heaviest item in the cover, that is, p = maxi∈C{ai}. We

de�ne the extension of C as being the set E(C) = C ∪ {i ∈ [t] \ C : ai ≥ p}. A very
simple lifted cover inequality could be obtained simply by noticing that if (5.9) is valid,
the extended cover inequality

∑
i∈E(C) xi ≤ |C|−1 is also valid. Naturally, more elaborate

ideas are available in the literature for performing the lifting of cover inequalities. As we
said in the beginning, this was a very brief exposition to some of the concepts surrounding
valid inequalities for the 0/1 knapsack polytope. For more details, the reader is referred
to Wolter's thesis [48], and the comprehensive survey written by Hojny, Gally, Habeck,
Lüthen, Matter, Pfetsch and Schmitt [25].

5.3.2 Domain Propagation

Suppose that our branch-and-cut algorithm is currently exploring a node in the branch-
and-bound tree. Domain propagation refers to techniques that aim to tighten the variable
bounds based on the domain of the other variables in the current node. When a complete
description of the problem formulation is available to the solver, the solver itself can reduce
the domain of the variables. However, when implementing a branch-and-cut algorithm,
for example, the solver may not be able to e�ectively reduce the domain of the variables,
since only a small part of the inequalities might be available to it. Thus, based on the
work of Hojny et al. [26], we implemented an algorithm to e�ectively reduce the domains
of the variables in our formulation C.

For any j ∈ [k], let Fj ⊆ V be the set of vertices �xed on class j in the current
node of the branch-and-bound tree; in other words, Fj contains all vertices v ∈ V such
that variable xv,j was �xed to one. Let us �x i ∈ [k] and assume Fi 6= ∅. Consider the
graph Gi = G[V \

⋃
i′∈[k]:i′ 6=i Fi′ ], that is, Gi is the graph obtained from G by removing

the vertices that were �xed in classes distinct from i. Let C1, . . . , Ct be the connected
components of Gi, and suppose, without loss of generality, that Fi ∩ V (Ct) 6= ∅ (see
Figure 5.6). Then, for any vertex u ∈ V (Cj), with j ∈ [t− 1], we can �x the variable xu,i
at zero, or if variable xu,i was already �xed to one, we can declare the current node as
infeasible and prune it (see Figure 5.6).

5.4 Polyhedral Study

We now present polyhedral results based on the Cut formulation. First, we consider
the 1-BCPk case, a version of the problem where the weight of a class is the same as its
cardinality. Next, we present formulation C ′, the z-version of C, and we derive polyhedral
results for it.
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v1

v2

v3 v4

v5 v6

v7 v8

C1
C2

Figure 5.6: Domain propagation. Suppose in a given node of the branch-and-bound tree
we have the above illustrated con�guration, in which F1 = {v8} and F2 = {v4}. Clearly,
for this node, we can �x xv,i = 0, for all v ∈ V (C1).

5.4.1 Polyhedral Study for 1-BCPk

In this section, we focus on 1-BCPk, the special case of BCPk in which all the vertices
have unit weight. In this case, instead of Pk(G,w), we simply write Pk(G), the polytope
de�ned as the convex hull of {x ∈ Bnk : x satis�es (5.1) - (5.3)}.

We denote by opt(G) the optimal cost of a solution for 1-BCPk in the input graph G.
Since we assume that G has a feasible solution, it follows that opt(G) > 0. Note that, if G
has no matching of size k, then opt(G) = 1 (contrapositive in Figure 5.7); and thus, it is
easy to �nd an optimal solution � it is su�cient to do a depth-�rst search until exactly
k− 1 vertices were still not visited. Moreover, using Edmonds blossom algorithm [16], we
can e�ciently check if G has a matching with cardinality k or not. Hence, we assume from
now on that G has a matching of size k, since otherwise, the problem would be solvable
in polynomial time.

V1

. . .V2 Vk−1

Vk

Figure 5.7: If opt(G) > 1, then G has a matching of size k.

For each v ∈ V and i ∈ [k] we shall construct a binary vector χ(v, i) that belongs
to Pk(G). Let us denote by e(v, i) ∈ Bnk the unit vector such that its single non-null
entry is indexed by v and i. Now consider any set S ⊆ V \ {v}, |S| = k − i, and a
bijective function ν : S ∪ {v} → [k] \ [i − 1], such that ν(v) = i. This function indicates
to which class the elements of S ∪ {v} are assigned to. Since G has a matching of size k,
it follows that n ≥ 2k and such a set S exists. Fix a pair (S, ν), where S and ν are as
previously de�ned. Let χ(v, i) ∈ Bnk be the vector e(v, ν(v)) +

∑
u∈S e(u, ν(u)). Note

that χ(v, i) belongs to Pk(G), it is the incidence vector of a connected k-subpartition, say
Si = {Si, . . . , Sk} of G, in which v belongs to the class Si, and each vertex of S ⊆ V \ {v}
belongs to one of the classes Si+1, . . . , Sk, all of which are singletons (Figure 5.8).

To be rigorous, we should write χs,ν(v, i), as di�erent choices of S and ν give rise



50

S
v . . .
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Figure 5.8: Graphical representation of the bijection ν : S ∪ {v} → [k] \ [i − 1], used to
de�ne the incidence vector χ(v, i).

to di�erent vectors, but we simply write χ(v, i) with the understanding that it refers to
some S and bijection ν.

For all the forthcoming proofs we assume that V = {v1, . . . , vn} and that the coordi-
nates of a vector x ∈ Rnk are ordered as x = (xv1,1, . . . , xvn,1, . . . , xv1,k, . . . , xvn,k)

T .

Proposition 5.4.1 Pk(G) is full-dimensional, that is, dim(Pk(G)) = nk.

Proof. Let X = {χ(v, i) ∈ Bnk : v ∈ V and i ∈ [k]} be the set of the nk vectors previously
de�ned. Let M be the matrix whose columns are precisely the vectors in X:

M = [χ(v1, 1), . . . , χ(vn, 1), . . . , χ(v1, k), . . . , χ(vn, k)].

Note that for any vector χ(v, i), with v = vt ∈ V and i ∈ [k], all of the coordinates of
χ(v, i) that come �before� coordinate (vt, i) are set to zero, in other words,

χ(v, i) = (0, . . . , 0, χ(v, i)vt,i, χ(v, i)vt+1,i, . . . , χ(v, i)vn,k)
T .

Thus, matrix M has dimension nk, since it is a lower triangular square matrix with
nonzero diagonal entries. Hence, the vectors in X are linearly independent. Considering
that X and the null vector belongs to Pk(G), we conclude that dim(Pk(G)) = nk.

In the forthcoming proofs, we have to refer to some connected k-subpartitions of G,
de�ned (not uniquely) in terms of distinct vertices u, v of G, and speci�c classes i, j,
where i < j. For that, we de�ne a short notation to represent the incidence vectors of these
connected k-subpartitions. Given such u, v, and i, j, choose two sets of vertices S and Ŝ
in G, both of cardinality k− i+1, and bijections π : S → {i, . . . , k} and π̂ : Ŝ → {i, . . . , k}
such that u ∈ S ∩ Ŝ, v ∈ S \ Ŝ, π(u) = π̂(u) = i and π(v) = j (see Figure 5.9).

Let φ(u, i, v, j) and ψ(u, i, v) be vectors in {0, 1}nk such that their non-null entries
are precisely: φ(u, i, v, j)z,π(z) = 1 for z ∈ S, and ψ(u, i, v)z,π̂(z) = 1 for z ∈ Ŝ. Note
that φ(u, i, v, j)u,i = φ(u, i, v, j)v,j = ψ(u, i, v)u,i = 1 and ψ(u, i, v)v,` = 0 for all ` ∈ [k].
Moreover, the vectors φ(u, i, v, j) and ψ(u, i, v) clearly belong to Pk(G).

Proposition 5.4.2 For every v ∈ V and i ∈ [k], xv,i ≥ 0 induces a facet of Pk(G).

Proof. Similarly to the proof of Proposition 5.4.1, let X1 = {χ(v, j) ∈ Bnk : j ∈ [k] \ {i}}.
Additionally, we de�ne X2 = {ψ(u, j, v) ∈ Bnk : u ∈ V \ {v} and j ∈ [k]}.

Let v = vt. For every j ∈ [k], let Mj ∈ Rnk×n be the following matrix

Mj = [ψ(v1, j, v), . . . , ψ(vt−1, j, v), χ(v, j), ψ(vt+1, j, v), . . . , ψ(vn, j, v)].
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Figure 5.9: Bijections from sets S and Ŝ to {1, . . . , k}. These functions are used to de�ne
the incidence vectors φ(u, i, v, j) and ψ(u, i, v).

Consider the matrix M ∈ Rnk×nk obtained by concatenating the previously de�ned
matrices. In other words, M = [M1|M2| . . . |Mk], where the symbol | denotes matrix
concatenation. One can easily check that M is a lower triangular square matrix with
nonzero elements in the main diagonal. Furthermore, besides χ(v, i), all other columns in
M are vectors that belong to X1∪X2. Thus, X1∪X2 contains nk−1 linearly independent
vectors.

Since the vectors in {0} ∪ X1 ∪ X2 belongs to the face {x ∈ Pk(G) : xv,i = 0} and
they are all a�nely independent, we conclude that the inequality xv,i ≥ 0 induces a facet
of Pk(G).

In what follows, considering that the polytope Pk(G) is full-dimensional, to prove
that a face F̂ = {x ∈ Pk(G) : λ̂x = λ̂0} is a facet of Pk(G), we show that if a nontrivial
face F = {x ∈ Pk(G) : λx = λ0} of Pk(G) contains F̂ , then there exists a real positive
constant c such that λ = cλ̂ and λ0 = cλ̂0.

Proposition 5.4.3 For every v ∈ V ,
∑

i∈[k] xv,i ≤ 1 induces a facet of Pk(G).

Proof. Fix a vertex v ∈ V . Let F̂ = {x ∈ Pk(G) : λ̂x = 1}, where λ̂x ≤ 1 corresponds
to
∑

i∈[k] xv,i ≤ 1. Let F = {x ∈ Pk(G) : λx = λ0} be a nontrivial face of Pk(G)

such that F̂ ⊆ F . Using induction we shall prove that λv,i = λ0 and λu,i = 0 for
every u ∈ V \ {v} and i ∈ [k]. As a base case, we start by showing that λv,k = λ0

and λu,k = 0. Next, let ` ∈ [k − 1], assuming the induction hypothesis that λv,i = λ0

and λu,i = 0, for i ∈ {`+ 1, . . . , k}, we show that λv,` = λ0 and λu,` = 0.
Base case: since G is nontrivial and connected, it is easy to see that G has a set of n

nested connected subgraphs T1, T2, . . . , Tn such that T1 consists solely of the vertex v, Tj ⊂
Tj+1 for each j ∈ [n−1], and V (Tn) = V . (Take a spanning tree in G, and starting from v,
de�ne the subsequent subgraphs by adding at each step an appropriate edge and vertex
from this spanning tree. See Figure 5.10.)

Consider the set of vectors A = {e(Gj, k)}j∈[n], where e(Gj, k) =
∑

u∈V (Gj) e(u, k)

for every j ∈ [n]. Since v ∈ V (Gj) for all j ∈ [n], it follows that A ⊆ F̂ . There-
fore, λ(e(G1, k)) = λ0 and thus λv,k = λ0. Additionally, since

λ(e(G2, k)) = λ(e(G3, k)) = . . . = λ(e(Gn, k)) = λ0,
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Figure 5.10: Nested trees used to de�ne the set A = {e(Gj, k)}j∈[n].

it follows that λu,k = 0 for all u ∈ V \ {v}.
Induction step: let ` ∈ [k− 1] and suppose that λv,i = λ0 and λu,i = 0, for u ∈ V \ {v}

and i ∈ {`+1, . . . , k}. Now de�ne the set of vectors B = {φ(u, `, v, k) : u ∈ V \{v}}. Note
that B ⊆ F̂ , since v belongs to exactly one class of the partition corresponding to each
vector in B. Recall that φ(u, `, v, k) =

∑
v′∈S e(v

′, π(v′)) and π(v′) > `, for v′ ∈ S \ {u}.
Using the induction hypothesis, for each u ∈ V \ {v}, we obtain the following

λ(φ(u, `, v, k)) = λ

e(u, `) +
∑

v′∈S\{u}

e(v′, π(v′))

 = λu,` + λ0 = λ0,

and thus, λu,` = 0. Moreover, observe that χ(v, `) belongs to F̂ . Using similar reasoning,
it follows that λ(χ(v, `)) = λv,` = λ0.

We conclude that λv,i = λ0 and λu,i = 0 for every u ∈ V \ {v} and i ∈ [k]. In other
words, λ = λ0λ̂. Since λ0 6= 0 (otherwise F would be a trivial face), it follows that λx ≤ λ0

is a multiple scalar of λ̂x ≤ 1, and therefore F̂ is a facet of Pk(G).
Before showing our results regarding the connectivity inequalities, we need to introduce

some concepts and notations. Let u and v be two non-adjacent vertices of G and let S be
a minimal (u, v)-separator in G. We denote by [u, v, S] such a triple, and denote by Hu

and Hv the components of G− S that contain u and v, respectively. Since S is minimal,
it follows that every vertex in S has at least one neighbor in Hu and one in Hv.

For any vertex z in G, we denote by Gz (when [u, v, S] is clear from the context) a
minimum size connected subgraph of G containing z, with the following properties:

(i) Gz contains v and is contained in Hv, if z ∈ V (Hv);

(ii) Gz contains u and is contained in Hu, if z ∈ V (Hu);

(iii) Gz contains u and v, otherwise.

Note that, in the latter case, Gz contains exactly one vertex of S. Clearly, such a subgraph
always exists (and may not be unique). Moreover, if z ∈ {u, v}, the degree of z is zero.
Likewise, if z ∈ S, the degree of z is two. In all other cases, the degree of z in Gz is
exactly one and the subgraph Gz − z is connected (see Figure 5.11).
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(c) z /∈ (V (Hu) ∪ V (Hv) ∪ S).

Figure 5.11: Subgraph Gz.

Let i ∈ [k] and z ∈ V . We say that a connected (k − i)-subpartition Vz is a robust

connected (k − i)-partition of G − Gz if Vz = {Vj}j∈[k]\[i], and |V (Gz)| ≤ |Vj| for all j ∈
[k] \ [i]. We say that G is (u, v, S, i)-robust if, for every z ∈ V , there is a graph Gz such
that G−Gz has a robust connected (k − i)-partition.

Theorem 5.4.4 Let u and v be non-adjacent vertices in G, let S be a minimal (u, v)-

separator, and let i ∈ [k]. Then the inequality

xu,i + xv,i −
∑
s∈S

xs,i ≤ 1

induces a facet of Pk(G) if and only if G is (u, v, S, i)-robust.

Proof. Fix u, v, S and i as in the statement of the theorem. We �rst prove that, if
the graph G is (u, v, S, i)-robust, then the inequality xu,i + xv,i −

∑
z∈S xz,i ≤ 1 de�nes a

facet of Pk(G). Let λ̂x ≤ 1 denote this inequality and consider the face de�ned by it:
F̂ = {x ∈ Pk(G) : λ̂x = 1}. Now let F = {x ∈ Pk(G) : λx = λ0} be a nontrivial face of
Pk(G) such that F̂ ⊆ F .

We next prove that λ = λ0λ̂. For that, we shall refer to entries of λ of the form λy,j,
where y ∈ V and j ∈ [k], and analyze separately the cases: j ∈ [i−1] (Case 1), j ∈ [k]\ [i]

(Case 2) and j = i (Case 3).
For the Case 1 and Case 2, �x a vertex z ∈ S. Since G is (u, v, S, i)-robust, there is a

graph Gz such that G−Gz has a robust connected (k− i)-partition Vz = {Vj}j∈[k]\[i]. By
de�nition, Gz contains the vertices u, v, and z; thus, each class in Vz has size at least 3.
Let Vi = V (Gz), and let W = {vi+1, . . . , vk}, where vj ∈ Vj, for j ∈ [k] \ [i].

For simplicity, set v = vi. Let γ be the vector in {0, 1}nk de�ned as γ =
∑k

j=i e(vj, j)

(the incidence vector of a (k − i + 1)-subpartition whose classes are the singletons {vj},
for j ∈ {i, . . . , k}). Clearly, γ ∈ F̂ . This vector will be used to construct new vectors in
F̂ .
Case 1. Let j ∈ [i− 1].

Consider a vertex y ∈ V . Since |W | = k − i and n ≥ 2k, there exists a set of
vertices {vj+1, . . . , vi−1} that is disjoint from W ∪ {u, v, y}.
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(1a) If y /∈ W ∪ {v}, then the following vectors belong to F̂ :

γ′ = γ +
i−1∑
`=j+1

e(v`, `) and γ′′ = γ′ + e(y, j).

Therefore, λγ′ = λ0 and λγ
′′

= λ(γ′+e(y, j)) = λ0. Hence, λ(e(y, j)) = λy,j =

0 for y /∈ W ∪ {v}.

(1b) If y ∈ W ∪ {v}, then y = v` for some ` ∈ {i, i + 1, . . . , k}. Take the
subpartition γ′ and construct a new subpartition γ′a by replacing y with u.
Then, from γ′a, construct the subpartition γ′b by adding y to class j. These
subpartitions are described by the vectors

γ′a = γ′ − e(y, `) + e(u, `) and γ′b = γ′a + e(y, j).

Note that both vectors γ′a and γ
′
b are in F̂ ⊆ F . Thus, λy,j = 0 for y ∈ W∪{v}.

Case 2. Let j ∈ [k] \ [i].

(2a) If y = vj, let w` be a vertex that is a neighbor of v` in G[V`] for ` ∈
[k] \ [j − 1]. Then, it is immediate that the following vectors belong to F̂ :

θ = γ +
k∑
`=j

e(w`, `) and θ′ = θ − e(y, j).

Observe that θ, θ′ ∈ F̂ ⊆ F and thus λy,j = 0.

(2b) If y 6= vj, consider the vector γu = γ − e(v, i) + e(u, i). If y = v,
take γ̃u = γu − e(vj, j) + e(y, j); and if y 6= v, take γ̃y = γ − e(vj, j) + e(y, j).
Recall that λvj ,j = 0. Since γ, γu, γ̃u, γ̃y ∈ F̂ ⊆ F , it follows that λy,j = 0.

Case 3. We now focus on the entries of λ indexed by i.
For each y ∈ V , let Gy be such that G − Gy admits a robust connected (k − i)-

subpartition Vy (where Gy is a subgraph of G as previously de�ned). Let φ denote the
incidence vector of Vy, and let φy = φ+

∑
w∈V (Gy) e(w, i).

(3a) Suppose y /∈ S ∪ {u, v}. In this case, Gy − y is connected. Consider
φ′ = φy − e(y, i). Clearly, φy, φ′ ∈ F̂ ⊆ F . Thus, λy,i = 0 for every y ∈
V \ (S ∪ {u, v}).

(3b) Let y ∈ S∪{u, v}. If y ∈ {u, v} then Gy consists of precisely the vertex y.
Since φy belong to F̂ ⊆ F , we conclude that

λ(φ+ e(y, i)) = λy,i = λ0.

Note that because Case 2 is valid, λφ = 0.
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If y ∈ S, then {u, v, y} ⊆ V (Gy) and V (Gy) ∩ S = {y}. Since φy ∈ F̂ ⊆ F

for every y ∈ S, recalling that λw,i = 0 for every w ∈ V \ (S ∪ {u, v}), we
have that λu,i + λv,i + λy,i = λ0 for every y ∈ S. Combining with the previous
equalities, we conclude that λy,i = −λ0 for every y ∈ S.

Putting together Cases 1, 2 and 3, we conclude that λ = λ0λ̂, as we wanted to show.

Let us prove now that if xu,i + xv,i −
∑

s∈S xs,i ≤ 1 induces a facet of Pk(G), then G
is (u, v, S, i)-robust. Suppose G is not (u, v, S, i)-robust. Then, there is a vertex z ∈
V such that for no minimal connected graph Gz there is a robust connected (k − i)-
partition {Vj}j∈[k]\[i] of G − Gz. This means that there is no connected (k − i + 1)-
subpartition {Vj}j∈[k]\[i−1] of G such that

(i) z ∈ Vi,

(ii) |Vi ∩ {u}|+ |Vi ∩ {v}| − |Vi ∩ S| = 1, and

(iii) |Vj−1| ≤ |Vj| for all j ∈ [k] \ [i].

Consider now a vertex x̄ of Pk(G) that belongs to F̂ , and suppose that x̄z,i = 1.
Let Wj = {w ∈ V : x̄w,j = 1} for each j ∈ [k] \ [i − 1]. Since x̄ ∈ F̂ , it clearly holds
that |Wi∩{u}|+ |Wi∩{v}|− |Wi∩S| = 1 and |Wj−1| ≤ |Wj| for every j ∈ [k] \ [i]. Thus,
{Wj}j∈[k]\[i−1] is a connected (k− i+1)-subpartition of G that satis�es properties (i)�(iii),
a contradiction. Hence, we have x̄z,i = 0 for every vertex x̄ ∈ F̂ . But then, F̂ is contained
in the face {x ∈ Pk(G) : xz,i = 0}, and so F̂ is not a facet of Pk(G). This concludes the
proof of the theorem.

5.4.2 Polyhedral Study of a relaxed formulation

Consider the following formulation C ′k(G,w), obtained from formulation Ck(G,w) by drop-
ping the ordering of the classes (5.1) and adding a new non-negative variable z which is
smaller than the weight of each class.

C ′k(G,w) max z

s.t. z ≤
∑
v∈V

w(v) xv,i ∀i ∈ [k], (5.11)∑
i∈[k]

xv,i ≤ 1 ∀v ∈ V, (5.2)

xu,i + xv,i −
∑
s∈S

xs,i ≤ 1 ∀uv /∈ E, S ∈ Γ(u, v), i ∈ [k], (5.3)

xv,i ∈ {0, 1} ∀v ∈ V and i ∈ [k], (5.4)

z ∈ R≥ . (5.12)

Let P̄k(G,w) = conv({(x, z) ∈ Bnk ×R≥ : (x, z) satis�es (5.11), (5.2) and (5.3)}). For
ease of presentation, we refer to this polytope simply as P̄ . The polyhedral study we
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derive for P̄ is based on the previous results we obtained for Pk(G). However, P̄ has one
extra dimension when compared to Pk(G), due to the introduction of the real variable z.
To handle this di�culty, we de�ne P̄x as being the projection of P̄ into the space of the x
variables, i.e., P̄x = conv({x ∈ Bnk : x satis�es (5.2) and (5.3)}). Clearly, Pk(G) ⊆ P̄x.

The next results are based on the following strategy. First, we show in Proposition 5.4.5
that, on some cases, it is possible to lift a face F̄x of P̄x to obtain a face F̄ of P̄ , such
that dim(F̄ ) ≥ dim(F̄x) + 1. In particular, this proposition allows us to say that some
inequalities that induce facets of P̄x are also facet-de�ning for P̄ . Next, we show in
Lemma 5.4.6 that facet-de�ning inequalities of Pk(G) may also de�ne facets of P̄x. Using
both results, we conclude that some inequalities that induce facets of Pk(G) also de�ne
facets of P̄ .

Before we proceed, let us de�ne p as the number of vertices in G with positive weights.
We assume p ≥ k, since otherwise an optimal solution has cost zero and the problem is
solvable in polynomial time.

Proposition 5.4.5 Let πx ≤ π0 be a valid inequality for the polytope P̄. Consider the

faces F̄ = {(x, z) ∈ P̄ : πx = π0} and F̄x = {x ∈ P̄x : πx = π0}. If dim(F̄x) ≥ nk− p+ 1,

then dim(F̄ ) ≥ dim(F̄x) + 1.

Proof. Let d be the dimension of F̄x. Thus, there exists a set {x0, x1, . . . , xd} of d + 1

a�nely independent vectors in F̄x. Let Q = {(x0, 0), (x1, 0), . . . , (xd, 0)}, clearly Q ⊆ F̄ .
It remains to construct one extra vector that is a�nely independent with respect to all
the vectors in Q.

Consider the vector
x̄ =

1

d+ 1
(x0 + x1 + . . .+ xd),

since x̄ is a convex combination of vectors in F̄x, x̄ belongs to F̄x. Furthermore, x̄ has, at
most, nk−d coordinates with zero value. The reason is that, for v ∈ V and i ∈ [k], x̄v,i = 0

if and only if x0
v,i = x1

v,i = . . . = xdv,i = 0. Hence, if x̄ had at least nk − d+ 1 coordinates
with zero value, then F̄x would be contained in a space with dimension at most d− 1, a
contradiction. Given that d ≥ nk−p+1, it follows that at most p−1 coordinates of x̄ are
zero valued. Therefore, for any class i ∈ [k], there exists v ∈ V , such that w(v) and x̄v,i
are positive values.

For every i ∈ [k], let w̄i =
∑

v∈V w(v) x̄v,i. Observe that w̄i > 0, for all i ∈ [k].
De�ne w̄ = mini∈[k] w̄i, then the vector (x̄, w̄) belongs to F̄ and it is a�nely independent
with the vectors in Q (see Figure 5.12).

Lemma 5.4.6 Suppose πx ≤ π0 is an inequality that is valid for both Pk(G) and P̄x.
Let F and F̄x be the faces induced by (π, π0) in the polytopes Pk(G) and P̄x, respectively.
Then dim(F ) ≤ dim(F̄x).

Proof. Since Pk(G) ⊆ P̄x, all the dim(F ) + 1 a�nely independent vectors that belong
to F also belong to F̄x.

Corollary 5.4.7 dim(P̄) = nk + 1.
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F̄x
(x0, 0)

(x1, 0)

(x2, 0)

(x̄, 0)

z

(x̄, w̄)

Figure 5.12: Constructing the vector (x̄, w̄) from vectors in F̄x (or Q).

Proof. Consider applying Lemma 5.4.6 with the trivial inequality 0x ≤ 0. The induced
faces are F = Pk(G) and F̄x = P̄x. Thus, dim(P̄x) = nk. Next, Proposition 5.4.5 gives
us one extra a�nely independent vector in P̄ .

Corollary 5.4.8 For every v ∈ V and i ∈ [k], xv,i ≥ 0 induces a facet of P̄.

Corollary 5.4.9 For every v ∈ V ,
∑

i∈[k] xv,i ≤ 1 induces a facet of P̄.

Because formulation C ′k(G,w) is not ordering the classes by their weights, we prove
that the connectivity inequalities induce facets of P̄ , regardless if G is (u, v, S, i)-robust
or not. Moreover, we analyze when the cross inequalities induce facets of P̄ . The overall
idea is similar: we �rst show that these inequalities induce facets of P̄x, then we use
Proposition 5.4.5 to claim that they also de�ne facets of P̄ .

Proposition 5.4.10 Let u and v be non-adjacent vertices in G, let S be a minimal (u, v)-

separator, and let i ∈ [k]. Then the inequality

xu,i + xv,i −
∑
s∈S

xs,i ≤ 1

induces a facet of P̄.

Proof. As usual, let λ̂x ≤ 1 denote the inequality xu,i + xv,i −
∑

z∈S xz,i ≤ 1. Consider
the face F̂ = {x ∈ P̄x : λ̂x = 1} and let F = {x ∈ P̄x : λx = λ0} be a nontrivial face
such that F̂ ⊆ F . To show that each coe�cient λz,j has the appropriate value, we �rst
consider j = i, and then j ∈ [k] \ {i}.

For any z ∈ V , recall the de�nition for Gz used in the last section. Let e(Gz, i) =∑
v∈V (Gz) e(v, i), in other words, e(Gz, i) is the incidence vector of a solution in which all

the vertices inGz belong to the i-th class. As a consequence of howGz was de�ned, e(Gz, i)

belongs to F̂ ⊆ F .
If z ∈ V \ (S ∪ {u, v}), note that (e(Gz, i) − e(z, i)) also belongs to F̂ . Therefore,

since λ(e(Gz, i)) = λ0 and λ(e(Gz, i) − e(z, i)) = λ0, it follows that λz,i = 0. Suppose
now that z ∈ S ∪ {u, v}. If z ∈ {u, v}, because both vectors e(u, i) and e(v, i) belong
to F̂ ⊆ F , we get that λu,i = λv,i = λ0. If z ∈ S, it follows from the previous cases that

λ(e(Gz, i)) = λu,i + λv,i + λz,i = λ0.
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Hence, λz,i = −λ0.
Consider j ∈ [k] \ {i}. Since the vector (e(u, i) + e(z, j)) belongs to F̂ ⊆ F , it follows

that λ(e(u, i)+e(z, j)) = λ0, and thus λz,j = 0. Similarly, when z = u, λ(e(v, i)+e(u, j)) =

λ0 and λu,j = 0.
So far, we showed that F̂ is a facet of P̄x. Since P̄x is full-dimensional, dim(F̂ ) = nk−1.

Using Proposition 5.4.5, we conclude that the inequality xu,i+xv,i−
∑

s∈S xs,i ≤ 1 induces
a facet of P̄ .

Theorem 5.4.11 Let {si, ti}i∈[2] ⊆ V be a set of distinct pairs of vertices such that there

is no collection of vertex-disjoint (si, ti)-paths in G, for i ∈ [2]. Moreover, let σ : [2]→ [k]

be an injective function, and let I be its image. Then the cross inequality

xs1,σ(1) + xt1,σ(1) + xs2,σ(2) + xt2,σ(2) ≤ 3

induces a facet of P̄ if and only if the following conditions hold

1. there is no vertex z ∈ V such that, for every i ∈ [2], z is a (si, ti)-separator; and

2. {s2, t2} is not a (s1, t1)-separator, and {s1, t1} is not a (s2, t2)-separator.

Proof. Let F̂ be the face of P̄x induced by the inequality in the theorem statement. First,
we demonstrate that if either condition (1) or (2) is not satis�ed, F̂ is not a facet of P̄x.

Suppose there is a vertex z which is a (si, ti)-separator, for every i ∈ [2]. Let x̃ be an
integer vector that belongs to F̂ . Thus, there must exist j ∈ [2], such that sj and tj are
connected in the subgraph induced by the set of vertices {v ∈ V : x̃v,j = 1} and z belongs
to this subgraph. Hence, F̂ ⊆ {x ∈ P̄x :

∑
i∈[k] xz,i = 1} and F̂ is not a facet.

Now suppose the set of vertices {s2, t2} is a (s1, t1)-separator, then we shall demon-
strate that F̂ ⊆ {x ∈ P̄x : xs1,σ(1) + xt1,σ(1) − xs2,σ(1) − xt2,σ(1) = 1}. Again, let x̃ be an
integer vector that belongs to F̂ . Let i ∈ [2] be such that x̃si,σ(i) = x̃ti,σ(i) = 1. If i = 1,
assume without loss of generality that x̃s2,σ(1) = 1. Since x̃ ∈ F̂ , t2 belongs to class σ(2)

in x̃ and x̃t2,σ(1) = 0. On the other hand, if i = 2, x̃s2,σ(1) = x̃t2,σ(1) = 0 and exactly one
vertex from {s1, t1} belongs to class σ(1) in the solution induced by x̃. Therefore, in both
cases it holds that xs1,σ(1) + xt1,σ(1) − xs2,σ(1) − xt2,σ(1) = 1.

Next, we turn to proving that F̂ is a facet if (1) and (2) are satis�ed. In order to
enumerate the appropriate vectors contained in F̂ , we start with a simple claim about
paths that avoids speci�c vertices. All paths mentioned henceforth are simple.

Claim 5.4.12 For any vertex y ∈ V \ {s1, t1, s2, t2}, there exists a, b ∈ [2], a 6= b, such

that there is a (sa, ta)-path P
a
y ⊂ G that satisfy the properties: y /∈ V (P a

y ) and |V (P a
y ) ∩

{sb, tb}| ≤ 1.

Proof. For some i ∈ [2], there must exist a (si, ti)-path P i
y that does not contain y,

otherwise, condition (2) would not hold. Let j ∈ [2] \ {i}, if |P i
y ∩ {sj, tj}| ≤ 1 the claim

holds with a = i and b = j. Thus, assume that P i
y contains both sj and tj. In this setting

(see Figure 5.13), there is a (sj, tj)-path P j
y ⊂ P i

y that does not intersect with {si, ti, y}.
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si sj tj ti

y

P i
y

P j
y

Figure 5.13: The path P j
y if |P i

y ∩ {sj, tj}| = 2.

As usual, assume F̂ = {x ∈ P̄x : λ̂x = λ̂0} and let F = {x ∈ P̄x : λx = λ0} be a
face such that F̂ ⊆ F . We show that there exists a constant c ∈ R> such that λ = cλ̂

and λ0 = cλ̂0. In other words, λ = (λ0/λ̂0)λ̂ = (λ0/3)λ̂.
Once more, we break the analysis into cases. First, we demonstrate that λy,j = 0, for

any vertex y ∈ V \ {si, ti}i∈[2] and j ∈ [k]. Afterwards, we prove that λsi,σ(i) = λti,σ(i) =

λ0/3 and λsi,j = λti,j = 0, for i ∈ [2] and j ∈ [k] \ {σ(i)}. In the forthcoming discussion,
we use the notation e(G′, i) =

∑
v∈V (G′) e(v, i), for any subgraph G′ ⊆ G and i ∈ [k].

Consider the entries λy,j, where y ∈ V \ {si, ti}i∈[2] and j ∈ [k] \ I. By Claim 5.4.12,
there is a, b ∈ [k] such that P a

y is a (sa, ta)-path, |V (P a
y ) ∩ {sb, tb}| ≤ 1 and y /∈ V (P a

y ).
Let u be a vertex in {sb, tb} \ V (P a

y ), we de�ne the vectors

µ = e(P a
y , σ(a)) + e(u, σ(b)) and µ′ = µ+ e(y, j).

Clearly µ, µ′ ∈ F̂ ⊆ F . Hence, solving the equations

λµ = λ0 and λµ′ = λ(µ+ e(y, j)) = λ0,

we conclude λy,j = 0. This reasoning � where we obtain the value of a coordinate of λ by
the construction of two vectors in F � will be repeated throughout the proof. Therefore,
we present the next arguments in a more concise manner.

Choose a and b in a way that P a
y satisfy the properties of Claim 5.4.12. Let Hy be the

component of G− P a
y which contains y. Furthermore, let Hs and Ht be the components

of G − P a
y that contains sb and tb, respectively. We de�ne Hs = ∅ (resp. Ht = ∅)

if sb ∈ V (P a
y ) (resp. tb ∈ V (P a

y )). In order to show that λy,j = 0 for y ∈ V \ {si, ti}i∈[2]

and j ∈ I, we separate the analysis into four cases:

� Cases of type 1.

(a) Hy ∈ {Hs, Ht} and j = σ(b),

(b) Hy /∈ {Hs, Ht} and j = σ(a),

� Cases of type 2.

(a) Hy /∈ {Hs, Ht} and j = σ(b),

(b) Hy ∈ {Hs, Ht} and j = σ(a).
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sa
Hs = Hy

P a
y

ta

sb y

Ht

tb

(a) Case (1a).

saHs

P a
y

ta

sb

Ht

tb
y

Hy

(b) Case (1b).

saHs

P a
y

ta

sb

Ht

tb
y

Hy

us

ut

(c) Case (2a).

sa
Hs = Hy

P a
y

ta

sb

Ht

tb

us

ut

y

(d) Case (2b).

Figure 5.14: The four cases in the proof. Red and blue represent class σ(a) and σ(b),
respectively. The �gures give us an idea of how we construct the desired vectors.

Note that, since condition (2) holds, if V (Hs) 6= ∅, N(Hs) is not contained in {sa, ta},
that is, the neighborhood of Hs contains a vertex that is not one of the endpoints of P a

y .
Hence, we de�ne us (resp. ut) as a vertex in N(Hs) \ {sa, ta} (resp. N(Ht) \ {sa, ta}). On
the other hand, if V (Hs) = ∅, we de�ne us = sb (resp. ut = tb).
Cases of type 1.

(1a) Suppose Hy = Hs and j = σ(b). Consider a path Ps ⊆ Hs with endpoints
at vertices y and sb. De�ne vectors

µs = e(P a
y , σ(a)) + e(Ps, j) and µ′s = µs − e(y, j).

One may easily verify that µs, µ′s ∈ F̂ ⊆ F (see Figure 5.14(a)). The caseHy =

Ht and j = σ(b) can be addressed analogously.

(1b) Suppose Hy /∈ {Hs, Ht} and j = σ(a). Let Py ⊆ Hy be a path that
connects y to a vertex adjacent to P a

y . Now the vectors µ + e(Py, j) and µ +

e(Py, j)− e(y, j) belong to F (Figure 5.14(b)).

Cases of type 2.

(2a) If Hy /∈ {Hs, Ht} and j = σ(b), we denote by Ps,t the (us, ut)-path
contained in P a

y . Let P
b
y be a (sb, tb)-path such that V (P b

y )∩V (P a
y ) = V (Ps,t).

Note that V (P b
y )∩{sa, ta, y} = ∅. Let P ′y be a path that connects y to a vertex
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adjacent to P b
y , such that there exists a vertex u′ ∈ {sa, ta} \V (P ′y). It follows

from our construction that the vector e(P b
y , j) + e(P ′y, j) + e(u′, σ(a)) belongs

to F ⊆ F (see Figure 5.14), and as a result λy,j = 0.

(2b) Our last case is when Hy ∈ {Hs, Ht} and j = σ(a). Assume, with no
loss of generality, that Hy = Hs. If there is a path Py that connects y to
the neighborhood of P a

y and avoid sb, we can apply the same reasoning as in
Case (1b). Hence, we suppose sb is a (y, us)-separator. Let P ′s be a path that
connects sb to a vertex in N(us)∩Hs. Consider the path Ps,t de�ned previously
and let P b

y be a (sb, tb)-path such that it contains Ps,t and P ′s, and V (P b
y ) ∩

V (P a
y ) = V (Ps,t). It follows from the construction that P b

y does not intersect
with {sa, ta, y}. Interchanging the roles of a and b and considering the path P b

y

instead of P a
y , we reduce Case (2b) to Cases (1a) and (2a) (Figure 5.14(d)).

Finally, we now refer to entries λy,j, y ∈ {si, ti}i∈[2]. As a consequence of condition (2),
for any a, b ∈ [2], a 6= b, there must exist a (sa, ta)-path P a such that V (P a)∩{sb, tb} = ∅.
Hence, for any j ∈ [k] \ {σ(b)}, it holds that the vector e(P a, σ(a)) + e(tb, σ(b)) + e(sb, j)

belongs to F . Therefore, λsi,j = 0, for any i ∈ [2] and j ∈ [k] \ {σ(i)}.
Consider now the vectors e(P 1, σ(1)) + e(s2, σ(2)), e(P 1, σ(1)) + e(t2, σ(2)) and their

counterparts e(P 2, σ(2)) + e(s1, σ(1)), e(P 2, σ(2)) + e(t1, σ(1)). Because all these vectors
belong to F and given our previous analysis for the zero valued entries of λ, we end up
with the following system of linear equations.

λs1,σ(1) + λt1,σ(1) + λs2,σ(2) = λ0, (5.13)

λs1,σ(1) + λt1,σ(1) + λt2,σ(2) = λ0, (5.14)

λs2,σ(2) + λt2,σ(2) + λs1,σ(1) = λ0, (5.15)

λs2,σ(2) + λt2,σ(2) + λt1,σ(1) = λ0. (5.16)

Subtracting (5.16) from (5.15) we obtain that λs1,σ(1) = λt1,σ(1). Equivalently, it also holds
that λs2,σ(2) = λt2,σ(2). Moreover, subtracting (5.13) from (5.15) gives us λt2,σ(2) = λt1,σ(1).
Therefore, we conclude that

λs1,σ(1) = λt1,σ(1) = λs2,σ(2) = λt2,σ(2) =
λ0

3
.
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Chapter 6

Computational Experiments

The computational experiments were carried out on a PC with Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz, 40 cores, 64 GB RAM and Ubuntu 18.04.2 LTS. The code was
written in C++ using the graph library Lemon [14]. We implemented a branch-and-cut
algorithm based on the Cut formulation C using SCIP 6.0 [19] and Gurobi 9.0 [23] as
the LP solver. We also implemented branch-and-bound algorithms (using only Gurobi
9.0) based on the Flow formulations F and F̄ and on the models previously proposed by
Mati¢ [37] and Zhou et al. [50]. Each algorithm we implemented had 4 threads available
to it. We used SCIP 6.0 in our branch-and-cut implementation for three reasons. First,
unlike Gurobi 9.0, SCIP allows for multiple rounds of cut generation in non-root nodes
of the branch-and-bound tree. Second, it has built-in routines for separating the lifted
minimal cover inequalities mentioned in Chapter 5. Third, it allows the user to write a
custom domain propagation routine, as the one mentioned in Section 5.3.

Due to small improvements in the preliminary experiments, we replace inequalities
(4.5), (4.10) and (5.2) with equalities. Furthermore, to evaluate strictly the performance
of the mentioned formulations, all standard cuts used by SCIP and Gurobi are deactivated,
except for the lifted minimal cover inequalities.

Finally, for each of the formulations we proposed in this work, we also implemented
their correspondent z-versions. In other words, we implemented a branch-and-cut algo-
rithm for C ′ and branch-and-bound algorithms for F ′ and F̄ ′.

6.1 Benchmark instances

Computational experiments on instances consisting of grid graphs and random connected
graphs are reported in [37,50]. In this work, besides evaluating our algorithms on instances
previously proposed in the literature, we also considered larger graphs, di�erent weight
distributions and real world instances.

The grid instances are named in the format gg_height_width_[a|b|c] and the random
instances have names in the format rnd_n_m_[a|b|c], where n is the number of vertices
and m is the number of edges in the graph. The letters `a', `b' and `c', indicate that the
weights of that instance are integers obtained uniformly from the intervals [1, 100], [1, 500]

and [1000, 5000], respectively.
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In all of these instances, the weights are integers uniformly distributed in three in-
tervals, named a, b and c, indicated in the end of the instance names: a = [1, 100],
b = [1, 500] and c = [1000, 5000].

In order to generate a random connected graph with n vertices and m edges (with
m > n−1), we �rst use Wilson's algorithm [47] to generate a uniformly random spanning
tree T on n vertices, and then add m− n+ 1 distinct new edges selected randomly from
E(Kn) \ E(T ) with uniform probability. Wilson's algorithm returns a spanning tree T
sampled from the set τn � of all possible spanning trees of Kn � with probability 1/|τn|.

In the experiments, for each format (considered a graph class) indicated in the tables
and plots, we generated 10 random instances. The randomness of grid instances refer to
their weights, and of random graphs refers to the graphs and the weights.

Finally, we also created instances based on a real-world application, namely demar-
cation of preventive police patrol areas [4]. This problem consists in subdividing a given
map into k (contiguous) regions such that every region has roughly the same crime rate.
Each of those regions is assigned to a police patrol team. Clearly, this problem can be
modeled as BCPk.

Using the OSMnx [8] library we transformed maps from OpenStreetMap [43] into
undirected graphs. The edges in the graphs generated by OSMnx correspond to sections
of the streets. As some of these edges may be too �long� (over 200 meters), we subdivide
long edges into smaller edges so that the length of each edge is limited to 200 meters.

Working with the Socrata Open Data API, we downloaded the Public Safety data for
the cities of Chicago, Los Angeles and New York; and using the transparency website of the
Department of Public Safety of São Paulo, we downloaded data for the city of Campinas.
The police patrolling instances that we generated have names in the format name_n_m,
where name denotes the name of the corresponding geographic region, n = |V | and
m = |E|.

For each vertex v of a graph generated from a map, we assign a weight that is propor-
tional to the crime rate geographically close to the point in the map associated with v.
More precisely, let G = (V,E) be a graph corresponding to a region of a city and C be a
set of points of this region where crimes have occurred. Let d : C×V → Q≥ be a function
that computes the distance (in meters) of a crime to a vertex, and f : R→ R be the nor-
mal probability density function with mean µ = 0 and standard deviation σ = 0.5. We
consider that a crime has in�uence on the weights of the vertices that are within a radius
of 200 meters from it. So, for each point c ∈ C, we de�ne Vc = {v ∈ V : d(c, v) ≤ 200},
and Fc =

∑
v∈Vc f(d(c, v)/200). Then, for each vertex v ∈ V , we set its weight as

w(v) =

⌊
100

∑
c : v∈Vc

f(d(c, v)/200)

Fc

⌋
.

Note that the formula used to de�ne the weight of a vertex agrees with the notion that
the in�uence of a crime over a region is a Gaussian distribution on the distance to the
crime.
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6 9 (5 3 )6 8 (4 9 )6 7 (4 0 )6 6 (2 6 )6 5 (4 9 )6 4 (7 5 )6 3 (3 0 )6 2 (5 6 )6 1 (9 3 )6 0 (4 2 )

5 9 (8 8 )5 8 (3 6 )5 7 (2 9 )5 6 (2 9 )5 5 (9 8 )5 4 (8 7 )5 3 (7 7 )5 2 (2 7 )5 1 (2 0 )5 0 (4 2 )

4 9 (7 0 )4 8 (6 7 )4 7 (2 6 )4 6 (5 0 )4 5 (2 2 )4 4 (3 3 )4 3 (1 7 )4 2 (4 8 )4 1 (6 4 )4 0 (2 5 )

3 9 (5 1 )3 8 (6 3 )3 7 (6 4 )3 6 (1 5 )3 5 (5 )3 4 (2 )3 3 (6 5 )3 2 (5 2 )3 1 (3 5 )3 0 (6 0 )

2 9 (5 3 )2 8 (7 4 )2 7 (8 4 )2 6 (3 7 )2 5 (2 4 )2 4 (2 5 )2 3 (7 8 )2 2 (6 5 )2 1 (9 6 )2 0 (4 2 )

1 9 (7 4 )1 8 (8 8 )1 7 (6 4 )1 6 (2 5 )1 5 (9 6 )1 4 (3 0 )1 3 (3 7 )1 2 (8 )1 1 (3 8 )1 0 (7 7 )

9 (2 3 )8 (9 9 )7 (1 0 )6 (8 6 )5 (3 1 )4 (1 0 0 )3 (9 5 )2 (4 3 )1 (3 1 )0 (1 8 )

(a) A 7 by 10 grid graph instance.
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(b) A police patrolling instance, based on the University of
Campinas campus.

Figure 6.1: Instances of BCP3 and optimal solutions. The radius of each vertex is pro-
portional to its weight. The vertices in V1 are colored red.
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Figure 6.2: Computational results for BCP2 on grid graphs. Time is in logarithmic scale.

6.2 Computational results

The execution time limit was set to 1800 seconds. In the following tables, we show the
average number of explored nodes in the branch-and-bound tree (column Nodes) and the
average time, in seconds, to solve the instances (column Time), ignoring the unsolved
instances. When the time limit was exceeded for all 10 instances of a graph class, we
set the corresponding table entries with a dash (-). In a row, when all 10 instances of
a graph class were solved, the (average) time that is minimum is indicated in boldface.
Similarly, when the number of nodes that were explored is minimum, we underline the
corresponding value.

Henceforth, when we refer to any of the formulations it should be understood that
we are referring to the corresponding exact algorithms that we have implemented for
them. Thus, cut corresponds to the branch-and-cut algorithm based on formulation C,
while flow corresponds to the branch-and-bound algorithm based on F . The algorithms
based on the z-versions of the formulations have names with su�x �-z�. It goes without
saying that cut-z cannot take advantage of the lifting we proposed for the connectivity
inequalities in Proposition 5.1.3. We omit the results for the algorithms based on F̄
and F̄ ′ because, in our experiments, they were (on average) over 10 times slower than
flow.

We start by showing in Table 6.1 the impact of separating cross inequalities. Column
cut-cross refers to cut with the cross inequalities. Columns Conn Cuts and Cross
Cuts show the average number of connectivity and cross inequalities separated by the
algorithm. Notice that, on average, cut-cross was much faster than cut on all grid
instances. Furthermore, only cut-cross was able to solve all the instances with more
than 100 vertices within the time limit.

Instead of showing the complete tables (which can be seen in the appendix), we se-
lected some representative instances with the weight distribution of type a = [1, 100] and
plotted the execution time in a histogram. This way, the reader can easily visualize the
bulk of our results without carefully (and painfully) analyzing each row of the tables.
Figures 6.2 and 6.3 show histograms with the average execution time � note the y-axis
is in logarithmic scale. Unlike the tables, when computing the average for these plots,
we assume that an algorithm took 1800 seconds to solve instances which were not solved
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cut cut-cross

Instance Sol Conn Cuts Time Sol Conn Cuts Cross Cuts Time

gg_05_05_a 10 3,504 0.50 10 449 478 0.15
gg_05_05_b 10 24,252 3.32 10 2,817 3,841 0.84
gg_05_05_c 10 110,142 16.22 10 9,852 14,505 3.77
gg_05_06_a 10 6,184 0.80 10 1,056 1,286 0.32
gg_05_06_b 10 21,125 2.76 10 3,311 4,536 1.02
gg_05_06_c 10 156,230 22.97 10 12,587 19,210 4.94
gg_05_10_a 10 44,635 5.63 10 2,187 2,147 0.55
gg_05_10_b 10 67,926 9.37 10 3,776 3,884 1.10
gg_05_10_c 10 358,226 55.92 10 14,897 23,184 7.80
gg_05_20_a 6 2,821,710 521.39 10 9,578 8,768 2.43
gg_05_20_b 10 1,836,157 325.73 10 23,832 23,613 6.47
gg_05_20_c 8 3,590,827 751.55 10 30,836 34,307 14.43
gg_07_07_a 10 41,279 6.84 10 2,128 2,220 0.78
gg_07_07_b 10 184,730 30.99 10 3,035 3,647 1.29
gg_07_07_c 10 896,587 167.58 10 19,739 28,066 10.11
gg_07_10_a 10 301,289 57.34 10 2,154 1,942 0.81
gg_07_10_b 10 427,441 87.24 10 5,954 6,243 2.69
gg_07_10_c 10 1,715,120 390.97 10 31,894 44,412 31.56
gg_10_10_a 10 1,373,429 389.42 10 2,987 2,432 1.20
gg_10_10_b 9 1,289,465 370.06 10 3,652 3,343 2.12
gg_10_10_c 9 1,373,725 406.28 10 28,492 32,264 28.53
gg_15_15_a 0 - - 10 13,032 7,371 8.97
gg_15_15_b 0 - - 10 15,411 10,182 13.88
gg_15_15_c 0 - - 10 70,108 52,280 106.23

Table 6.1: Computational results for BCP2 on grid graphs showing the e�ciency of the
cross inequalities.

Figure 6.3: Computational results for BCP2 on random graphs. Time is in logarithmic
scale.
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Figure 6.4: Experiments for BCP2 on random graphs with 1000 vertices and di�erent
densities. Time is in linear scale.

within the time limit.
As can be seen, our best algorithms signi�cantly outperform previous exact methods.

Figure 6.2 illustrates that flow had better execution times than cut-cross on most of
the grid instances. Moreover, on grids with over 100 vertices, Mati¢ and Zhou formulations
were not able to solve the majority of the instances, while cut-cross and flow solved
all of them. Furthermore, Figure 6.3 shows that both of our formulations are also faster
(on average) on random graphs instances. The execution time for cut was better than
flow on some of the random graphs. Looking more closely at the number of vertices and
edges, we noticed that the density of edges on the input graphs was a crucial factor for
the performance of both algorithms.

In order to further explore the in�uence of the density of edges, we generated random
graphs with a greater number of vertices (n = 500 and n = 1000) and di�erent values
for density (m = nα, where α varies between {1.1, 1.2, . . . , 1.5}). The experiments on
instances with 1000 vertices are visually represented in Figure 6.4. Table A.4 (in the
appendix) shows that random graphs with 500 vertices exhibited a similar trend. Observe
that in this histogram, time is in linear scale, since when doing comparisons between our
own algorithms the di�erence in execution times is less prominent. Our experiments
indicate that algorithms based on Cut formulation perform better than algorithms based
on �ow formulation when m ≥ n1.2. One fact that might explain this behavior is that
a higher percentage of the vertices are adjacent in graphs with greater density. Thus,
because we do not separate connectivity inequalities for adjacent vertices, the algorithms
might spend less time in the separation routines. Moreover, as we increase the density of
the graphs, it becomes easier to guarantee the connectedness of the classes. Thus, fewer
connectivity inequalities might be violated in the branch-and-cut algorithms. Indeed,
this was observed in our experiments (and shown in Table A.4): increasing the number
of edges reduced drastically the number of separated connectivity inequalities, in a way
that once m gets greater or equal to n1.4, no connectivity inequality is separated at all.

Looking at Figures 6.2 and 6.3 we also observe that, on some classes of graphs, ordering
the classes by their weights was not bene�cial. In fact, the z-versions of the algorithms
were, on average, slightly faster than their correspondent ordering counterparts. However,
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as the size of the grids grows, the number of symmetric solutions also increases; thus, on
larger grids, ordering the classes might improve the execution times. Such a behavior can
be seen in Table 6.2, where we show instances of grid graphs with many vertices that
could only be solved by flow and flow-z. Notice how flow was superior on almost
all the rows of the table.

flow flow-z

Instance Sol Nodes Time Sol Nodes Time

gg_30_30_a 10 466 2.71 10 333 2.15
gg_30_30_b 10 731 3.14 10 542 2.61
gg_30_30_c 10 2,064 5.09 10 5,259 9.57
gg_60_60_a 10 420 20.06 10 318 12.30
gg_60_60_b 10 751 19.49 10 883 20.30
gg_60_60_c 10 2,810 56.19 10 861 25.17
gg_90_90_a 10 727 89.21 10 483 130.51
gg_90_90_b 10 874 88.78 10 327 203.92
gg_90_90_c 10 1,796 116.32 10 596 102.75
gg_120_120_a 10 575 148.93 10 143 626.39
gg_120_120_b 10 736 207.57 10 164 496.14
gg_120_120_c 10 1,077 178.66 10 242 254.92
gg_150_150_a 10 546 302.97 5 230 1281.25
gg_150_150_b 10 1,087 334.19 7 129 997.63
gg_150_150_c 10 1,226 383.69 9 197 643.20
gg_180_180_a 10 305 571.58 10 599 717.65
gg_180_180_b 10 451 599.53 9 374 1112.19
gg_180_180_c 10 784 716.84 10 1,321 938.36
gg_210_210_a 10 400 1100.32 10 298 1117.10
gg_210_210_b 9 325 1064.07 10 194 1172.61
gg_210_210_c 10 1,199 1232.04 3 1,482 1491.76

Table 6.2: Performance of flow to solve BCP2 on large grids.

In our experiments, flow and flow-z were the only algorithms able to solve the
police patrolling instances within the time limit; with the latter algorithm having a better
overall performance. As Table 6.3 indicates, the problem becomes harder to solve as the
value of k increases.

In this sense, we also carried out experiments for k > 2 on grid graphs and random
graphs, as shown in Table 6.4. To compare with the formulation proposed by Zhou et al.,
which is intended to min-max BCPk, we considered cut and �ow formulations with min-
max objective (i.e. minimizing the weight of the k-th class). These algorithms are denoted
by the string �(min-max)� at the end of their names. Since flow-z (min-max) had
the best performance in these instances, we omit the results for the other algorithms
in Table 6.4 (the interested reader can check the Table A.5 for the expanded results).
We remark that although Zhou et al.'s branch-and-bound solved one speci�c instance in
508.93 seconds, flow-z (min-max) solved 5 more instances of the same graph class.
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Instance 2 3 4 5 6

barao_1913_2752 40.171 438.481 1658.954 - -
campinas_centro_579_942 1.998 53.857 - 185.487 -
chicago_englewood_1560_2579 29.872 60.041 300.252 1649.001 -
chicago_lakeview_1004_1563 2.997 32.129 146.288 154.851 -
chicago_loop_624_971 1.772 52.727 57.769 132.141 -
la_hollywood_1368_2030 16.444 194.314 222.594 1108.832 -
la_skidrow_1667_2459 6.956 73.676 1142.841 - -
nyc_chelsea_822_1228 2.72 25.885 125.357 147.829 1637.057
nyc_hellskitchen_498_746 1.168 11.511 155.053 303.183 -
unicamp_624_901 1.974 10.524 58.919 1663.362 -

Table 6.3: Running time of flow-z on police patrolling instances.

flow-z (min-max) Zhou et al.

Instance k Sol Nodes Time Sol Nodes Time

gg_07_10_a 3 10 1,654 0.58 2 1,072,107 603.97
gg_07_10_a 4 10 13,488 2.47 1 99,880 68.95
gg_07_10_a 5 10 208,118 38.01 0 - -
gg_07_10_a 6 7 1,976,217 417.59 0 - -
rnd_100_150_a 3 10 586 0.41 9 109,799 70.04
rnd_100_150_a 4 10 7,572 2.19 4 1,019,886 641.36
rnd_100_150_a 5 10 188,771 74.49 0 - -
rnd_100_150_a 6 6 1,516,926 838.78 1 205,247 508.93

Table 6.4: Computational results for min-max BCPk when k ∈ {3, 4, 5, 6}.
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Figure 6.5: Instance of BCP2 with w(v1) = w(v5) = w(v6) = 100 and w(v2) = w(v3) =
w(v4) = 1.

Our computational experiments show that the algorithms based on the formulations
we presented substantially outperform the previous exact methods in the literature. In
most of the tested instances, algorithms based on the �ow formulations had the best
average execution time. On the other hand, the algorithms based on the cut formulations
explored (on average) a smaller number of nodes in the branch-and-bound tree (see the
appendix) and were the fastest on dense graphs.

6.3 On the linear relaxation bounds

Table A.1 (in the appendix) shows that flow solved only 4 (and flow-z solved only 6)
out of the 10 instances of class gg_05_05_c. Examining closely, we noticed that, when
the optimal solution cost is considerably smaller than the trivial upper bound of w(G)/k,
flow frequently fails to �nd a provably optimal solution within the time limit. In this
section, we elaborate on this matter by looking at the strength of formulations C and F .
In order to do so, we compare the cost of optimal (integral) solutions with the cost of
optimal solutions of the corresponding linear relaxations.

It is not di�cult to see that for any instance of BCPk, an optimal solution for the
linear relaxation of Fk(G,w) and also of Ck(G,w) has cost w(G)/k, a trivial upper bound
for the optimal value.

Let us �rst show that this happens for the linear relaxation of Fk(G,w). For that,
take the vector (f̃ , ỹ) ∈ Rkn+2m × Bkn+2m, de�ned as follows. For each source si, i ∈ [k],
and each arc (si, v), we set f̃siv = w(v)/k and ỹsiv = w(v)/(kw(G)). For every arc a
not incident to a source, we set f̃a = ỹa = 0. Clearly, (f̃ , ỹ) is a feasible solution,
and f̃(δ+(si)) = w(G)/k for every i ∈ [k].

Now, consider the linear relaxation of Ck(G,w). It is immediate that the vector x̃ ∈ Rnk

de�ned as x̃v,i = 1/k, for each v ∈ V and each i ∈ [k], is a feasible solution for this
relaxation, and moreover,

∑
v∈V w(v)x̃v,i = w(G)/k for each i ∈ [k]. Thus, x̃ is an

optimal solution.
This linear relaxation may be strengthened by adding the cover inequalities mentioned

in Section 5.3.1. As an example, consider the instance (G,w) of BCP2 illustrated in
Figure 6.5. Note that {v1, v5} is a cover since w(v1) + w(v5) > w(G)/2, and thus the
lifted cover inequality xv1,1 + xv5,1 + xv6,1 ≤ 1 is valid for the polytope associated with
the linear relaxation of C2(G,w). Such an inequality cuts o� any optimal solution for the
linear relaxation of C2(G,w) whose cost is w(G)/2 = 151.5, as we observed before.

To get a better understanding of the e�ectiveness of the lifted cover inequalities, we
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constructed instances for BCPk consisting of grid graphs in which all the vertices are
assigned unit weights, except for exactly (k+1) random vertices that have a given (large)
weight p > 1. Hence, the gap between an optimal integer solution and an optimal frac-
tional solution for the �ow-based formulation can be arbitrarily large on these instances.
In our experiments, we set p = 100 and generated 10 instances consisting of grid graphs
with height 5 and width 10. flow could not solve these instances within a time limit of
1800 seconds, while cut (with the lifted cover inequalities) solved each of them in less
than 1 second.

This gives an evidence that the lifted cover inequalities are useful in cutting o� frac-
tional optimal solutions of the linear relaxation of the cut-based formulation, and yield a
better approximation of the convex hull.
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Chapter 7

Conclusion

We proposed two MILP and one ILP formulation for the Balanced Connected k-Partition
Problem. These formulations are all based on the idea of imposing an ordering of the
classes {Vi}i∈[k], such that w(Vi) ≤ w(Vi+1), for all i ∈ [k − 1]. Therefore, one may easily
modify the objective function to capture diverse concepts of �balance�, such as minimize
the heaviest class or the maximum di�erence of weights between the classes.

The �rst two formulations we introduced are based on �ows in a digraph created
from the input graph. The �rst of them, F , has a polynomial number of variables and
constraints. To overcome the apparent disadvantages of this formulation, like symmetries
and dependency on the weights of the vertices, we designed F̄ . Although more complex
than the former, this formulation avoids some symmetries and has less dependency on
the weights of the vertices. However, in our computational experiments, the performance
of the branch-and-bound algorithm based on formulation F was signi�cantly superior to
the one based on F̄ .

The third of our formulations, denoted by C, is de�ned on the input graph and has an
exponential number of connectivity inequalities, to which we presented a polynomial-time
separation algorithm and a lifting procedure. Moreover, we introduced a new class of
valid inequalities for this formulation, and showed how to separate a special case of them
(cross inequalities) on planar graphs in polynomial time. The experiments showed that
the addition of these inequalities improves greatly the performance of the corresponding
branch-and-cut algorithm.

We also considered the impact of ordering the classes by their weights. To this end, we
derived formulations F ′, F̄ ′ and C ′, which add a real variable z and avoid such an ordering.
Although these z-versions of the formulations have additional symmetries, computational
experiments demonstrated that, in some cases, they might yield faster algorithms. In par-
ticular, our experiments seem to indicate that ordering is bene�cial only for instances with
over 104 vertices. Further investigation is still needed to fully understand the e�ectiveness
of breaking symmetries.

When the vertices have uniform weight, we characterized that some inequalities of the
model de�ne facets of the associated polytope. Moreover, we also conducted a polyhedral
study for the z-version of Cut formulation, namely C ′. To the best of our knowledge, no
previous polyhedral study was reported for BCPk or min-max BCPk.
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Formulation # Binary Variables # Real Variables # Constraints

Cut C kn 0 O(2n)
Flow F O(kn+m) O(kn+m) O(kn+m)
Asymmetric Flow F̄ O(k(n+m)) O(k(n+m)) O(k(n2 +m))
Matic [37] O(n+m) O(n+m) O(n+m)
Zhou et al. [50] O(k(n+m)) O(n+m) O(km)

Table 7.1: Formulations in terms of the amount of variables and constraints for an instance
of BCPk with n vertices and m edges.

Table 7.1 summarizes the number of variables and constraints in the formulations
proposed in this work.

The computational experiments indicated that the methods proposed in this thesis
have a considerably better performance than the previous exact algorithms in the litera-
ture. In particular, flow was able to solve grids with over 400 times more vertices than
the grids solved by the previous exact solving methods in the literature. Moreover, only
the algorithms based on �ow formulation were able to solve real-world instances. Hence,
in a practical context, if one wants to �nd an optimal solution for an instance of BCPk,
one could begin by carrying out experiments with flow. Not only flow is easier to
implement than the other proposed algorithms, but it also had the most promising com-
putational results.

Although cut was more e�cient on random graphs with a higher density of edges,
flow had a superior behavior overall. Therefore, future work is still needed in order to
make cut more competitive. For example, one could investigate new valid inequalities
and design (if needed) e�cient separation routines. Furthermore, our experiments show
that our formulations had di�culties for larger values of k. New ideas and formulations
may be needed to solve e�ciently in such cases. Finally, we only conducted a polyhedral
study based on Cut formulation. One could also investigate the facial structure of the
polytope associated with F , however such a polytope may not be full-dimensional, which
might give rise to technical di�culties.

All the instances we used in our computational experiments will soon be available at
the website of the Laboratory of Optimization and Combinatorics at the University of
Campinas 1.

1https://www.loco.ic.unicamp.br/�les/instances
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