## Poster information

### Accepted posters (sorted by presenters' last name, in bold):

- S. Ahmed,
**G. Angulo**, S. Dey. Cutting planes for semi-continuous network flow problems. - E. Amaldi,
**S. Coniglio**, S. Gualandi. Sequentially coordinated cutting plane generation for inequalities with integer coefficients. - S. Ahmed, S. Dey,
**A. Gupte**. Lifted inequalities for bilinear equality flow constraints. **M. Guzelsoy**, G. Nemhauser, M. Savelsbergh. Fix and Relax Branch-and-Bound for Mixed Integer Programming.- S. Ahmed,
**Q. He**, G. Nemhauser. Sell or Hold: A simple two-stage stochastic combinatorial optimization problem. - A. Basu,
**R. Hildebrand**, M. Koeppe. On the Facets and Optimal Cuts of Mixed Integer Programs with Fixed Number of Integer Variables and Constraints. **H. Jeon**, J. Linderoth. Inequalities for a Nonseparable Quadratic Set.- L. Galli,
**K. Kaparis**, A. Letchford. Gap Inequalities for Mixed-Integer Quadratic Programs. **M. Kilinc**, J. Linderoth, J. Luedtke. Exploiting Separability for Solving Convex Mixed Integer Nonlinear Programming.**C. Kirches**. Fast numerical methods for mixed-integer model-predictive control.**M. Koeppe**. A discretization-free FPTAS for polynomial optimization over the mixed-integer points in a class of polytopes of varying dimension.- J. Chinneck,
**H. Mahmoud**. Achieving Integer Feasibility Quickly by Alternating Axis-Parallel and General Disjunctions. - K. Cheung,
**B. Moazzez**. Finite Representation for Mixed Integer Programs using Subadditive Generator Functions - S. Dey,
**D. Moran**, J.P. Vielma. Strong Dual for Conic Mixed-Integer Programs **V. Narayanan**. Semidefinite representation of integer hulls.**J. Ostrowski**. Using Symmetry to Optimize Over the Sherali-Adams Relaxation.- G. Nemhauser,
**D. Papageorgiou**, M. Savelsbergh, A. Toriello. Fixed-Charge Transportation with Product Blending. **C. Puchert**. Primal Heuristics for Branch-and-Price Algorithms.- S. Ahmed, S. Dey,
**F. Qiu**. MIP approaches for sampled approximations of probabilistic covering constraints - J. Luedtke,
**Y. Song**. A Chance-constrained Model for the Design of Reliably s-t Connected Networks. - W. Cook, T. Koch,
**D. Steffy**, K. Wolter. An Exact Rational Mixed-Integer Programming Solver. **R. Stephan**. Reducing the minimum T-cut problem to polynomial size linear programming.- C. Buchheim,
**E. Traversi**. Separating Split Inequalities for Non-Convex Integer Quadratic Programming. - S. Kucukyavuz, H. Yaman,
**M. Zhang**. A polyhedral study of the two-echelon lot-sizing problem with intermediate demands.