Rainbow Copies of C₄ in Edge-Colored Hypercubes

József Balogh, Michelle Delcourt, Bernard Lidický, and Cory Palmer

University of Illinois, at Urbana-Champaign

April 8, 2014

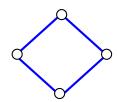
Definitions

Monochromatic Coloring

For a graph G, an edge coloring

$$\varphi: E(G) \rightarrow \{1, 2, \ldots\}$$

is called monochromatic if all edges receive the same color

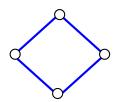


Monochromatic Coloring

For a graph G, an edge coloring

$$\varphi: E(G) \rightarrow \{1, 2, \ldots\}$$

is called **monochromatic** if all edges receive the same color.

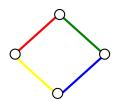


Rainbow Coloring

For a graph G, an edge coloring

$$\varphi: E(G) \rightarrow \{1, 2, \ldots\}$$

is called **rainbow** if no two edges receive the same color.

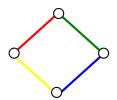


Rainbow Coloring

For a graph G, an edge coloring

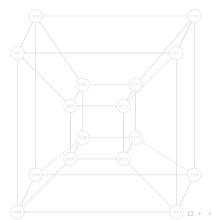
$$\varphi: E(G) \rightarrow \{1, 2, \ldots\}$$

is called **rainbow** if no two edges receive the same color.



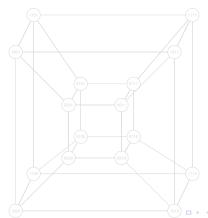
d-dimensional Hypercube

Let Q_d have vertices corresponding elements of $\{0,1\}^d$ and put edges between elements of Hamming distance 1.



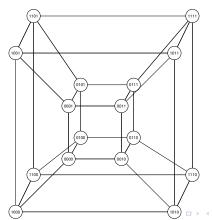
d-dimensional Hypercube

Let Q_d have vertices corresponding elements of $\{0, 1\}^d$ and put edges between elements of Hamming distance 1.



d-dimensional Hypercube

Let Q_d have vertices corresponding elements of $\{0, 1\}^d$ and put edges between elements of Hamming distance 1.



Rainbow Variants Edge-Colorings of Hypercubes d=4d=5Generalization

Motivation

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

Many classical problems have rainbow variants.

In Classical Extremal Graph Theory

we have conditions on a graph to guarantee the existence of a set of subgraphs (e.g. Ramsey and Turán type problems).

In Rainbow-type Problems

we have conditions on a graph to guarantee the existence of a set of rainbow subgraphs.

For a graph H, let gcd(H) denote the largest integer which divides the degree of every vertex of H.

Yuster proved a variant of Wilson's Theorem.

Theorem (Yuster)

For a graph H, let gcd(H) denote the largest integer which divides the degree of every vertex of H.

Yuster proved a variant of Wilson's Theorem.

Theorem (Yuster)

For a graph H, let gcd(H) denote the largest integer which divides the degree of every vertex of H.

Yuster proved a variant of Wilson's Theorem.

Theorem (Yuster)

For a graph H, let gcd(H) denote the largest integer which divides the degree of every vertex of H.

Yuster proved a variant of Wilson's Theorem.

Theorem (Yuster)

Over the years, many rainbow variants have been studied.

Erdős, Simonovits, and Sós looked at the maximum number of colors in an edge coloring of K_n with no rainbow copy of H (Anti-Ramsey problems).

Over the years, many rainbow variants have been studied.

Erdős, Simonovits, and Sós looked at the maximum number of colors in an edge coloring of K_n with no rainbow copy of H (Anti-Ramsey problems).

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C_3 (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C₃ (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós)

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C₃ (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós)

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C₃ (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós)

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C₃ (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

In particular Erdős, Simonovits, and Sós studied cycles.

Conjecture (Erdős, Simonovits, and Sós)

It is possible to color the edges of K_n with

$$n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$$

- True for C₃ (Erdős, Simonovits, and Sós)
- True for C_4 (Alon)
- True in general (Montellano-Ballesteros and Neumann-Lara)

- C₄ (Faudree, Gyárfás, Lesniak, and Schelp)
- Cycles (Mubayi and Stading)
- Q_3 (Mubayi and Stading)

- C₄ (Faudree, Gyárfás, Lesniak, and Schelp)
- Cycles (Mubayi and Stading)
- Q_3 (Mubayi and Stading)

- C₄ (Faudree, Gyárfás, Lesniak, and Schelp)
- Cycles (Mubayi and Stading)
- Q_3 (Mubayi and Stading)

- C₄ (Faudree, Gyárfás, Lesniak, and Schelp)
- Cycles (Mubayi and Stading)
- Q₃ (Mubayi and Stading)

Edge-Colorings of Hypercubes

We were motivated by the work of Faudree, Gyárfás, Lesniak, and Schelp published in 1993.

Theorem (Faudree, Gyárfás, Lesniak, and Schelp)

If $d \in \mathbb{N}$ with $4 \le d$ and $d \ne 5$, then there is a d-edge-coloring of \mathcal{Q}_d such that every C_4 is rainbow.

Edge-Colorings of Hypercubes

We were motivated by the work of Faudree, Gyárfás, Lesniak, and Schelp published in 1993.

Theorem (Faudree, Gyárfás, Lesniak, and Schelp)

If $d \in \mathbb{N}$ with $4 \le d$ and $d \ne 5$, then there is a d-edge-coloring of Q_d such that every C_4 is rainbow.

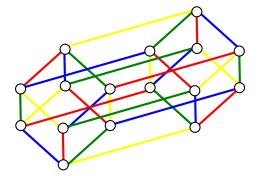
Edge-Colorings of Hypercubes

We were motivated by the work of Faudree, Gyárfás, Lesniak, and Schelp published in 1993.

Theorem (Faudree, Gyárfás, Lesniak, and Schelp)

If $d \in \mathbb{N}$ with $4 \le d$ and $d \ne 5$, then there is a d-edge-coloring of \mathcal{Q}_d such that every C_4 is rainbow.

d=4



$$d = 5$$

Omitting a proof, Faudree, Gyárfás, Lesniak, and Schelp claim that there is no 5-edge-coloring of Q_5 where every copy of C_4 is rainbow.

Using a computer, we find that the maximum number of rainbow copies of C_4 in a 5-edge-coloring of Q_5 is 73 out of the

$$d(d-1)2^{d-3}=80$$

total copies of C_4

$$d = 5$$

Omitting a proof, Faudree, Gyárfás, Lesniak, and Schelp claim that there is no 5-edge-coloring of Q_5 where every copy of C_4 is rainbow.

Using a computer, we find that the maximum number of rainbow copies of C_4 in a 5-edge-coloring of Q_5 is 73 out of the

$$d(d-1)2^{d-3} = 80$$

total copies of C_4

$$d = 5$$

Omitting a proof, Faudree, Gyárfás, Lesniak, and Schelp claim that there is no 5-edge-coloring of Q_5 where every copy of C_4 is rainbow.

Using a computer, we find that the maximum number of rainbow copies of C_4 in a 5-edge-coloring of Q_5 is 73 out of the

$$d(d-1)2^{d-3} = 80$$

total copies of C_4 .

$$d = 5$$

Perhaps the reason for this unusual behavior is the ratio between number of edges and the total copies of C_4 .

The number of edges of Q_5 is

$$d2^{d-1} = 80,$$

$$d = 5$$

Perhaps the reason for this unusual behavior is the ratio between number of edges and the total copies of C_4 .

The number of edges of Q_5 is

$$d2^{d-1} = 80,$$

$$d = 5$$

Perhaps the reason for this unusual behavior is the ratio between number of edges and the total copies of C_4 .

The number of edges of Q_5 is

$$d2^{d-1} = 80,$$

$$d = 5$$

Perhaps the reason for this unusual behavior is the ratio between number of edges and the total copies of C_4 .

The number of edges of Q_5 is

$$d2^{d-1} = 80,$$

We studied a generalization.

For any $k, d \in \mathbb{N}$ with $4 \le k < d$ and $k \ne 5$, we find the maximum number of rainbow copies of C_4 contained in a k-edge-coloring of Q_d .

The k-edge-colorings of Q_d with the maximum number of rainbow copies of C_4 also have the property that every non-rainbow C_4 is actually monochromatic.

We studied a generalization.

For any $k, d \in \mathbb{N}$ with $4 \le k < d$ and $k \ne 5$, we find the maximum number of rainbow copies of C_4 contained in a k-edge-coloring of Q_d .

The k-edge-colorings of Q_d with the maximum number of rainbow copies of C_4 also have the property that every non-rainbow C_4 is actually monochromatic.

We studied a generalization.

For any $k, d \in \mathbb{N}$ with $4 \le k < d$ and $k \ne 5$, we find the maximum number of rainbow copies of C_4 contained in a k-edge-coloring of Q_d .

The k-edge-colorings of Q_d with the maximum number of rainbow copies of C_4 also have the property that every non-rainbow C_4 is actually monochromatic.

We studied a generalization.

For any $k, d \in \mathbb{N}$ with $4 \le k < d$ and $k \ne 5$, we find the maximum number of rainbow copies of C_4 contained in a k-edge-coloring of Q_d .

The k-edge-colorings of \mathcal{Q}_d with the maximum number of rainbow copies of C_4 also have the property that every non-rainbow C_4 is actually monochromatic.

Main Result

Main Result

Note that when k = d, by Faudree, Gyárfás, Lesniak, and Schelp, there is an edge-coloring of Q_d using d colors where **every** C_4 is rainbow.

Thus, there at most

$$d(d-1)2^{d-3} = 2^{d-2} \binom{d}{2}$$

rainbow copies of C_4 in some d-edge-coloring of \mathcal{Q}_d

k = d

Note that when k = d, by Faudree, Gyárfás, Lesniak, and Schelp, there is an edge-coloring of Q_d using d colors where **every** C_4 is rainbow.

Thus, there at most

$$d(d-1)2^{d-3}=2^{d-2}\binom{d}{2}$$

rainbow copies of C_4 in some d-edge-coloring of Q_d .

Our main result is the following theorem.

Theorem

Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write

$$d = ka + b$$

such that $a \in \mathbb{N}$ and $b \in \{0, 1, 2, ..., k-1\}$. Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of Q_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Our main result is the following theorem.

Theorem

Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write

$$d = ka + b$$

such that $a \in \mathbb{N}$ and $b \in \{0, 1, 2, ..., k-1\}$. Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of Q_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Our main result is the following theorem.

Theorem

Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write

$$d = ka + b$$

such that *a* ∈ \mathbb{N} and *b* ∈ {0,1,2,..., *k* − 1}.

Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of Q_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Our main result is the following theorem.

Theorem

Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write

$$d = ka + b$$

such that $a \in \mathbb{N}$ and $b \in \{0, 1, 2, \dots, k-1\}$.

Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of Q_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Our main result is the following theorem.

Theorem

Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write

$$d = ka + b$$

such that $a \in \mathbb{N}$ and $b \in \{0, 1, 2, \dots, k-1\}$.

Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of Q_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Assume that Q_d is edge-colored with colors

$$[k] = \{1, \dots, k\}$$

such that the number of rainbow copies of C_4 is maximized.

A vertex in Q_d , say v, has $\binom{d}{2}$ incident copies of C_4 .

In the set of t_i edges of color $i \in [k]$ which are incident to v, none of the $\binom{t_i}{2}$ possible pairs can be in a rainbow copy of C_4 .

Assume that Q_d is edge-colored with colors

$$[k] = \{1, \dots, k\}$$

such that the number of rainbow copies of C_4 is maximized.

A vertex in Q_d , say v, has $\binom{d}{2}$ incident copies of C_4 .

In the set of t_i edges of color $i \in [k]$ which are incident to v, none of the $\binom{t_i}{2}$ possible pairs can be in a rainbow copy of C_4

Assume that Q_d is edge-colored with colors

$$[k] = \{1, \ldots, k\}$$

such that the number of rainbow copies of C_4 is maximized.

A vertex in Q_d , say v, has $\binom{d}{2}$ incident copies of C_4 .

In the set of t_i edges of color $i \in [k]$ which are incident to v, none of the $\binom{t_i}{2}$ possible pairs can be in a rainbow copy of C_4 .

Assume that Q_d is edge-colored with colors

$$[k] = \{1, \ldots, k\}$$

such that the number of rainbow copies of C_4 is maximized.

A vertex in Q_d , say v, has $\binom{d}{2}$ incident copies of C_4 .

In the set of t_i edges of color $i \in [k]$ which are incident to v, none of the $\binom{t_i}{2}$ possible pairs can be in a rainbow copy of C_4 .

If the color classes are as equal as possible and

$$t_1+\ldots+t_k=d=ka+b,$$

then there are at most

$$\begin{pmatrix} d \\ 2 \end{pmatrix} - \sum_{i \in [k]} {t_i \choose 2} \le {d \choose 2} - (k - b) {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} + b {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} - ba$$

rainbow copies of C_4 at v. Summing up this for each of the 2^d vertices of Q_d counts each C_4 four times.

If the color classes are as equal as possible and

$$t_1+\ldots+t_k=d=ka+b,$$

then there are at most

$$\begin{pmatrix} d \\ 2 \end{pmatrix} - \sum_{i \in [k]} {t_i \choose 2} \le {d \choose 2} - (k - b) {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} + b {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} - ba$$

rainbow copies of C_4 at v. Summing up this for each of the 2^d vertices of Q_d counts each C_4 four times.

If the color classes are as equal as possible and

$$t_1 + \ldots + t_k = d = ka + b,$$

then there are at most

$$\begin{pmatrix} d \\ 2 \end{pmatrix} - \sum_{i \in [k]} {t_i \choose 2} \le {d \choose 2} - (k - b) {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} + b {a \choose 2} - b {a+1 \choose 2}$$

$$= {d \choose 2} - k {a \choose 2} - ba$$

rainbow copies of C_4 at v. Summing up this for each of the 2^d vertices of Q_d counts each C_4 four times.

We would like to use edge-coloring of Q_k to color edges of Q_d .

Now we give a construction using a "blow-up technique".

Thinking of vertices of Q_d as elements of $\{0,1\}^d$, we want to partition each string into k "blocks" of consecutive binary digits of length either a or a+1.

We would like to use edge-coloring of Q_k to color edges of Q_d .

Now we give a construction using a "blow-up technique".

Thinking of vertices of Q_d as elements of $\{0,1\}^d$, we want to partition each string into k "blocks" of consecutive binary digits of length either a or a+1.

We would like to use edge-coloring of Q_k to color edges of Q_d .

Now we give a construction using a "blow-up technique".

Thinking of vertices of Q_d as elements of $\{0,1\}^d$, we want to partition each string into k "blocks" of consecutive binary digits of length either a or a+1.

We would like to use edge-coloring of Q_k to color edges of Q_d .

Now we give a construction using a "blow-up technique".

Thinking of vertices of Q_d as elements of $\{0,1\}^d$, we want to partition each string into k "blocks" of consecutive binary digits of length either a or a+1.

We would like to use edge-coloring of Q_k to color edges of Q_d .

Now we give a construction using a "blow-up technique".

Thinking of vertices of Q_d as elements of $\{0,1\}^d$, we want to partition each string into k "blocks" of consecutive binary digits of length either a or a+1.

We associate an element of $\{0,1\}^k$ with each vertex of \mathcal{Q}_d by computing the sum of the terms in each block modulo 2.

This process gives a map

$$h: V(\mathcal{Q}_d) \to V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

$$h(1110111011) = 101$$

We associate an element of $\{0,1\}^k$ with each vertex of \mathcal{Q}_d by computing the sum of the terms in each block modulo 2. This process gives a map

$$h: V(\mathcal{Q}_d) \rightarrow V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

$$h(1110111011) = 101$$

We associate an element of $\{0,1\}^k$ with each vertex of Q_d by computing the sum of the terms in each block modulo 2. This process gives a map

$$h: V(\mathcal{Q}_d) \to V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

$$h(1110111011) = 101$$

We associate an element of $\{0,1\}^k$ with each vertex of Q_d by computing the sum of the terms in each block modulo 2. This process gives a map

$$h: V(\mathcal{Q}_d) \rightarrow V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

$$h(1110111011) = 101$$

We associate an element of $\{0,1\}^k$ with each vertex of Q_d by computing the sum of the terms in each block modulo 2. This process gives a map

$$h: V(\mathcal{Q}_d) \rightarrow V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

$$h(1110111011) = 101$$

We associate an element of $\{0,1\}^k$ with each vertex of \mathcal{Q}_d by computing the sum of the terms in each block modulo 2.

This process gives a map

$$h: V(\mathcal{Q}_d) \rightarrow V(\mathcal{Q}_k).$$

For example, consider d = 10 and k = 3:

and

$$h(1110111011) = 101.$$

Furthermore, h preserves edges.

Edges of Q_d are pairs of vertices with Hamming distance 1.

If $u, v \in V(Q_d)$ have Hamming distance 1, then h(u) and h(v) differ exactly in one block and have Hamming distance 1.

Furthermore, h preserves edges.

Edges of Q_d are pairs of vertices with Hamming distance 1.

If $u, v \in V(Q_d)$ have Hamming distance 1, then h(u) and h(v) differ exactly in one block and have Hamming distance 1.

Furthermore, h preserves edges.

Edges of Q_d are pairs of vertices with Hamming distance 1.

If $u, v \in V(Q_d)$ have Hamming distance 1, then h(u) and h(v) differ exactly in one block and have Hamming distance 1.

Furthermore, h preserves edges.

Edges of Q_d are pairs of vertices with Hamming distance 1.

If $u, v \in V(Q_d)$ have Hamming distance 1, then h(u) and h(v) differ exactly in one block and have Hamming distance 1.

Furthermore, h preserves edges.

Edges of Q_d are pairs of vertices with Hamming distance 1.

If $u, v \in V(Q_d)$ have Hamming distance 1, then h(u) and h(v) differ exactly in one block and have Hamming distance 1.

Faudree, Gyárfás, Lesniak, and Schelp showed there is a k-edge-coloring of \mathcal{Q}_k , say φ , such that every C_4 is rainbow.

Color edges of Q_d with the color of their image under h in Q_k , i.e. the color of an edge e in Q_d is $\varphi(h(e))$.

Faudree, Gyárfás, Lesniak, and Schelp showed there is a k-edge-coloring of \mathcal{Q}_k , say φ , such that every C_4 is rainbow.

Color edges of Q_d with the color of their image under h in Q_k , i.e. the color of an edge e in Q_d is $\varphi(h(e))$.

Faudree, Gyárfás, Lesniak, and Schelp showed there is a k-edge-coloring of \mathcal{Q}_k , say φ , such that every C_4 is rainbow.

Color edges of Q_d with the color of their image under h in Q_k , i.e. the color of an edge e in Q_d is $\varphi(h(e))$.

Faudree, Gyárfás, Lesniak, and Schelp showed there is a k-edge-coloring of \mathcal{Q}_k , say φ , such that every C_4 is rainbow.

Color edges of Q_d with the color of their image under h in Q_k , i.e. the color of an edge e in Q_d is $\varphi(h(e))$.

Faudree, Gyárfás, Lesniak, and Schelp showed there is a k-edge-coloring of \mathcal{Q}_k , say φ , such that every C_4 is rainbow.

Color edges of Q_d with the color of their image under h in Q_k , i.e. the color of an edge e in Q_d is $\varphi(h(e))$.

We must check that for each vertex v in Q_d , each pair of edges with different colors incident to v is actually in a rainbow C_4 .

Note that among the four vertices in any C_4 the maximum Hamming distance is 2.

Thus, all differences among elements of $\{0,1\}^d$ of the four vertices of the C_4 occur in at most 2 blocks.

We must check that for each vertex v in Q_d , each pair of edges with different colors incident to v is actually in a rainbow C_4 .

Note that among the four vertices in any C_4 the maximum Hamming distance is 2.

Thus, all differences among elements of $\{0,1\}^d$ of the four vertices of the C_4 occur in at most 2 blocks.

We must check that for each vertex v in Q_d , each pair of edges with different colors incident to v is actually in a rainbow C_4 .

Note that among the four vertices in any C_4 the maximum Hamming distance is 2.

Thus, all differences among elements of $\{0,1\}^d$ of the four vertices of the C_4 occur in at most 2 blocks.

If all the differences occur in the same block,

then the four edges of the C_4 are mapped to the same edge in \mathcal{Q}_k , and thus, the C_4 is monochromatic in \mathcal{Q}_d .

If the differences occur in 2 distinct blocks, then the four edges of the C_4 are mapped to a C_4 in Q_k , and thus, receive different colors in the coloring of Q_d .

If all the differences occur in the same block, then the four edges of the C_4 are mapped to the same edge in \mathcal{Q}_k , and thus, the C_4 is monochromatic in \mathcal{Q}_d .

If the differences occur in 2 distinct blocks, then the four edges of the C_4 are mapped to a C_4 in Q_K , and thus, receive different colors in the coloring of Q_d .

If all the differences occur in the same block, then the four edges of the C_4 are mapped to the same edge in \mathcal{Q}_k , and thus, the C_4 is monochromatic in \mathcal{Q}_d .

If the differences occur in 2 distinct blocks,

then the four edges of the C_4 are mapped to a C_4 in Q_k , and thus, receive different colors in the coloring of Q_d .

If all the differences occur in the same block, then the four edges of the C_4 are mapped to the same edge in \mathcal{Q}_k , and thus, the C_4 is monochromatic in \mathcal{Q}_d .

If the differences occur in 2 distinct blocks, then the four edges of the C_4 are mapped to a C_4 in Q_k , and thus, receive different colors in the coloring of Q_d .

Further Directions

Further Directions

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

k = 5

Upper Bound

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

k = 5

Upper Bound

For k = 5, flag algebra methods did not improve the upper bound obtained from our main result.

We actually suspect that the upper bound might be the correct order of magnitude for large d.

Lower Bound

For a lower bound, our blow-up method can be applied to a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 .

Let *G* and *H* be graphs and $|E(H)| \ge q \in \mathbb{N}$.

Denote the minimum number of colors required to edge-color G such that the edges of every copy of H in G receive at least q colors by

$$f(G, H, q)$$
.

In this context, Faudree, Gyárfás, Lesniak, and Schelp show

$$f(Q_d, C_4, |E(C_4)|) = f(Q_d, C_4, 4) = d,$$

for integer $4 \le d$ with $d \ne 5$.

Let *G* and *H* be graphs and $|E(H)| \ge q \in \mathbb{N}$.

Denote the minimum number of colors required to edge-color G such that the edges of every copy of H in G receive at least q colors by

$$f(G, H, q)$$
.

In this context, Faudree, Gyárfás, Lesniak, and Schelp show

$$f(Q_d, C_4, |E(C_4)|) = f(Q_d, C_4, 4) = d,$$

for integer $4 \le d$ with $d \ne 5$.

Let *G* and *H* be graphs and $|E(H)| \ge q \in \mathbb{N}$.

Denote the minimum number of colors required to edge-color G such that the edges of every copy of H in G receive at least q colors by

$$f(G, H, q)$$
.

In this context, Faudree, Gyárfás, Lesniak, and Schelp show

$$f(Q_d, C_4, |E(C_4)|) = f(Q_d, C_4, 4) = d,$$

for integer $4 \le d$ with $d \ne 5$.

Mubayi and Stading generalized this result.

They proved that there are positive constants, say c_1 and c_2 depending only on k such that

$$c_1 d^{k/4} < f(Q_d, C_k, k) < c_2 d^{k/4}$$

for $k \equiv 0 \pmod{4}$.

Mubayi and Stading generalized this result.

They proved that there are positive constants, say c_1 and c_2 , depending only on k such that

$$c_1 d^{k/4} < f(Q_d, C_k, k) < c_2 d^{k/4}$$

for $k \equiv 0 \pmod{4}$.

Mubayi and Stading showed that

$$f(\mathcal{Q}_d, C_6, 6) = f(\mathcal{Q}_d, \mathcal{Q}_3, |E(\mathcal{Q}_3)|)$$

= $f(\mathcal{Q}_d, \mathcal{Q}_3, 12)$.

They were able to show that for every $\varepsilon > 0$, there exists d_0 such that for $d > d_0$

$$d \leq f(Q_d, Q_3, 12) \leq d^{1+\varepsilon}$$
.

Mubayi and Stading showed that

$$f(\mathcal{Q}_d, C_6, 6) = f(\mathcal{Q}_d, \mathcal{Q}_3, |E(\mathcal{Q}_3)|)$$

= $f(\mathcal{Q}_d, \mathcal{Q}_3, 12)$.

They were able to show that for every $\varepsilon > 0$, there exists d_0 such that for $d > d_0$

$$d \leq f(\mathcal{Q}_d, \mathcal{Q}_3, 12) \leq d^{1+\varepsilon}$$
.

We would like to introduce a different generalization.

Problem

Determine the value of

$$f(\mathcal{Q}_{\mathsf{d}},\mathcal{Q}_{\ell},|E(\mathcal{Q}_{\ell})|) = f(\mathcal{Q}_{\mathsf{d}},\mathcal{Q}_{\ell},\ell\mathbf{2}^{\ell-1})$$

for $\ell \geq 3$.

Perhaps a generalization of our blow-up technique could be used to determine the maximum number of rainbow copies of Q_{ℓ} in a k-edge-coloring of Q_{d} in general.

We would like to introduce a different generalization.

Problem

Determine the value of

$$f(\mathcal{Q}_d, \mathcal{Q}_\ell, |E(\mathcal{Q}_\ell)|) = f(\mathcal{Q}_d, \mathcal{Q}_\ell, \ell 2^{\ell-1})$$

for $\ell \geq 3$.

Perhaps a generalization of our blow-up technique could be used to determine the maximum number of rainbow copies of Q_{ℓ} in a k-edge-coloring of Q_{d} in general.

We would like to introduce a different generalization.

Problem

Determine the value of

$$f(\mathcal{Q}_d, \mathcal{Q}_\ell, |E(\mathcal{Q}_\ell)|) = f(\mathcal{Q}_d, \mathcal{Q}_\ell, \ell 2^{\ell-1})$$

for $\ell \geq 3$.

Perhaps a generalization of our blow-up technique could be used to determine the maximum number of rainbow copies of Q_{ℓ} in a k-edge-coloring of Q_{d} in general.

Thank you for listening!