
© Marius Hofert, Ulf Schepsmeier

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

Guidelines for Statistical Projects: Coding and
Typography

Marius Hofert1, Ulf Schepsmeier2

2014-10-01

Abstract

Guidelines for conducting, implementing (in LATEX and R) and documenting statistical (re-
search) projects are provided in order to improve readability and reduce the error rates of
theses, scientific papers, reports and especially code. This is meant to save supervisors, package
maintainers, students and practitioners a lot of time. It is clear, however, that such guidelines
cannot be exhaustive. The given recommendations should therefore rather serve as a starting
point for improving your workflow and to avoid common pitfalls in statistical projects of larger
scale.

Keywords
Coding, typography, LATEX, R.

MSC2010
68U15, 68U20, 68U05, 97R60.

Contents

1 Introduction 2

2 General suggestions 3
2.1 Forget about the Pareto principle (80–20 rule) 3
2.2 When solving a particular problem for the first time, spend time on it 4
2.3 English in mathematics . 4
2.4 Be consistent . 5
2.5 Be concise . 5
2.6 Be structured . 6
2.7 Be self-contained . 7
2.8 Be reproducible . 7
2.9 Optimize communication, meetings and preparation 8

3 Editors and integrated development environments 9

1Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo,
ON, Canada N2L 3G1, marius.hofert@uwaterloo.ca

2Department of Mathematics, Technische Universität München, 85748 Garching, Germany, ulf.schepsmeier@
tum.de

1

mailto:marius.hofert@uwaterloo.ca
mailto:ulf.schepsmeier@tum.de
mailto:ulf.schepsmeier@tum.de

© Marius Hofert, Ulf Schepsmeier

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

1 Introduction

4 LATEX 10
4.1 Getting started . 10
4.2 Typographic recommendations for mathematical documents 10
4.3 Technical tricks to improve typography . 12

4.3.1 Citations . 12
4.3.2 Spaces and alignment . 12
4.3.3 Figures . 13
4.3.4 Miscellaneous . 14

5 R 14
5.1 Getting started . 14
5.2 Documentation . 15

5.2.1 Citing R and R packages . 15
5.2.2 Run time information . 16
5.2.3 Code documentation . 17

5.3 Programming style . 18
5.3.1 Writing correct code . 18
5.3.2 Writing readable code . 18
5.3.3 Writing safe, fast, flexible and sophisticated functions 20
5.3.4 Learn from others, learn from the masters 22
5.3.5 Test your code . 23
5.3.6 Specific hints . 23

5.4 Tables and graphics . 23

6 Version control 25
6.1 Dropbox . 25
6.2 SVN . 25

6.2.1 Checkout . 26
6.2.2 Add and (re)move . 26
6.2.3 Update, commit . 27
6.2.4 Log, status, list, diff . 27
6.2.5 Conflicts . 28

6.3 Git . 28

7 Submitting a paper 28
7.1 Purpose of journals: How to find the best fitting journal for my research 29
7.2 Preparations before submission . 30
7.3 Submitting a paper . 31

References 32

1 Introduction
These guidelines are meant for students, professors and practitioners who would like to write,
participate in, or supervise a project such as a bachelor, master, Ph.D. thesis, or scientific
paper in the intersection of mathematics, statistics and computer science. Besides some general
recommendations, we focus on the software tools LATEX and R for conducting, implementing and
documenting the project.

2

© Marius Hofert, Ulf Schepsmeier

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198

2 General suggestions

Before going into detail, some remarks are in order:
The science of coding Coding (in LATEX, R etc.) is like a handwriting. From the corresponding

files and style of coding one can read a lot. Writing correct, readable, well-documented and
easy-to-maintain code is a science on its own and one that is not taught explicitly at university
level unless one specifically studies computer science (but this course of studies rarely addresses
LATEX and R). However, with the ever increasing complexity of statistical simulations and
projects, it becomes important to have coding guidelines – otherwise it might be difficult for
others to understand what you actually want to “say” or do with your code. Besides being
correct, your code should be easily readable and extendable by others. Larger projects involve
more and more contributors, each of which should be able to easily follow your code and adjust
it if required, hence some guidelines are in order.

Motivation These guidelines are motivated from our own work with students and practitioners.
After pointing out improvements, making code more readable, correcting common mistakes and
improving documents again and again, we hope that these guidelines help all parties involved
in a project to avoid (what we believe are) common pitfalls and to save time.

Focus The guidelines reflect our personal recommendations and experience using LATEX and
R (and related tools mentioned below) in our personal areas of research (which lies in the
intersection of mathematics, statistics and computer sciences). It is clear that such a guide
cannot be exhaustive. In particular, this is not an introduction to the topics presented! If you
feel that we missed an important aspect not easily found or addressed in other guidelines or
tutorials, or if you can improve this document, please let us know.

Goal Our goal with these guidelines is not to make a document or code snippet 100% perfect.
There are exceptions to almost any rule and describing all of them would extend the page
count of this document well beyond what you would be willing to read; the left-out exceptions
are the 10–20% not discussed here. Furthermore, some aspects are discussed in more detail
than others (which is motivated by our work/judgement). Aspects addressing more advanced
users are marked with an A .

Disclaimer This document does not exist to torture you(r workflow) to use a specific kind of
operating system, editor, software, etc. It should rather point out how we tackle certain
problems (and partly, but not always (!), why we solve them like this). You may or may not
find this helpful, the principle do not like it? do not use it! applies.
We will constantly update this document. Therefore, there will never be a version which can
be considered final.
The guidelines are organized as follows. In Section 2, we give general suggestions for written or

coding intensive projects. Section 3 briefly addresses the importance and choice of text editors.
Section 4 and Section 5 point out recommendations when working with LATEX and R, respectively.

2 General suggestions
2.1 Forget about the Pareto principle (80–20 rule)
Definition The Pareto principle (or 80–20 rule) says that for many events, 80% of the final

outcome/result/effect is achieved by 20% of the input/causes.
Meaning Essentially, this means that one should stop after having spent 20% of the time/effort

one could spend on the project, since all additional effort would just improve the outcome by
the remaining 20%.

3

© Marius Hofert, Ulf Schepsmeier

0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264

2 General suggestions

Why not? The Pareto principle is frequently used in many areas. However, it does not apply
to scientific work. If you write a research paper, for example, it will come back for revision
at some time. You certainly do not want to realize a year later, that you now actually have
to start over with the whole work (instead of doing just a revision). Furthermore, if a referee
feels that you only spent 20% of the effort on the submitted work, this most likely results in a
rejection. Do your homework, work hard and exclusively on the topic and you will get a result
you can be happy with. Also, your supervisor is happy to learn about what comes (far) after
the 80% (in contrast to hearing about well-known results). Keep that in mind at any stage.

2.2 When solving a particular problem for the first time, spend time on it
In programming, there is this basic (unwritten) law (maybe applying as well to research in
general):
1) If you have a problem, search for it.

The chance that you are the first one working on this problem is small. Others may have
already solved the problem (in an elegant, optimal, fast and readable way).

2) If you cannot find a solution, search more, search differently, search longer – but search for it!
3) If you still cannot find it, go back to 2).
4) If you are sure there exists no (good) solution, write your own. Spend a lot of time on it to

ensure the solution is excellent. Then make it (publicly) available.
Concerning 1) and the links we provide below, always look for solutions provided by senior
members of mailing lists, forums, blogs etc., as there can be significant differences in the quality
of the answers.

In short, if there is a good solution available, learn from it. If there is not, write your own, but
make sure it is of good quality so that others can benefit from it when they find themselves in the
same position.

2.3 English in mathematics
The language science speaks is (American) English. Even if it is only a comment in a script you
write, a file name, variable, or function etc., use (American) English. It will be easier for others
to find and understand your work (besides various other advantages).
Additionally, we want to mention some basic rules for mathematical typography in English;

here we follow Halmos (1970) and Higham (1993).
Short(er) sentences Use short sentences in your theses or project document. Long sentences are

not as conventional in English as they are in German, for example. So German students, at
least, are advised to follow this rule. Formulate (sufficiently) simple and simple to understand
sentences. This improves the readability of your text.

Pluralis majestatis In scientific documents one uses “we” instead of “I”, even if there is only one
author – the “we” represents the author and the reader.

Passive mode In English it is often easier and more elegant to formulate a statement in passive
mode. But do not use it too often, especially in American journals the active mode is often
preferred.

Readable text instead of operators In the English mathematical literature, words such as “there
exists” or “for all” are to be preferred over their operator equivalents “∃” and “∀”; the former
make the text more readable. This contrasts, for example, German mathematical typography.

4

© Marius Hofert, Ulf Schepsmeier

0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330

2 General suggestions

Another symbol frequently used in German but not English mathematical typography is “:=”
(“=:”) for defining the quantity on the left-hand (right-hand) side by the one on the right-hand
(left-hand) side.

Comma rules in English As non-native English speaker one is often unsure if and when a comma
has to be set in a sentence. In general the regulation regarding commas in English is less
restrictive as in German, for example, but there are some rules:

A nonrestrictive element, which does not limit scope but merely provides additional infor-
mation, is indicated by being set off by commas.
A restrictive relative clause is introduced with “that” and is not set off by commas.
A nonrestrictive relative is introduced with “which” and is always set off by commas.
Use a semicolon only where you could also use a full stop.
Mind commas in if-clauses: “If you knew all that I know, you would know what I mean”,
but “You would know what I mean if you knew all that I know”.

2.4 Be consistent
Stick to (your) rules Consistently use the same notations for the same quantities throughout

the text. More generally, stick to the (typographical/coding) rules you use exactly in the
same way throughout the whole file (.tex document or .R script), from the very first to the
very last character in the file (even when using spaces). This will significantly help you when
search-and-replace is in order (after a supervisor’s or referee’s feedback, or if you would like to
make changes).
Say, you use a special rule for writing nested parenthesis, for example one of((((

((a7x + a6)x + a5)x + a4
)
x + a3

)
x + a2

)
x + a1

)
x + a0 (1)

or

[{([{(a7x + a6)x + a5}x + a4]x + a3)x + a2}x + a1]x + a0.

It does not matter (much) which is to be preferred on first writing (and for publications in
scientific journals this is often determined by the journal’s style guide), as long as you stick to
the very same rule throughout the whole document.

2.5 Be concise
Be precise Most importantly, be mathematically correct (for example, note the difference between
∈ and ⊆, a quite common mistake). Furthermore, be concise in your descriptions, proofs, etc.
In mathematics, this especially applies to assumptions made for certain statements to hold.

Be short Besides being precise, be short. Twenty well-written pages are much more interesting
to read (besides being less to type and less to correct or grade) than one hundred sloppy and
boring pages.

Everywhere in the documentation Being concise applies to various parts of a project, for exam-
ple, the documentation:

Headings Headings and the table of contents should provide a golden thread or structure
which should be easy to grasp without even reading the text.

5

© Marius Hofert, Ulf Schepsmeier

0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396

2 General suggestions

Figures and tables Figures and tables, including their captions, should be easy to read and
understand without having to search in the text for the corresponding explanation.

Formulas Put important formulas in a displayed equation and check that the main ideas of
your work can be followed by just looking at the displayed equations. In the same spirit,
a displayed equation/formula etc. should make sense as much as possible without looking
at the text3. Conversely, more complicated formulas should always be explained in verbal
form in the text as well. This, together with the displayed equation/formula (do not use
text here), gives the reader the chance to understand the topic on two different levels, one
language-based and one formula-based. Ideally, there should also be third, graphical-based
level by illustrating the (complicated) formula with a graphic.

File, variable and function names Naming files, variables and functions (both from a mathemat-
ical and a programming point of view) in a meaningful way is important. Label versions of your
files by starting with the date in ISO 8601 date format (such as 2013-12-31_my_project.R).
This way, they are displayed in chronological order if files in the current folder are sorted by
name.
Do not call a variable variable or var. Instead, give it a context-related and self-explaining
name (ideally even such that the type (integer, real, etc.) of the variable is obvious from its
name), such as tau for a certain value of Kendall’s tau or n for a sample size (similar to the
standard notation n in statistics). Choose variable names in scripts as close as possible to
their mathematical equivalents. In the same spirit, do not call a function fun; note that R, for
example, would not even allow the (reserved) name function.
Also, do not encode a certain method or outcome in numbers if it is not a number naturally.
For example, colors 1, 2 and 3 are much less self-explaining than colors “blue”, “green” and
“red”.
The following basic rule typically provides compact and readable code: The more often you
need a variable (this partly also applies to functions), the shorter its name should be. Often,
short names can be generated by leaving out vocals, the human eye typically “interpolates”
correctly and directly recognizes the corresponding word (and thus the meaning of the name).
In general, omit superfluous parts in function names; for this and other naming conventions
more specifically in R, see Section 5.3.2.

2.6 Be structured
Introduction, abstract and summary come last Do not start to write your paper or project

document by thinking about the introduction. The introduction, abstract and summary are
the last parts you should write in your project. First concentrate on the content. At the very
last, think about the introduction and the end. Write down headwords, for example for the
motivation of the topic and finally write out the introduction in full. Additionally, you can

3Also, when introducing a function f for the first time, do not just write

f(x) = log x.

Instead, make it more precise by providing its domain, so

f(x) = log x, x ∈ (0, ∞).

6

© Marius Hofert, Ulf Schepsmeier

0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462

2 General suggestions

also note the most important three or so words on every page of your document. This can help
in creating a golden thread.

Numbering To structure your manuscript into meaningful parts you can use chapters (but only
in large manuscripts like books or theses), sections, subsections, or paragraphs. Do not use too
many levels of headings. In most cases, three numbered levels are sufficient. In smaller reports
even two levels are typically fine. Only use subsections if you have more than one meaningful
subsection. Otherwise work with paragraphs.

Two possible ways During our scientific career we learned two ways of starting a document and
structuring it.

Bottom-up Collect all your ideas, write them down, and finally structure them into associated
parts, sections and chapters.

Top-down Think about a logical way of reading/following your paper. Write down the chapters
and sections you have in mind and order them. Then write down your ideas and text in the
corresponding sections.

Listings Sometimes, list of bullet points are very helpful to write down several connected state-
ments in a compact way. If they have an order you may use an ordered list, otherwise an
unordered list. You can use different numbering styles, e.g., arabic or roman numbers, or
alphabetical items. In unordered lists different bullet point styles are also available (we mainly
use filled squares in this document). Even minor headings are possible, see for example this
guide.

2.7 Be self-contained
Outsource Instead of reproducing known results, properly refer to papers, books, or code/packages

your work is based on; when referring to books, always provide a page number (and mention
the edition of the book in the references).

How to cite Typically, author-year citation style (such as “paperAuthorLastName (YYYY)” or
“bookAuthorLastName (YYYY, pp. 17)”) provides the most readable and memorable citations.
Also, instead of just “It follows from A (2000) and B (2010) that z holds”, write “In terms of
our setup here, A (2000) showed that x holds. With this result, the assumption of the main
theorem in B (2010) holds, which states that. . . One can therefore conclude that z holds”. In
this way, the main idea can be followed without having to read “A (2000)” and “B (2010)”,
which makes the document more self-contained. Note that “p. 17” is used to refer to page 17
directly and “pp. 17” to refer to page 17 and thereafter.

Do not cite the world’s literature Cite (only) the main or original reference and not a myriad
of references which are more or less related to a topic/theorem/definition/statement. It makes
the text unnecessarily long and difficult to read (and by Section 2.5, we wanted to be concise!).

2.8 Be reproducible
Meaning Make sure your results are reproducible, that is, one can repeat the experiment or

simulation (or even a proof (!)) and obtains the exact same result.
Seed and more To obtain a reproducible statistical simulation, always set a seed! For more on

this, including instructions how to conduct simulation studies in R, see (the ideas and words of
warning in) Hofert and Mächler (2014).

7

© Marius Hofert, Ulf Schepsmeier

0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528

2 General suggestions

Sweave, KnitrA For manuscripts containing R code or R results one possibility to achieve repro-
ducibility is Sweave or Knitr. These two R packages allow to combine R and LATEX code in
one file (.Rnw files). Every time you change a calculation in the R code and compile the whole
document, the R results are automatically updated and propagated to the pdf file created by
LATEX (there are many more options).
Both packages are very useful for small projects and short reports. Some editors like RStudio
(see Section 3) support Sweave and Knitr and offer buttons to easily incorporate so-called
chunks – pieces of R code in LATEX. Furthermore, these tools have a good documentation and
an intuitive handling.
Tools like Sweave and Knitr also have their drawbacks. Mixing LATEX and R code does not
necessarily provide all the features that either one provides (there are restrictions). Furthermore,
having text mixed between different chunks of code may distract you from coding (typically,
text – besides comments – does not help in writing sophisticated code); navigation within
the document also does not get easier. Moreover, debugging (that is, searching for errors that
appear in some piece of code) is significantly more difficult when mixing R with LATEX code.
Finally, run time is longer (although intermediate results can be caught and stored, but this
again makes the code longer).
Overall, we thus do not recommend to use Sweave or Knitr for large projects, unless 1) there is
a significant amount of code to be displayed in the written companion of a project (which is
rarely the case); 2) the code runs sufficiently fast; and 3) unless the user’s knowledge about
LATEX and R is sufficiently advanced.

2.9 Optimize communication, meetings and preparation
Getting in contact If you contact a researcher/instructor etc. for the first time, start by (briefly!)

saying/writing who you are (what is your status? master/Ph.D. student? practitioner?), what
the goal of your project is (thesis? software development?) and who you work with on this
project (supervisor, colleagues, etc.).

Email communication Communication between you, your supervisor and a potential third party
such as a tutor will often be mainly by email. We advise you to consider the following points:

Choose a short but meaningful subject line. Subject matters such as “Hi” or “Dear Professor”
are not meaningful. A concise subject would be “Problem master thesis: for-loop too slow”,
for example.
Check your email before you send it. Is the announced attachment attached? Is the question
clearly formulated? Do I have answered all the questions the supervisor asked me in her/his
last email?
An unwritten law (at least applying to students) states that emails should be answered
within 24h (otherwise one could equally well send a carrier pigeon). Therefore, check (and
answer) your email at least once a day.

Preparing meetings Prepare the questions you have and would like to ask. Send them to your
supervisor (in the same email in which you ask for an appointment). Make a suggestion for two
possible dates for the meeting. Bring a paper and pencil to the meeting Also, be able to briefly
summarize your work/problems (which should be easy since you have already formulated the
related questions); your supervisor is usually involved in several projects simultaneously and

8

© Marius Hofert, Ulf Schepsmeier

0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594

3 Editors and integrated development environments

can not remember all details of your project. The more precisely you can nail down a problem,
the more likely you will directly get the answer you were looking for.

During meetings Take notes of the answers, comments, suggestions, etc. your supervisor mentions
during the meeting.

Wrap-up Complete and structure your write-up right after the meeting. Put the points you have
to act on in your files (.tex or .R) with a string TODO in front of them (this allows you to
search for all such points to see whether there is anything left in the document to do). Finally,
go through all files again, work on the TODOs, and take notes of the questions that arise (to
have them ready for the next meeting).

Feedback Note that your supervisor typically only corrects the first instance of a mistake in
a project document. It is your responsibility to completely go through the files and make
the corresponding corrections everywhere (which should be easy since you follow Section 2.4
above!).

Matter of course During meetings, be awake (!) and polite. Do not answer emails or phone calls
during a meeting (yes, it happened to us!)

3 Editors and integrated development environments
Why to think about it It seems difficult to overestimate the importance of a good (text) editor

for modern software development. Indeed, besides auxiliary programs (such as a PDF viewer,
for example), advanced programmers mainly work with a tool accepting command lines (the
“terminal” on Unix systems), a browser and a good editor. An editor is an application which
allows to edit files – one of the major tasks when writing documents or software.
Everybody can use his/her own favorite editor. We will not really recommend one. But we
will give some suggestions what a good editor should have and how the editor can support
and improve our coding style. Most of the more advanced editors, which we introduce below,
support automatically many of the style guides we will give in Section 4 and 5. Especially the
ones in Section 5.2 and 5.3.

Two sophisticated choices Although many pieces of software now provide their own integrated
development environment (“IDE”), there are some powerful editors that can be used for various
different tasks and thus provide a notion of “economies of scale” for development. Two very
sophisticated editors are GNU Emacs and Vim. Both editors go far beyond simple task such
as syntax highlighting or navigation within files. Their rivalry is known as “editor war”. Both
editors are highly customizable and can be further expanded to allow for much more advanced
tasks such as managing files including bookmarks or as Getting Things Done (“GTD”) software,
partly even as email program or web browser. Especially for working LATEX and R, Emacs is
suited well, with the well-developed tools AUCTEX and Emacs Speaks Statistics (“ESS”). The
customizability comes at the price of rather steep learning curve, though. Although powerful
editors such as Emacs or Vim can be recommended to work with in the long run, it takes time
to become proficient in using them.
A popular choice for Windows is the free program Notepad++. This is a powerful editor
which is (partly) customizable and goes beyond syntax highlighting or navigation within files.
Many coding languages are supported and extensions are possible. “Find and replace” or other
editing functions are well implemented and can be used in several files simultaneously.

9

© Marius Hofert, Ulf Schepsmeier

0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660

4 LATEX

Less powerful but easier to learn choices For working with LATEX and R, there are also specific
editors and IDEs available which are comparably easy to use. For LATEX examples are Kile or
Texmaker (primarily for Linux), TextMate (a more general text editor) or TeXShop (for Mac),
or TeXnicCenter (for Windows).
For R, we can recommend RStudio which is available on Linux, Mac and Windows. It combines
R with an editor, file directory, help pages and output windows. R packages can be easily
installed/updated and loaded. Even whole projects such as packages can be managed in
RStudio-projects. Furthermore, RStudio supports the easy use of Sweave and Knitr; see
Section 2.8.

4 LATEX
4.1 Getting started
Introduction We assume the reader to be familiar with basic syntax and usage of LATEX. For an

introduction, see Oetiker et al. (2011). For LATEX packages and other material around TEX, see
http://www.ctan.org/.

Help Typically very good help on more advanced topics is provided by http://tex.stackexchange.
com/.

4.2 Typographic recommendations for mathematical documents
Getting help Although books like Ritter (2002) can provide guidance with many good ideas not

mentioned here, keep in mind that (by far) not all recommendations apply equally well to
mathematical or scientific documents.

Common careless errors Beware of mistakes (supervisor names, dates, spelling of affiliation etc.)
on title pages, covers, etc., one typically does not check such pages again after they have been
created.

Lazy eye principle To access whether a document looks good, apply the lazy eye principle: hold
the page a meter away from your eyes and try to “view through” (like your grandmother would
do without her glasses). Check whether the page structure (including white space, figures,
margins etc.) is appealing.
One advice which is often implied by the lazy eye principle is to use headings in heads of
propositions, theorems, examples etc. to make it easier to follow the overall golden thread of
the document, to see which are the main results or which are only auxiliary results etc.

Character protrusion Use the LATEX package microtype for character protrusion and font expan-
sion (only with pdfLATEX). By stretching lines ending with certain characters further out in
the margin than others, this, for example, provides a visually more appealing justification than
by forcing each line to have precisely the same length.

New paragraphs Use paragraph indentation (\parindent) instead of paragraph skip (\parskip).
The reason is that in mathematical documents with displayed equations, a paragraph skip is
difficult/impossible to distinguish from a vertical space after a displayed equation (which is a
problem when a paragraph ends with the latter).
Create a new paragraph by an empty line in your .tex file, not by using \par.
Furthermore, before each new ((sub)sub)section, use an empty line (except when a new
(sub)subsection directly follows a new (sub)section).

10

http://www.ctan.org/
http://tex.stackexchange.com/
http://tex.stackexchange.com/

© Marius Hofert, Ulf Schepsmeier

0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726

4 LATEX

Title case If at all, only use title case in the title of (larger) projects, not in section headings,
table headings etc.

Capitalization If you refer to a table/figure/theorem in your text use upper case letters, for
example “In Figure 2, we illustrate. . . ” or “The proof of Theorem 3 is given in. . . ”. But if you
do not refer to a numbered environment, use lower case letters, so “In the figure shown below,
we illustrate. . . ” or “The proof of the following theorem is given in. . . ”.

Punctuation Use punctuation marks, also in displayed mathematical formulas. After all, mathe-
matics is also a language (the language of nature) and thus deserves proper punctuation.

Abbreviations The abbreviations “i.e.” (“that is”), “e.g.” (“for example”) and “c.f.” (“see”) are
always preceded by a comma (unless used right after a “(” of course) and, in American English,
also followed by one.

Footnotes Do not use footnotes. They distract from the reading flow, are rarely accepted by
scientific journals and can almost always be omitted anyways.

Introducing new quantities If you introduce/define a new term or notion, make it visible via
\emph{...} and, if you have a longer document with an index (such as a thesis), refer to it in
the index.
Always introduce definitions, figures, tables, etc. before they appear in the text. However, do
not introduce them too long before they actually appear, rather right before. This is also
considered as good practice in programming in general. If you define a variable too early, the
reader (or even yourself) might have forgotten about it by the time it is used.

Large numbers Use \, to visually separate numbers larger than or equal to 1 000, so write 1\,000,
1\,000\,000, etc.

Page ranges For page ranges (such as “1–10”), compound names, or dashes, use -- (and not just
-, which is reserved for hyphens!).

Sets The positive integers, the real numbers, the complex numbers etc. can be nicely formatted
via \mathbbm{N}, \mathbbm{R}, \mathbbm{C} etc. from the LATEX package bbm.
For indices, note that i ∈ {1, . . . , n} is a more precise statement than i = 1, . . . , n.

Parentheses, square brackets and braces Use \bigl(, \bigr), \Bigl(, \Bigr), \biggl(, \
biggr) and \Biggl(, \Biggr) instead of \left(, \right) unless they cannot be used easily
or you really need large parenthesis; see http://tex.stackexchange.com/questions/12773/
or-left-parentheses and http://tex.stackexchange.com/questions/1454/what-is-the-correct-way-to-do-delimiters.
Also, do not use the unspecified versions \big and related commands as they create too much hor-
izontal space; see http://tex.stackexchange.com/questions/1232/difference-between-big-and-bigl.

Size of parentheses This is a complicated topic and there exists no easy solution. We suggest to
(typically) follow the rule: For two subsequent parentheses use the same size, then go to the
next larger size; see (1).

The space after a parenthesis In displayed equations, large (typically opening) parentheses may
reach into the actual formula. With \, one can create some additional space; see the difference
between \biggl(\sum_{i=1}^n and \biggl(\,\sum_{i=1}^n:(n∑

i=1
versus

(n∑
i=1

11

http://tex.stackexchange.com/questions/12773/or-left-parentheses
http://tex.stackexchange.com/questions/12773/or-left-parentheses
http://tex.stackexchange.com/questions/1454/what-is-the-correct-way-to-do-delimiters
http://tex.stackexchange.com/questions/1232/difference-between-big-and-bigl

© Marius Hofert, Ulf Schepsmeier

0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792

4 LATEX

Labeling Only label those displayed equations etc. that you actually refer to from somewhere in
your document (hence a label should indicate a more important or not so easy to remember
equation). Do not label every displayed equation, theorem etc. by default. If you do not want
to label a certain line in a multi-line equation, use \notag (before the line breaking \\). If you
want to change the label, use \tag{$*$}, for example (right before \label{...}).

Referring to equations Referring to equations can be done via \eqref{eq:label} instead of
(\ref{eq:label}); the latter version bears the risk of forgetting the adjacent parentheses.

Vectors Vectors are column vectors, but written as a tuple X = (X1, . . . , Xd). Furthermore, use
the command \bm{} from the LATEX package bm to create bold symbols such as vectors; this
also works for greek letters. Note that a transpose sign is only used if required, for example, as
in a>X; use ^{\top} to generate a transpose sign.

Ruler Use the package vruler with the setting \setvruler[10pt][1][1][4][1][0pt][0pt
][-30pt][\textheight] (or similarly; see the documentation) to display line numbers in
your document. This greatly simplifies discussing certain parts of the document (by email).

Quotation marks The LATEX quotation marks in (American) English start with “ (typically
obtained via the key with the tilde symbol) and end with ” (the key with the single quotation
marks on), not ".

4.3 Technical tricks to improve typography
4.3.1 Citations

How-to Use BibTEX, or – even better – BibLATEX, to manage references and bibliographies in a
.bib file. There are several free software tools available to organize and manage references
for BibTEX or BibLATEX, for example JabRef. Emacs’ AUCTEX and RefTEX also provide
functionality for conveniently working with .bib files.

Where to (typically) put references References can often be nicely added at the end of a sentence
via a semicolon without disturbing the reading flow; see

4.3.2 Spaces and alignment

Escaping spaces after dots and to avoid line breaks If a word, title of a person, or abbreviation
ends with a dot, note that LATEX cannot distinguish it from the end of a sentence. LATEX
therefore creates a space which is larger than what you actually want. In order to get the
correct spacing, you have to escape the space. This can be done using a backslash, for example
As Ph.D.\ student, I have. . .
Another instance where one should escape spaces is when referring to figures or tables. In this
case one can use a tilde to avoid a line break between the label “Figure” or “Table” and its
number: As shown in Table~1 and Figure~3. . .

Breaking terms over lines If you want to break, for example, a vector X = (X1, . . . , Xd) over a
line, use $ $ to allow LATEX to break the line. For example, write $\bm{X}=(X_1,$ $\dots,X
_d)$ or \bm{X} $=(X_1,\dots,X_d)$. In the same spirit, write \bm{X}_i, $i\in\{1,\
dots,d\}$ instead of $\bm{X}_i, i\in\{1,\dots,d\}$. First, this the former gives LATEX
more freedom in nicely breaking the line and, second, it creates a more readable space between
\bm{X}_i and $i\in\{1,\dots,d\}$:

Xi, i ∈ {1, . . . , d} versus Xi, i ∈ {1, . . . , d}

12

© Marius Hofert, Ulf Schepsmeier

0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858

4 LATEX

Watch out for bold indices Watch out for the difference between \bm{X_i} and \bm{X}_i; the
former creates a bold index while the latter does not. Bold indices are typically only used for
vectors of indices.

Horizontal spaces Use \quad in displayed equations to separate formulas from text or domains
from the actual equations etc. A greater separator is \qquad.

Use align and alignat For one-column displayed equations, one can use amsmath’s align environ-
ment for both one-line or (possibly aligned) multi-line displayed equations. This has the slight
disadvantage of creating vertical space between the last line of text before the environment
independently of how much this line is filled (furthermore, \qedhere is not correctly put when a
proof ends with an align environment). One can use amsmath’s equation environment instead,
however, only if the displayed equation only has one line. For multi-column multi-line displayed
equations, one can use amsmath’s alignat environment. For more details (including why not to
use variants such as $$..$$), see, e.g., http://tex.stackexchange.com/questions/40492/
what-are-the-differences-between-align-equation-and-displaymath.

Allow page breaks in displayed equationsA You can use \allowdisplaybreaks to allow LATEX
to break displayed equations over different pages. But this is only recommended on the very
last iteration of your document preparation process. Ideally, it should not be necessary as it is
often more natural to separate long align environments into two ore more, with some text
in-between.

The powerful phantom commandA Use to properly align follow-up lines of dis-
played equations. For example,

1 \begin{align*}
2 f(x)&=\biggl(\Bigl(\Bigl(\bigl(\bigl(((a_nx+a_{n-1})x+a_{n-2})x+a_{n-3}
3 \bigr)x+a_{n-4}\bigr)x+a_{n-5}\Bigr)\\
4 &\phantom{{}={}\biggl(\Bigl(}\cdot x+a_{n-6}\Bigr)x+a_{n-7}\biggr)x+\dots.
5 \end{align*}

shows a properly vertically aligned second line:

f(x) =
(((((

((anx + an−1)x + an−2)x + an−3
)
x + an−4

)
x + an−5

)
· x + an−6

)
x + an−7

)
x +

Note that the {} around the equality sign within the \phantom command represents an empty
math object and thus properly replicates the (larger) space around such signs in math mode;
in some situations, only \phantom{={}} might be required.

4.3.3 Figures

Template for including (side-by-side) figures For including two figures side-by-side, one can use
a construction of the following form (for including just one figure, omit \hfill and the obvious
second \includegraphics command).

1 \begin{figure}[htbp]
2 \centering
3 \includegraphics[width=0.48\textwidth]{my_figure_1_without_ending}%
4 \hfill
5 \includegraphics[width=0.48\textwidth]{my_figure_1_without_ending}%

13

http://tex.stackexchange.com/questions/40492/what-are-the-differences-between-align-equation-and-displaymath
http://tex.stackexchange.com/questions/40492/what-are-the-differences-between-align-equation-and-displaymath

© Marius Hofert, Ulf Schepsmeier

0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924

5 R

6 \caption{Plot of \dots\ (left) and \dots\ (right).}
7 \label{fig:label}
8 \end{figure}

4.3.4 Miscellaneous

Short versions of commands \ldots can often be replaced by \dots, for example, X_1,\dots,X
_d correctly produces X1, . . . , Xd. Also, use \le and \ge instead of \leq and \geq, respectively.

Easier to read letter l Use \ell (`) instead of l (l) for the log-likelihood.
Emphasize Emphasize text using the LATEX command \emph, not \textit. Do not use \

underline.

5 R
R, see www.r-project.org/about.html, is a free software environment for statistical computing
and graphics. This combination of focus on statistics and providing graphics is one of the
many strengths of R. By being open source and providing tools for package development, many
people have contributed to the usage of R for virtually all statistical tasks by providing packages.
Furthermore, new research results in the statistical community are often published together with
new or further improved R packages.

This part of our guidelines covers statistical software development in R. By software development
we do not mean writing R packages, but rather code snippets or scripts (.R files) in “good shape”,
which could be served as a basis for packages or which could be sent to package maintainers
(without them getting headaches and nightmares from looking at your code). Many of the points
addressed are also valid for other programming or script languages like C, C++ or MATLAB.
The general goal of this chapter is to help you to write code which is easy to read, efficient, not
too bad to be distributed and reproducible.

5.1 Getting started
Introduction We assume the reader to be familiar with basic syntax and usage of R. For an

introduction, see, for example, Venables et al. (2012). For R packages and other material
around R, see http://cran.r-project.org/.

Help There are nowadays many mailing lists, forums, blogs, etc. available for obtaining help on how
to use R. For general R related questions, https://stat.ethz.ch/mailman/listinfo/r-help
is one of the major mailing lists. Also, http://stackoverflow.com/ with tags for R provides
a good contact point with useful answers typically within a short period of time. For more
specific questions such as platform-dependent or topic-dependent, see the special mailing
lists on http://www.r-project.org/mail.html, such as https://stat.ethz.ch/mailman/
options/r-sig-hpc/ for high performance computing. Furthermore, see http://www.rseek.
org/ for searching R related sites, help files, manuals, mailing list archives etc.

Installing packages There are various ways to install R packages, the most common are:

from CRAN install.packages("myPkg") installs the package myPkg from the Comprehen-
sive R Archive Network (CRAN); see http://cran.r-project.org/. This is the most
typical way to install R packages. Note that "myPkg" can also be a vector of packages, so
c("myPkg1", "myPkg1").

14

www.r-project.org/about.html
http://cran.r-project.org/
https://stat.ethz.ch/mailman/listinfo/r-help
http://stackoverflow.com/
http://www.r-project.org/mail.html
https://stat.ethz.ch/mailman/options/r-sig-hpc/
https://stat.ethz.ch/mailman/options/r-sig-hpc/
http://www.rseek.org/
http://www.rseek.org/
http://cran.r-project.org/

© Marius Hofert, Ulf Schepsmeier

0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990

5 R

from R-Forge install.packages("myPkg", repos="http://R-Forge.R-project.org") in-
stalls the package myPkg from R-Forge, a central platform for the development of R packages,
R-related software and further projects; see https://r-forge.r-project.org/. If a pack-
age is developed on R-Forge, then the latest version is available there (uploads to CRAN are
typically only made every once in a while). This means that if you ask a package maintainer
for a change in a package (which is developed on R-Forge; many packages are), you most
likely have to install the package from R-Forge to get the desired change.

from .tar.gzA install.packages("~/my/folder/myPkg.tar.gz", repos=NULL) installs a pack-
age available as a .tar.gz file. This is source code. Windows or Mac need pre-compiled
code. How to produce pre-compiled code from source see for example http://www-m4.ma.
tum.de/en/teaching/theses/r-package-manual/.

from GitHubA The command install_github("myPkg") from the package devtools installs
packages from GitHub; see https://github.com/.

Installed packages can be updated with update.packages(ask=FALSE, checkBuilt=TRUE)
and removed with remove.packages("myPkg").

5.2 Documentation
5.2.1 Citing R and R packages

Many volunteers have invested a lot of time and effort in creating R and R packages, please cite
R and the packages you use for data analysis. Use the citation() command to cite R or R
packages. To cite R itself, citation() provides a plain text references and a BibTEX entry. For
R packages, use citation("pkgname"), where pkgname is the name of the R package to be cited.
For example

2 require(VineCopula)
3 citation("VineCopula")

gives

Ulf Schepsmeier, Jakob Stoeber, Eike Christian Brechmann and Benedikt
Graeler (2013). VineCopula: Statistical inference of vine copulas. R
package version 1.2-1.

A BibTeX entry for LaTeX users is

@Manual{,
title = {VineCopula: Statistical inference of vine copulas},
author = {Ulf Schepsmeier and Jakob Stoeber and Eike Christian Brechmann and

Benedikt Graeler},
year = {2013},
note = {R package version 1.2-1},

}

Here is an example with a list of entries:
2 require(copula)
3 (ci ← citation("copula"))
4 ci[1] # including BibTeX entry; see also toBibtex(ci)

gives

15

https://r-forge.r-project.org/
http://www-m4.ma.tum.de/en/teaching/theses/r-package-manual/
http://www-m4.ma.tum.de/en/teaching/theses/r-package-manual/
https://github.com/

© Marius Hofert, Ulf Schepsmeier

0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

5 R

To cite the R package copula in publications use:

Marius Hofert, Ivan Kojadinovic, Martin Maechler and Jun Yan (2013).
copula: Multivariate Dependence with Copulas. R package version
0.999-8. URL http://CRAN.R-project.org/package=copula

Jun Yan (2007). Enjoy the Joy of Copulas: With a Package copula.
Journal of Statistical Software, 21(4), 1-21.
URLhttp://www.jstatsoft.org/v21/i04/.

Ivan Kojadinovic, Jun Yan (2010). Modeling Multivariate Distributions
with Continuous Margins Using the copula R Package. Journal of
Statistical Software, 34(9), 1-20. URL
http://www.jstatsoft.org/v34/i09/.

Marius Hofert, Martin Maechler (2011). Nested Archimedean Copulas
Meet R: The nacopula Package. Journal of Statistical Software, 39(9),
1-20. URL http://www.jstatsoft.org/v39/i09/.

and
Marius Hofert, Ivan Kojadinovic, Martin Maechler and Jun Yan (2013).
copula: Multivariate Dependence with Copulas. R package version
0.999-8. URL http://CRAN.R-project.org/package=copula

A BibTeX entry for LaTeX users is

@Manual{,
title = {copula: Multivariate Dependence with Copulas},
author = {Marius Hofert and Ivan Kojadinovic and Martin Maechler and Jun Yan},
year = {2013},
note = {R package version 0.999-8.},
url = {http://CRAN.R-project.org/package=copula},

}

5.2.2 Run time information

In many statistical projects one compares different methods, models, algorithms or just different
variations of the former. Beside statistical measures often run time informations are given.
Whenever you state run times of your algorithm name the software, e.g. R and R-packages, and
the machine you used for your calculations. State all necessary information for a possible rerun.
Also do not forget to give the time unit, usually seconds (short sec). Here an example form
Schepsmeier (2013):

1 In all of the forthcoming simulation studies we used $B=2500$ replications and the
number of observations were chosen to be $n=500, n=750, n=1000$ or $n=2000$.

2 As model dimension we chose $d=5$ and $d=8$ and the critical level α is 0.05.
3 As before all calculations are performed using the statistical software \R\ and the \R-

package \textbf{VineCopula} of \cite{VineCopula}.
4

5 ...
6

7 Of cause the computation time for the different proposed GOF tests is also a point of
interest for practical applications.

16

© Marius Hofert, Ulf Schepsmeier

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

5 R

8 Therefore, in Table \ref{tab:Summary} the computation times in seconds for the
different methods run on a Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz computer for $n
=1000$ are given alongside with a summary of our findings.

5.2.3 Code documentation

The documentation of your code is one of the most important tasks in the software development.
It enables other users, maintainers or your supervisor to follow your ideas of coding and allow for
easy application. Even you self will profit from a proper documentation.
There are two ways to document a code - in the coding itself and externally in extra files.

While the first one is absolute necessary the second one is optional and depends on the scale of
the project and the demands of your supervisor. External files are usually needed in R-packages
and are more extensive in their description, giving for example additional explanations on the
statistics and simple application examples.

Internal documentation
Comments Writing comments (as explanations, for example, or to point out the mathematical

calculations behind the scenes) is good. In R, the # symbol can be used to start a comment.
The following example code shows the usage of comments (forget about the meaning of the
other parts, just look for the comments).

2 ### fast rejection algorithm, R version #################################
3

4 ##’ Sample a vector of random variates St ~ \tilde{S}(alpha, 1,
5 ##’ (cos(alpha*pi/2)*V_0)^{1/alpha}, V_0*I_{alpha = 1},
6 ##’ h*I_{alpha 6= 1}; 1) with LS transform
7 ##’ exp(-V_0((h+t)^alpha-h^alpha)) with the fast rejection
8 ##’ algorithm; see Nolan’s book for the parametrization
9 ##’

10 ##’ @title Sampling an exponentially tilted stable distribution
11 ##’ @param alpha parameter in (0,1]
12 ##’ @param V0 vector of random variates
13 ##’ @param h non-negative real number
14 ##’ @return vector of variates St
15 ##’ @author Marius Hofert, Martin Maechler
16 retstableR ← function(alpha, V0, h=1) {
17 stopifnot(is.numeric(alpha), length(alpha) == 1,
18 0 ≤ alpha, alpha ≤ 1) # alpha > 1 => cos(pi/2 *alpha) < 0
19 n ← length(V0)
20 ## case alpha == 1
21 if(alpha == 1 || n == 0) return(V0) # alpha == 1 => point mass at V0
22 ## else alpha 6= 1 => call fast rejection algorithm with optimal m
23 m ← m.opt.retst(V0)
24 mapply(retstablerej, m=m, V0=V0, alpha=alpha)
25 }

Note the difference between inline comments (comments for a statement in a single line; starting
with #), comments addressing several lines of code (on a new line right before the corresponding
chunk, starting with ##) and comments separating larger parts of code (starting with ###;
typically only used for much larger code chunks or to visually separate different functions or
other bigger parts in an R script).

17

© Marius Hofert, Ulf Schepsmeier

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

5 R

The comments starting with ##’ are part of a certain way of documenting functions called
Roxygen documentation. One first starts with a short explanation what the function computes.
After a blank line, a one-line title (starting with @title) giving the main purpose of the function
is provided. Then, explanations for all arguments of the function follow (by @param), explaining
the types of the corresponding arguments. The return value of the function is given via
@return, followed by the author(s) of the function (@author); additionally, a @note may follow.
Roxygen documentation can directly be converted to a help file for an R package containing
the corresponding function, although help files typically contain much more information (such
as example calls).

external Files (.txt, .Rd, .pdf)
.txt General description of the code or package. Also special dependencies on other packages

or required software tools such as gsl should be explained in such files. Often naming:
Description.txt, README.txt, install.txt

.RdA Help files in R packages. The coding is adapted from LATEX but is different.

.pdfA Manuals generated from the help files or vignettes.

5.3 Programming style
5.3.1 Writing correct code

Ranges of numbers Let n be an integer. It is convenient to write 1:n for the sequence of numbers
from 1 to n. However, use this only if you are absolutely sure that n is greater than or equal to 1.
Often, for n less than 1, one would expect the empty sequence, for example in a for(i in 1:n)
loop. To get this behavior, write for(i in seq_len(n)) instead.

if and else Note that else has to follow the closing brace of an if statement on the same line.
Bad:

2 res ← if(x > 0) {
3 "positive"
4 }
5 else {
6 "non-positive"
7 }

Good:
2 res ← if(x > 0) {
3 "positive"
4 } else {
5 "non-positive"
6 }

Let us remark here that if() itself is a function, so we can assign its return value to a variable.

5.3.2 Writing readable code

Even before writing efficient code, it is important to write readable and structured code. This
significantly improves debugging but also avoids making programming errors in the first place.

18

© Marius Hofert, Ulf Schepsmeier

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

5 R

80 characters rule Note that lines should contain less than or equal to 80 characters, the only
exception being strings, which should not be broken over lines. This is the typical rule for
editors, terminal emulators, printers, debuggers etc.

Assignment operator In variable assignments, use x <- 1 instead of x = 1, except for arguments
in function calls.

Omit useless codeA In R statements do not have to end with a semi-colon, so omit it; semi-colons
are only used to separate two statements on the same line, which is rather rarely useful.
Another such example is return() if used in the last line of a function body. It can be omitted;
see Section 5.3.3.
As an exception, write 0.1 instead of .1 (although the 0 can be omitted here). We agreed on
being as close to mathematical notation as possible (which votes in favor of 0.1) and the eye
also can not accidentally read this number as 1.

Variable and function names As mentioned in Section 2.5, variables and functions should have
meaningful names and should be shorter the more often they are needed (the latter applying
at least to variables).
Use dots and lowercase letters for variables (for example, my.variable.name <-) and arguments
of functions (see, for example the arguments of pnorm()). On the contrary, in function names,
dots are typically (only) used to separate the method name from the class name when declaring
S3 methods; see plot.default(), the default method for the function plot(). In function
names, rather use camel case, so myFunctionName <- function() {}.
Omit superfluous parts, for example, a function lengthOfObject(object) which determines
the length of a given object is preferrably to be called just length, since, when called, length
(object) immediately reveals what the return value is.
Functions returning a boolean can often be named starting with is, for example isPos <-
function(x) x > 0 determines whether a given object x is positive (note that isPos() is

also vectorized!). Do not use names like isNotPos(), since it is not immediately clear what
the doubly-negated !isNotPos() means.
Other useful prefixes are get... or find..., or also n... (for example, nPts() for determining
the number of points).

Specify arguments When calling a function, specify the argument names for all except the first
argument, so use rnorm(10, mean=3, sd=2) instead of rnorm(10, 3, 2).

Indentation Indent your code. If your editor does not provide automatic code indentation for R,
use four spaces per level of indentation as a rule of thumb. Do not use tabulators.
As an example, consider:

2 if(a < 0) { # first level
3 b ← 1
4 d ← 2
5 } else {
6 if(e == 0) { # second level
7 b ← 0
8 d ← 3
9 } else {

10 b ← 2
11 d ← 2
12 }

19

© Marius Hofert, Ulf Schepsmeier

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

5 R

13 }
14 bd ← c(b, d)

Besides the indentation, there are various interesting points here. if() is indeed also a function.
This feature can be used to write much more readable code (in complicated nested if-statements).
Our output here are two values, b and d. By putting them in one vector, each if/else statement
has only one return value (namely the vector containing the values of b and d). For one-line
functions one can omit the curly braces {}, thus we can save space. Furthermore, we can
directly assigning the return value of if() to a variable. Taking these tricks together, we obtain
the following compact form or our code (note that we now only have a single line and the
human eye directly detects the assignment at the beginning, knowing that this is the quantity
which is defined here – which is not obvious by looking at the above version, where each line
starts with if() or else() but which does not directly reveal which quantities are defined).A

2 bd ← if(a < 0) c(1, 2) else if(e == 0) c(0, 3) else c(2, 2)

But note that you should use one-line statements only for easy statements such as here, where
the terms involved are not too sophisticated and thus the risk of not immediately understanding
the statement is minimal.
Finally, let us remark that, normally, the opening brace of a function is put at the end of the
line containing the function head (see the above example with if() involving braces). For
longer function bodies, the opening brace can also be put on a new line in the same column as
the closing brace after the function body, so that one can more easily identify code blocks.

Vertical alignment of code Assignments which belong semantically together can be vertically
aligned as follows:

1 n ← 100
2 set.seed(271)
3 stnrm ← lapply(1:10, function(i) rnorm(i))
4 t4 ← lapply(1:10, function(i) rt(i, df=4)) # vertically align the ’←’

Spaces around operators Place one space before and after binary operators (<-, +, -, etc.) and
after a comma. As an exception, for arguments of functions, use a space only to separate the
arguments, not for the assignment.
Bad:

2 x←1
3 optimize(function(x) x*x,interval = c(1, 10),maximum = TRUE)

Good:
2 x ← 1
3 optimize(function(x) x*x, interval=c(1, 10), maximum=TRUE)

5.3.3 Writing safe, fast, flexible and sophisticated functions

Write (auxiliary) functions R is about writing functions. Everything is an object or a function
in R. If a sufficiently large block of lines appears several times in your code, outsource it,
write a function which calculates this block of code. If, at some point, you are required to
improve/optimize that part of the code, you do not have to do it several times. Furthermore,
having a separate “black box” in terms of a function improves readability of the code. Moreover,
the function can be tested individually for correctness or debugged in case of an error.

20

© Marius Hofert, Ulf Schepsmeier

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

5 R

Check user input for errors At least when writing larger, important functions with several argu-
ments, check user input for validity (rule of thumb: the larger the run time of the function,
the more time can be spend on checking inputs). This can often be done with the functions
stopifnot() or stop() which may return useful error information to the user in case an
argument is not valid. Some books suggest here to imagine the most incompetent user, but
it is hardly possible to check all possible user inputs for correctness. Try to catch the most
important ones which may lead to a crashes or wrong return values of your function.

Warnings Use warning() if an input is correct but not very meaningful (or if a function is
deprecated etc.). Warnings can also be useful for accompanying outputs of functions, for
example if an algorithm does not converge but stops after a maximum number of iteration
steps it is advisable to inform the user (which could, of course, also be done by returning a
corresponding status).
Note that warnings are not errors! A warning is nothing bad!

NA, NaN, Inf and other limiting cases R functions typically deal well with “limiting cases” such
as NA, NaN, Inf etc. If possible, make sure that the functions you write can also correctly
handle such limiting cases. To find NAs do not use x == NA but is.na(x).
Never (ever) truncate the return value of a function at an arbitrary large (hard-coded) value
such as 10100, just that the function returns something finite. This is never good enough for all
inputs. Rather think about why the return value is so large, does it naturally tend to infinity
for certain inputs, can we find a good approximation near the limit, or can we implement a
proper logarithm (not just the logarithmic value of the function – all accuracy would be lost!)
to be able to do calculations on a more moderate scale?

Parallelize, MatricizeA If you (easily) can, write functions which do not only operate on single
numbers, but also on vectors or matrices. This way, such functions will typically be much faster
when called, for example, with a vector instead of calling it for each element of the vector.

Avoid for, while and repeat loops if possible If possible, avoid loops (for, while, repeat), as
they are comparably slow in R. The main point is that they are very rarely needed (one example
being a rejection algorithm, but if speed really matters one can also implement it in C). Rather
work with the functions sapply(), lapply(), vapply(), apply(), mapply(), or tapply(). It
is by no means possible to explain all of them here, but here is a basic example how a for loop
can be avoided:
Bad:

2 x ← numeric(100)
3 for(i in 1:100) x[i] ← i*i # first creating and then filling an object

Good:
2 x ← sapply(1:100, function(i) i*i) # directly create the correct object
3 x ← unlist(lapply(1:100, function(i) i*i)) # typically faster
4 x ← vapply(1:100, function(i) i*i, NA_real_) # typically fastest

Return all (useful) results Computations are expensive, do not throw away other calculated
results just because you are not interested in them at the moment. In contrast, return all
(useful) results/quantities computed, especially if the computations are time consuming.
For example, if your function computes an optimum via optim(), do not just return the
optimum, return all related computed values (for example, the convergence status). Note that
optim() itself follows this paradigm. You never know if you or a user may need it.

21

© Marius Hofert, Ulf Schepsmeier

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

5 R

Bad:
2 myOpt ← function(x)
3 optim(c(-1.2, 1), fn=function(z) x * (z[2]-z[1]^2)^2 + (1-z[1])^2)$par

Good:
2 myOpt ← function(x)
3 optim(c(-1.2, 1), fn=function(z) x * (z[2]-z[1]^2)^2 + (1-z[1])^2)

As another example, if you are interested in the behavior of an estimator, do not just return
the average over all estimators computed in your simulation study, return the estimators
themselves (and actually even more results such as whether there were warnings or errors
during the computation, run time etc.; see Hofert and Mächler (2014)). This allows you to
look at histograms, box plots etc., which provides much more information than just the mean.

Arguments with defaults We can make the function myOpt() above more flexible.
2 myOpt ← function(x, init=c(-1.2, 1))
3 optim(init, fn=function(z) x * (z[2]-z[1]^2)^2 + (1-z[1])^2)

Instead of using the vector c(-1.2, 1) “hard-coded” in the function body, we make it an
additional parameter, with default value c(-1.2, 1). This way, myOpt() can be called with
one argument x as before, but one has the flexibility of using a different vector init if required.
Note that it is sometimes advisable not to give a formal argument a default value. This way, a
user is forced to think about a reasonable value.
Note that arguments with default values should come after arguments without default values.

Ellipsis argumentA Sometimes, you want to write a function, such as myOpt() above, which calls
another function, such as optim() above, which itself has many arguments. One way of passing
arguments from myOpt() to optim() is via the ellipsis argument Incorporating it in the
above example, we obtain:

2 myOpt ← function(x, init=c(-1.2, 1), ...)
3 optim(init, fn=function(z) x * (z[2]-z[1]^2)^2 + (1-z[1])^2, ...)

We can now call myOpt() with, for example, method="BFGS", which is then passed to optim(),
so myOpt(100, method="BFGS") computes the optimum with the "BFGS".

Return value A function should always return an object of the same type, no matter what the
input is (so, for example, do not write a function which returns either a character string or a
number depending on the input).
Furthermore, separate computations from graphics. A function should either compute some
values or create/plot a graphic, do not plot something and also return the plotted values in the
same function. Note that a function which produces a base graphic (such as obtained with
plot()) typically has invisible() as last line, that is, return value.
The last statement/line of a function is used as return value by default, you do not have to
write return(res), just res will return the result res already. return() is typically only used
when a function should be exited before the last line.

5.3.4 Learn from others, learn from the masters

As we already announced in Section 2.2 search for already existing solutions for your problem.
For R-programming this means look for R-packages providing your wanted functionality. Use it!
Use their knowledge, use their programming skills and learn from it.

22

© Marius Hofert, Ulf Schepsmeier

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

5 R

Learn from others, learn from the masters and read the source code of packages. This is the
major advantage of open source. The code is publicly available. Therefore, download the source
package from CRAN, R-forge or github. Only in the source package (.tar.gz) the functions are
not pre-compiled. Read the code, R, C, C++ and/or Fortran, and find your specific function.
Read the function(s) closely and reveal the hidden functionality or special treatment of critical
input parameters. Experiment with the function(s), run the auxiliary functions separately and
most important learn form it! Learn how to structure functions, learn how to write code, learn
how others provide solutions.

Furthermore, you can reveal what the software does exactly. And you can change some code to
implement a modification of an algorithm or fix a bug. For further reading, see Ligges (2006).
Note: The R source of an R-package (in source state) is inside <pkg>/R/*.R, and not what

you get when you display the function in R (by typing its name).

5.3.5 Test your code

Write (small) testing examples to verify your code. Write examples for each sub-function and
each auxiliary function. Test different input parameters, test critical parameters, test false user
input. See treatment of missing values and the section about error handling and warnings.
For advanced users: Create your own package and use the auto-testing functionality of R (via

R CMD check). An R-package can be created and checked easily in the R-environment software
RStudio or by hand, see R Development Core Team (2006).
There are also some R-packages available for unit testing, for example RUnit, testthat.

5.3.6 Specific hints

Do not grow objects Define an object in advance and specify its length/dimension. Do not let
an object grow if it is not necessary. For example, if you can not avoid a for loop, replace

1 rmat ← NULL
2 for(i in 1:n) {
3 rmat ← rbind(rmat, some.further.computation.depending.on.i)
4 }

by
1 rmat ← matrix(0., n, k)
2 for(i in 1:n) {
3 rmat[i,] ← some.further.computation.depending.on.i
4 }

Use TRUE and FALSE, not ’T’ and ’F’ It can cause conflicts. For example if you have a variable
T, which has the value 0 (T <- 0) (e.g. a test statistic) and call a function by fct.a(data
=data, log=T) instead of fct.a(data=data, log=TRUE). Since T is zero the function will
return a result with log=FALSE (0 =̂ FALSE, 1 =̂ TRUE).

5.4 Tables and graphics
Tables and graphics are a topic of their own and we could already fill a whole script with guidelines
and tips with them. Both are used in manuscripts like theses or scientific papers to illustrate
results and findings. In what follows we collect some important points to consider when creating
tables or graphics in R.

23

© Marius Hofert, Ulf Schepsmeier

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

5 R

Graphics instead of tables Instead of tables containing a myriad of numbers, use plots to graph-
ically display your results; see also Hofert and Mächler (2014). The reason is that the human
eye is not able to compare more than two or three numbers at a time. Graphics typically
reveal much more information about the underlying laws and make it easier to see “structure”.
In most cases they even allow to save space in comparison to tables. Also, when preparing a
presentation, graphics are much easier to grasp within a short period of time than tables (we
have all seen slides with a myriad of numbers on them, accompanied with the speaker saying
“...as it becomes clear from these results”, switching to the next slide before one even has a
chance to look at more than three numbers!).
It is clear that a table is significantly easier to create, but a graphic has another advantage. A
plot has the potential to reveal numerical problems as well, something often overlooked when
the results are only displayed in tables.

Rounding If you still decide for presenting your results in a table, carefully think about how
to display the numbers, for example, how many digits to use. Usually few digits are enough.
Using too many digits gives the impression of high precision which might not be adequate
because of numerical issues, see Wainer (1993).
If we wish to report results with two digits we need the standard error of this estimated
proposition to be ≤ 0.005 (1.96× 0.005 ≈ 0.01). Thus the standard error of a reported result
should be reported too, so a reader can gauge the accuracy.
Also, at least in every column, use the same number of digits and align the numbers according
to their decimal point. Important results can be highlighted, for example in bold. To export
tables from R to LATEX one can use the R package xtable, which creates LATEX code from R;
see also Hofert and Mächler (2014).

Detecting and distinguishing different lines/points In graphics, do not use too light colors, as
they are typically difficult to detect, especially in presentations. Ideally, create a graphic in
such a way that the results are still readable when printed in black/white. Also, use colors
suitable for color-blind people.
Other options to distinguish different lines (or points) are by using different line types (see
lty), line widths (see lwd), or different symbols (see pch). Since each illustration should be
self-explanatory, use legends and, of course, label axes, sometimes also a title or sub-title can
be useful (if not, a suitable caption can be given in LATEX to place such pieces of information).

Label sizes Use sufficiently large plot axis/legend labels or titles. By default, they are often too
small in R. When plotting to a .pdf file, this can typically be solved by choosing a smaller default
width and/or height parameter when opening the PDF device via pdf(...); for example, pdf
(..., width=6, height=6) for square plotting regions and pdf(..., width=10, height=6)
for rectangular ones.

Cropping white space around figuresA Crop the white margins of PDF files before putting them
into your .tex document. This is important for their correct alignment in LATEX and such that
no space is wasted and a large area is covered with the graphic of interest.
The function dev.off.pdf() of the R package simsalapar may help in cropping white space.
It is based on the Unix tool pdfcrop. You can also use the latter manually in the shell or use
any other program of your choice to crop white space around the margins of a plot (note that
there are also settings in R to do that, but one can not crop the white space perfectly/maximally,
at least not with a trial-and-error procedure for each plot individually).

24

© Marius Hofert, Ulf Schepsmeier

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

6 Version control

Base, lattice, ggplot2, grid graphicsA Besides base graphics, there are some other options, in-
cluding lattice graphics (based on the R package lattice), ggplot2 graphics (based on the R
packages ggplot2), or, the more low-level grid graphics engine for designing your own graphics
functions or modifying existing ones. We recommend to work with base graphics and, for very
special purposes (such as three-dimensional wire-frame or cloud plots), use lattice.

6 Version control

A When working on the same project, it is necessary to exchange and “merge” individual contributions
at certain points in time. One approach would be to exchange the corresponding files by email.
This seems fine in projects where only two people are involved, as long as not both work on the
same parts of the file simultaneously. To make sure that one does not accidentally take over an
outdated part of the file, both participants have to use a “diff tool” and, every time they receive a
file, compare it to their “local version” (to find the “difference” so-to-speak) before taking over
newly added parts. Possible overlaps have to be fixed by hand. Needless to say, even if only two
people are involved and files are not exchanged very often, this is tedious and prone to errors;
especially if the project involves several files. Furthermore, it would be advisable to keep older
versions of the files in case a result has been erroneously deleted previously, for example. But
how do you know in which of the backup files the latest version of the result resides? There are
endless of such problems and thus people have automatized these procedures. Below we briefly
mention some approaches of version control systems, in increasing sophistication.

6.1 Dropbox
Dropbox is not a version control system as you may still face the problem of tripping over changes
of other authors. We only mention it here since it is more sophisticated than “sending around
files”, simplifies the above process (at least provides versions of files for up to 30 days) and does
not have a learning curve as steep as for the tools below. Note that one can also combine Dropbox
with the tools described below, but we omit further details in this introduction here.

6.2 SVN
Apache Subversion (SVN) is a widely used version control system. It is a server-based version
control system meaning that there is a copy of your collection of files, typically a folder, the
so-called repository, stored on a remote server (the SVN server). There are free SVN servers
available, they often come at the price of projects being either public(ly available) or private which
is fine in most cases; an example of a free private hosting service (also allowing Git access, see
Section 6.3 below) is https://cloudforge.com/, for example.

Once the server has been set up, one can checkout the repository, which creates a local working
copy. One can then add files to the working copy, commit changes to the (remote) repository,
update ones working copy in case a project member has committed changes to the repository,
display a log of changes to the repository (including commit messages of the various file versions),
display the status of a file (is the file under version control or not) and diff erences between
the working copy and the version in the repository on the server. In what follows, we describe
these processes with some basic example commands often used (GUIs are widely found on the
internet, the workflow remains the same). For more information use svn help ...; for example,
svn help commit for the commit command.

25

https://cloudforge.com/

© Marius Hofert, Ulf Schepsmeier

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

6 Version control

How to set up an SVN server or how to start an SVN project on hosting services like cloudForge
are explained in several places on the internet. Hence, we do not explain this step in more details
below (also not for Git, see Section 6.3). In the following we suggest that there is already an SVN
server running or an SVN project set up. Besides online resources, local IT services can typically
also be contacted for assistance.

6.2.1 Checkout

In the beginning of the project, you want to checkout the (remote) repository, so that your local
working copy is created. The working copy is stored in a subfolder .svn of your current working
directory. Note that unless files were manually uploaded to the server or if the repository has
already been set up by a colleague, the repository (and thus the working copy) is empty. All we
need for the checkout is a URL to the SVN server or project (you will be asked for your user
credentials as have been provided previously for setting up the repository on the server):

1 svn co <url> # check out project (create working copy from the repository)

As example URLs, see
1 svn://svn.r-forge.r-project.org/svnroot/nacopula/
2 svn://r-forge.r-project.org/svnroot/vinecopula/

which are the SVN URLs for the R packages copula and VineCopula, respectively, hosted by
R-Forge.
After we have checked out the repository (created the working copy) we can add files to the

working copy (see below) or modify existing files which are already under version control (for
example, if they have been downloaded during the checkout process in case the repository was
non-empty).
Clearly, the same repository can be checked out by many people (including one person on

several devices, for example), which makes this tool especially interesting when a larger number
of people collaborate. Furthermore, the following variants can also be useful:

1 svn co <url> output_Dir_name # check out the project into a certain directory
2 svn co -r110 <url> # check out version 110 of the repository

If you use a GUI (like SVN Torquise on Windows) these steps, as well as all the following
functions, can be done via easy-to-handle menus. As mentioned before, the workflow remains the
same.

6.2.2 Add and (re)move

Adding a file (or folder) “foo” to the working copy can be done as follows. One first copies or
moves the file to the local directory (the directory containing the working copy .svn) and then
adds it to the working copy (thus putting it under version control) via:

1 svn add foo # add directory or a file ’foo’ to working copy

It is important to note that although “foo” is now under version control, the remote repository
(on the server) does not see “foo” yet and so your collaborators do not see “foo” yet either. For
this you have to commit your changes, see Section 6.2.3, essentially propagating your changes to
the repository. Furthermore, let us remark that only important files should be added, for example,
only add .tex files, but not the corresponding .pdf or the myriad of files generated on the way.
Similar to adding files, (re)moving a file or folder from the working copy can be done via:

26

© Marius Hofert, Ulf Schepsmeier

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

6 Version control

1 svn mv foo bar # moves ’foo’ to ’bar’
2 svn rm foo # removes ’foo’

Again, do not forget to commit afterwards.

6.2.3 Update, commit

Once you have made changes to your local files, you want to commit these changes to the repository
on the server so that your collaborators can see these changes after they update their working
copies with the server’s version. Before committing your changes, you should conduct an update
of your working copy yourself so that you see changes your collaborators have committed in the
meanwhile (and so that you can solve possible conflicts, see Section 6.2.5); note that this update
only updates your working copy but does not overwrite your local files (or file changes). You can
(and should) thus safely do an update before committing, even if you have already changed files.
An update and commit can be done as follows:

1 svn up # update working copy (does not overwrite local changes)
2 svn ci -m ’added file ‘foo‘ and fixed an error’ # use -m for commit messages!

Use short commit messages so that your collaborators can get an idea about what you changed
when looking at the log file, see Section 6.2.4.

Note that when removing a file not using svn rm, svn up will draw the repository’s version
of the file, so it will appear again. To remove it and propagate the changes, you should do
svn rm foo followed by svn ci -m ’removed ‘foo‘’.

6.2.4 Log, status, list, diff

After an update of your working copy, you can display the log message to get a feeling for changes
submitted by your collaborators (if they provided commit messages, which they should). This
can be done, for example, as follows:

1 svn log | head -20 # displays the first 20 lines of the log message

If one would like to get an overview about the status of certain local files, one can use the
following command:

1 svn st # display the status of files

The first columns of the output contain one character abbreviations like “A” (for “added”), “C”
(for “conflicted”), “D” (for “deleted”), “M” (for “modified”), “?” (for items not under version
control) and “!” (for missing items, for example, if a file was removed by a non-svn command); see
svn help status for more details. svn st can also be helpful to detect which files have recently
been modified in case one would like to commit only some of them, for example.
To see which files are under version control at all, use:

1 svn list

The command svn diff can be used to display changes in (differences between) the local files
and the working copy. Some possible usages are:

1 svn diff # display diff between local files and working copy
2 svn diff -r 110:117 # diff of (older) version 110 to (newer) 117
3 svn diff -r 110 foo # diff of (older) version 110 to working copy of ‘‘foo’’

27

© Marius Hofert, Ulf Schepsmeier

1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

7 Submitting a paper

6.2.5 Conflicts

It may happen that you commit a change to the file “foo”, but one of your collaborators has
already committed changes of “foo” to the repository. This is in general no problem if the two
sets of changes do not overlap. SVN will then merge the file changes automatically. However, if
the changes overlap, your commit will fail. You should then use svn up (which you should have
used before committing anyways). SVN will then display that a conflict has been discovered and
offers the possibilities to postpone the conflict to be resolved later (“p”), make a full diff, that is,
to show all changes made to the merged file (“df”), edit the merged file (“e”) and to show further
options (“s”). “df” reveals how much work it is to solve the conflict, if it is only a minor one, one
can use “e”, for larger ones one would typically use “p” and fix the conflict by hand. Using “p”
creates the additional files “foo.mine” (with your version), “foo.r<last>” (the original file you
worked with; “<last>” denotes the version number), “foo.r<current>” (current version of your
colleague), whereas the original file “foo” contains modifications of the following type:

1 <<<<<<< .mine
2 here is what you wrote
3 =======
4 here is what your colleague wrote
5 >>>>>>> .r<current>

For each of these chunks, just decide which of the versions you would like to keep and delete
the other (including “«««<” and “=======” etc.). After that, tell SVN that the conflict
has been resolved via svn resolve foo; this will automatically delete the additional files and
you can then update and commit again. There are other possibilities as well, for example,
svn resolve --accept=theirs-full foo would directly solve the conflict by always accepting
your collaborator’s version.

6.3 Git
Git has recently become a popular version control system. In contrast to SVN, Git is a distributed
control system meaning that your local working copy is also a full repository (with its own local
history and branch structure) and you can commit to it. This implies that there are possibly
two repositories involved, your local one and, possibly (but not necessarily), one on the server.
This decentralized version control system has the advantage that if you are offline for some hours,
say, but still want to revert back to an older version you can do this (via your local repository).
However, having two repositories involved adds another level of complexity, for example, there is
not only one but two update commands, one that updates your local repository from the remote
repository (git fetch) and one that updates the local repository from the server and merges the
changes into your actual files (git pull, essentially a git fetch followed by git merge). Git is
faster than SVN and more sophisticated when it comes to branching, merging and solving conflicts.
An interesting discussion on strengths and weaknesses of Git and SVN can be found under http://
stackoverflow.com/questions/871/why-is-git-better-than-subversion. We omit further
details here.

7 Submitting a paper

A Publishing your research should be the goal and final step of your scientific work. In this chapter
we list some points we think are useful to know when submitting a paper; they may also serve as
a checklist before the submission. Here we follow Davidian (2005) who provides a good outline

28

http://stackoverflow.com/questions/871/why-is-git-better-than-subversion
http://stackoverflow.com/questions/871/why-is-git-better-than-subversion

© Marius Hofert, Ulf Schepsmeier

1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

7 Submitting a paper

in her set of publicly available slides. We also updated some suggestions and added personal
practical experience.

In the following we assume that the manuscript has already been (mostly) written and is ready
for being handed in to a journal or conference proceedings. Furthermore, we assume that you
followed the journal’s guidelines concerning style and structure of a paper. The 3-step procedure
we describe in the next subsections is the same for all paper submissions independent of the
journal or the conference.

7.1 Purpose of journals: How to find the best fitting journal for my research
The very first and important step to publish one’s research is to find the best fitting journal.
There are hundreds of different (statistical) journals available having different objectives, focus
and scope. Major journals such as the Journal of American Statistical Association – Theory and
Methods or Annals of Statistics cover several objects and scopes. Other journals specialize in a
major topic, e.g., Statistics in Medicine or Journal of Agricultural, Biological, and Environmental
Statistics, or in one or two scopes like Computational Statistics and Data Analysis or Journal of
Computational and Graphical Statistics.

Classify and rank your own work according to the points below. This will narrow down the
amount of adequate journals and may assist you in finding the best fitting journal(s).

Objective and focus Journals can be distinguished by their major objective or focus of statistics
via the area of application (e.g., medicine), the method (e.g., time series analysis) or the goal
(e.g., dependence modeling).

Scope The objective or focus of a journal is obvious in most cases whereas the scope is often not.
Each journal propagates its own goals and scopes they want to cover. According to Davidian
(2005), there are six different scopes in statistics; below we added two more.

New theory Situation in which suitable methods are not available – propose such a method.
New theory based on existing work Methods are available, but have limitations – extend,

improve, relax assumptions.
New theory based on existing work II Methods are available – propose a competing one and

compare and illustrate.
Application or problem driven An important subject-matter application has specific issues –

show how to handle these with existing or modified methods.
Extensions Properties of existing or new procedures are unknown – work out formal theory.
Simulation studies Properties of existing or new procedures are unknown – carry out extensive

simulations.
Surveys Overview of existing methods and comparison. Usually a relative new method is

added, too.
Manuals and Vignettes Software descriptions, manuals, vignettes and code snippets for public

available statistical functions, packages and software. They can reach from presenting
theoretical methods and algorithms to details about implementation or numerical challenges.

Usually a journal’s scope is a mixture of several points. Classify your own work and check if it
fits in the journal’s scope. In the cover letter, one should also mention how the paper fits in
the journal’s scope.

29

© Marius Hofert, Ulf Schepsmeier

1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

7 Submitting a paper

Audience The objective and scope of a journal naturally implies the corresponding audience. The
audience can be academics, graduate students, practicing statisticians, researchers of other
disciplines etc. Identify your audience. Who would be most interested in your work? What
journals tend to be read by researchers in the corresponding area?

Journal rankings intend (but often also fail) to reflect the journal’s impact within its field and
beyond. Rankings are also an indicator for the quality of a journal, but do not have to be (if you
have found a journal which seems “right” for your research, go for it, do not listen to rankings –
only use them to compare adequate journals which you are unsure about otherwise). Rankings
are facilitated by analyzing citations of scientific (and non-scientific) publications. The most
common measure is the impact factor which reflects the average number of citations to articles
published in science and social science journals4. But there are several other measures, too.

Practical hints
1) Have a look at the journals in your reference list. Usually they are of the same field of

statistics using similar methods or have similar areas of application.
2) Examine papers published in a recent issue of the journal for style, level of technical detail

or discussed topics.
3) Have a look at the list of Editors and Associate Editors of the journal. One of them will

handle your paper. You may get an idea who it could be by looking at their research
interests. Maybe you know her/him and, as an exception in case you are absolutely unsure,
can address her/him personally.

7.2 Preparations before submission
Before you can submit the manuscript to a journal or conference proceedings you have to accurately
prepare your submission. False styles or missing material such as figures or separately listed
tables may be a reason for a rejection. Thus invest a good quantity of time to prepare your
submission. Also watch out for typographical errors, they certainly do not contribute to leave a
good impression about the quality of your work. Ideally, have a colleague (native speaker) read
the paper and give you feedback.
First of all, read the journal’s guidelines for authors and carefully follow these instructions!

The journal typically lists all necessary properties and style requirements, conventions on math,
figures, tables, font size, font style, spacing, etc. For (statistical) journals, the most important
points are:
Scope As mentioned above, check whether your manuscript fits into the scope of the journal.
Length Some journals limit the number of pages. Important is here the number of pages in the

journals style format with correct page boundaries, spacing, font size, etc. Do not go beyond
the limits, rather stay well below; also, a shorter paper typically takes less time to review.

Style of article (including references) Most journals already demand a paper submission in the
journal’s publishing style. Therefore, they offer LATEX style files defining page boundaries,
spacing, font size, etc. or Microsoft Word samples and guidelines.

Authors and authors affiliation Watch out for double-blinded submission requirements (neither
the author knows the name of the reviewer (as usual) nor the reviewer knows the names of the
authors).

4Wikipedia contributors, "Journal ranking," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/
index.php?title=Journal_ranking&oldid=608376667 (accessed June 18, 2014).

30

http://en.wikipedia.org/w/index.php?title=Journal_ranking&oldid=608376667
http://en.wikipedia.org/w/index.php?title=Journal_ranking&oldid=608376667

© Marius Hofert, Ulf Schepsmeier

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

7 Submitting a paper

Figures and tables Usually not all figure formats are accepted. Check which ones are preferred
by the journal. There are several open source software tools to convert one format into
another (e.g., ps2pdf or epstopdf). Make sure that all graphics have a high enough resolution.
Sometimes it is requested to put all figures and tables separately at the end of the manuscript.
Furthermore, each figure or table should have a reasonable caption. A graph or table including
the caption should be self-explaining without requiring to read the article’s text. Therefore
captions and legends have to be accurate.

The abstract is a concise summary of what you will present in the paper and provides the key
findings (not just the conclusions). Formulas and citations to other works should be avoided in
an abstract. Some journals even prohibit formulas and citations in the abstract. The golden
thread should become clear without reference to the rest of the manuscript. The abstract
should be no more than 200–250 words (depending on the journal) and is typically written in
passive.

Keywords Immediately after the abstract, provide a maximum of 6 keywords. Be sparing with
abbreviations: only abbreviations firmly established in the field may be eligible. These keywords
will be used for indexing purposes.

Highlights are a short collection of bullet points that convey the core findings of the article.
Usually highlights are used for online publications on the journal’s web page to highlight the
article’s main findings.

File naming Some journals require to follow special file naming conventions for additional material
such as figures (to work in an automated compilation process).

7.3 Submitting a paper
Nowadays most journals offer (and prefer to use) a submission management system. On submission
of a paper, one has to provide several details such as the work address, title, abstract, keywords,
and finally one has to upload the manuscript (figures, etc.) and a cover letter. Follow it step by
step.
Check for completeness Check all your answers in the forms, check for completeness, check if

you followed the journal instructions for authors, check the cover letter (see below). Modern
submission management systems create a final .pdf containing all the documents handed in.
Have a last look at the file before the final submission. If it is required to submit a .tex file,
it will be converted to .pdf. Check it carefully! Are all figures included? All mathematical
symbols displayed correctly? Are references shown properly? Check on the formating, page
style and spacing.

Cover letter Enclose a short cover letter making clear your intention (submission of a paper for
publication) and note any conflict of interest (such as sponsored work). The cover letter is
either uploaded to the manuscript management system or sent in an accompanying email to
the editor, most often the former.

Congratulation! You submitted your hard work offering your research to the community and
the public audience. Now it is the time to wait for feedback from the journal (typically, reports
are sent by one to three reviewers and sometimes also the Associate Editor). This can take a
frustrating amount of time, though (up to several years). In the meanwhile, most journals offer
the possibility (check the journal’s policy) to put the paper either on the authors’ websites or
on special publication servers such as http://arxiv.org. This has the advantage of making
the results available right away and also avoids the paper to be rejected by a reviewer who then

31

http://arxiv.org

© Marius Hofert, Ulf Schepsmeier

2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

References

publishes the results on his own (before your paper is published); normally, the reviewer is an
expert in the same area and thus there is the potential of this situation to happen. Unfortunately,
the review process in its current form bears risks of this (and other) type.

Acknowledgements
We would like to thank our students and the many people which have sent us code in the past for
inspiring this guide. Also, we would like to thank the following friends and colleagues for feedback
on these guidelines: Matthias Kirchner (ETH Zürich), Aleksey Min (Technische Universität
München), Matthias Scherer (Technische Universität München).

References
Davidian, M. (2005), Academic publication: Journals and the journal editorial process, Department
of Statistics, North Carolina State University, http://www4.stat.ncsu.edu/~davidian/
st810a/journals_handout.pdf.

Halmos, P. (1970), How to write mathematics, Enseign. Math. 16(2), 123–152.
Higham, N. (1993), Handbook of Writing for the Mathematical Sciences, SIAM.
Hofert, M. and Mächler, M. (2014), Parallel and other simulations in R made easy: An end-to-end
study.

Ligges, U. (2006), Help Desk: Accessing the sources, R News, 6(4), 43–45, http://CRAN.R-
project.org/doc/Rnews/Rnews_2006-4.pdf.

Oetiker, T., Partl, H., Hyna, I., and Schlegl, E. (2011), The Not So Short Introduction to
LATEX2ε, http://mirror.switch.ch/ftp/mirror/tex/info/lshort/english/lshort.pdf
(2014-01-26).

R Development Core Team (2006), Writing R Extentions, R Foundation for Statistical Computing,
Vienna, Austria, http://www.R-project.org.

Ritter, R. (2002), The Oxford Guide to Style, Oxford University Press.
Schepsmeier, U. (2013), Efficient goodness-of-fit tests in multi-dimensional vine copula models,
submitted for publication, http://arxiv.org/abs/1309.5808.

Venables, W. N., Smith, D. M., and R Core Team (2012), An Introduction to R, http://cran.r-
project.org/ (2013-02-03).

Wainer, H. (1993), Visual Revelations: Tabular Presentation, Chance, 6(3), 52–56.

32

http://www4.stat.ncsu.edu/~davidian/st810a/journals_handout.pdf
http://www4.stat.ncsu.edu/~davidian/st810a/journals_handout.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf
http://mirror.switch.ch/ftp/mirror/tex/info/lshort/english/lshort.pdf
http://www.R-project.org
http://arxiv.org/abs/1309.5808
http://cran.r-project.org/
http://cran.r-project.org/

	Contents
	1 Introduction
	2 General suggestions
	2.1 Forget about the Pareto principle (80–20 rule)
	2.2 When solving a particular problem for the first time, spend time on it
	2.3 English in mathematics
	2.4 Be consistent
	2.5 Be concise
	2.6 Be structured
	2.7 Be self-contained
	2.8 Be reproducible
	2.9 Optimize communication, meetings and preparation

	3 Editors and integrated development environments
	4 LaTeX
	4.1 Getting started
	4.2 Typographic recommendations for mathematical documents
	4.3 Technical tricks to improve typography
	4.3.1 Citations
	4.3.2 Spaces and alignment
	4.3.3 Figures
	4.3.4 Miscellaneous

	5 R
	5.1 Getting started
	5.2 Documentation
	5.2.1 Citing R and R packages
	5.2.2 Run time information
	5.2.3 Code documentation

	5.3 Programming style
	5.3.1 Writing correct code
	5.3.2 Writing readable code
	5.3.3 Writing safe, fast, flexible and sophisticated functions
	5.3.4 Learn from others, learn from the masters
	5.3.5 Test your code
	5.3.6 Specific hints

	5.4 Tables and graphics

	6 Version control
	6.1 Dropbox
	6.2 SVN
	6.2.1 Checkout
	6.2.2 Add and (re)move
	6.2.3 Update, commit
	6.2.4 Log, status, list, diff
	6.2.5 Conflicts

	6.3 Git

	7 Submitting a paper
	7.1 Purpose of journals: How to find the best fitting journal for my research
	7.2 Preparations before submission
	7.3 Submitting a paper

	References

