On Star Decompositions of Random Regular Graphs

Michelle Delcourt and Luke Postle

EuroComb 2017

September 1, 2017

Background

- Jaeger's Conjecture
- Random Versions
- 3 Barát and Thomassen's Conjecture

Conjecture (Tutte 1966)

Every 4-edge-connected graph has a nowhere-zero 3-flow.

Equivalently

Conjecture

Every 4-edge-connected, 5-regular graph has an edge orientation in which every out-degree is either 4 or 1.

Conjecture (Tutte 1966)

Every 4-edge-connected graph has a nowhere-zero 3-flow.

Equivalently

Conjecture

Every 4-edge-connected, 5-regular graph has an edge orientation in which every out-degree is either 4 or 1.

More generally

Conjecture (Jaeger 1988)

Every 4k-edge-connected, (4k + 1)-regular graph has a mod (2k + 1)-orientation, that is, an edge orientation in which every out-degree is either 3k + 1 or k.

Theorem (L. M. Lovász, Thomassen, Wang, Zhu, 2013)

For every odd $k \ge 3$, every (3k - 3)-edge-connected graph has a mod k-orientation.

More generally

Conjecture (Jaeger 1988)

Every 4k-edge-connected, (4k + 1)-regular graph has a mod (2k + 1)-orientation, that is, an edge orientation in which every out-degree is either 3k + 1 or k.

Theorem (L. M. Lovász, Thomassen, Wang, Zhu, 2013)

For every odd $k \ge 3$, every (3k - 3)-edge-connected graph has a mod k-orientation.

Background

- Jaeger's Conjecture
- Random Versions
- 3 Barát and Thomassen's Conjecture

Random Versions

Using the small subgraph conditioning method of Robinson and Wormald,

Theorem (Prałat and Wormald 2015+)

Tutte's 3-flow conjecture holds asymptotically almost surely for random 5-regular graphs.

Using spectral techniques, (expander mixing lemma)

Theorem (Alon and Prałat 2011)

For large k, Jaeger's conjecture holds asymptotically almost surely for random (4k + 1)-regular graphs.

Random Versions

Using the small subgraph conditioning method of Robinson and Wormald,

Theorem (Prałat and Wormald 2015+)

Tutte's 3-flow conjecture holds asymptotically almost surely for random 5-regular graphs.

Using spectral techniques, (expander mixing lemma)

Theorem (Alon and Prałat 2011)

For large k, Jaeger's conjecture holds asymptotically almost surely for random (4k + 1)-regular graphs.

Background

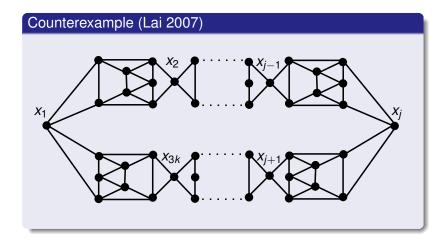
- Jaeger's Conjecture
- Random Versions
- Barát and Thomassen's Conjecture

Barát and Thomassen's Conjecture

Conjecture (Barát and Thomassen 2006)

If G is a planar 4-edge-connected, 4-regular graph such that 3|e(G), then G has a claw decomposition.

Barát and Thomassen's Conjecture



Barát and Thomassen's Conjecture

Theorem (D. and Postle 2015+)

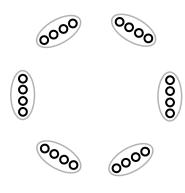
If 3|n, then a random 4-regular graph on n vertices has an S_3 decomposition asymptotically almost surely (a.a.s.).

Random Regular Graphs

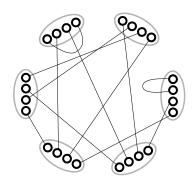
- Configuration Model P_{n,d}
- Orienting Edges
- Signatures

•

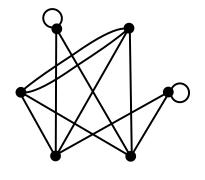
- Begin with n vertices.
- 2
- 3
- 4
- 5



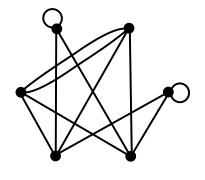
- Begin with n vertices.
- ② Create n "cells," each with d "points." (dn even)
- 3
- 4
- 6



- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- 4
- **6**



- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- 5

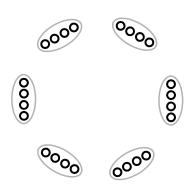


- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- If this (multi)graph is not simple, then restart.

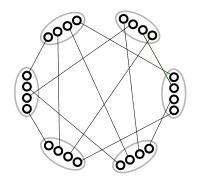
•

- - •

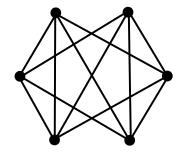
- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- If this (multi)graph is not simple, then restart.



- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- If this (multi)graph is not simple, then restart.



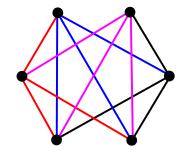
- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- If this (multi)graph is not simple, then restart.



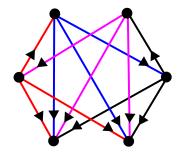
- Begin with n vertices.
- Create n "cells," each with d "points." (dn even)
- Form a random perfect matching.
- Collapse the cells.
- If this (multi)graph is not simple, then restart.

Random Regular Graphs

- Configuration Model $P_{n,d}$
- Orienting Edges
- Signatures

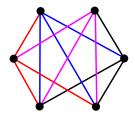


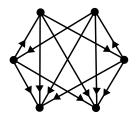
An S_3 -decomposition of a graph G is a partition of E(G) into disjoint copies of S_3 .

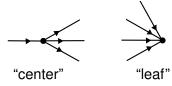


An S_3 -decomposition of a graph G is a partition of E(G) into disjoint copies of S_3 .

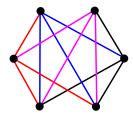
For 4-regular graphs, S_3 -decompositions are equivalent to orientations with out-degrees equal to 0 or 3.

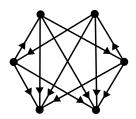


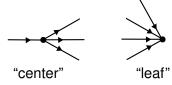




We expect $\frac{2n}{3}$ centers and $\frac{n}{3}$ leaves in an S_3 -decomposition.



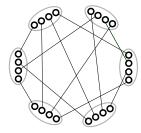


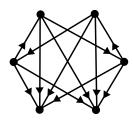


We expect $\frac{2n}{3}$ centers and $\frac{n}{3}$ leaves in an S_3 -decomposition.

Random Regular Graphs

- Configuration Model $P_{n,d}$
- Orienting Edges
- Signatures

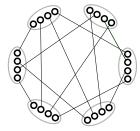


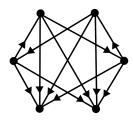


What does this mean in the configuration model?

We assign points

according to some rules.

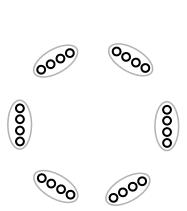




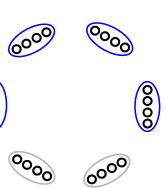
What does this mean in the configuration model?

We assign points

according to some rules.

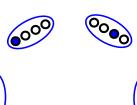


- Start with n "cells" of d "points."
- 2
- 3
- 4
- **5**



- Start with n "cells" of d "points."
- We designate $\frac{2n}{3}$ cells to be "centers."
- 3
- 4
- **6**

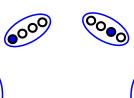
000c



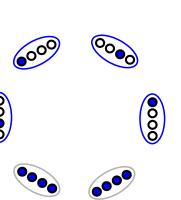
6000

- Start with n "cells" of d "points."
- We designate $\frac{2n}{3}$ cells to be "centers."
- From each center, select one "in" point.

5



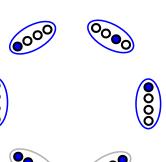
- Start with n "cells" of d "points."
- We designate $\frac{2n}{3}$ cells to be "centers."
- From each center, select one "in" point.
- All points not in a center are "in" points.



- Start with n "cells" of d "points."
- We designate $\frac{2n}{3}$ cells to be "centers."
- From each center, select one "in" point.
- All points not in a center are "in" points.
- All other points are "out" points.

We call such an assignment a **signature**.

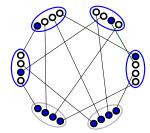
Signatures

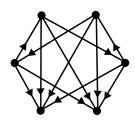


- Start with n "cells" of d "points."
- We designate $\frac{2n}{3}$ cells to be "centers."
- From each center, select one "in" point.
- All points not in a center are "in" points.
- All other points are "out" points.

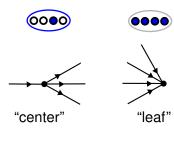
We call such an assignment a **signature**.

Signatures





We match "in" points with "out" points.



Finding S_3 -Decompositions

- Main Result
- Small Subgraph Conditioning Method

Theorem (D. and Postle 2015+)

If 3|n, then a random 4-regular graph on n vertices has an S_3 -decomposition asymptotically almost surely (a.a.s.).

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$

- (2n/3) ways to select "centers."
- •
- •
- •

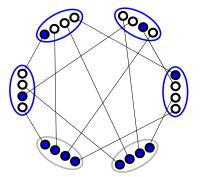
$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$

- (ⁿ_{2n/3}) ways to select "centers."
- 4^{2n/3} choices of special points for centers.
- 0

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$

- (ⁿ_{2n/3}) ways to select "centers."
- 4^{2n/3} choices of special points for centers.
- $\binom{n}{2n/3} \cdot 4^{2n/3}$ signatures.

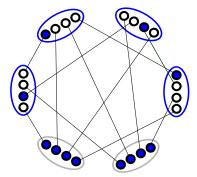
$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} \text{ where } M(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$



- (n/2n/3) ways to select "centers."
- 4^{2n/3} choices of special points for centers.
- $\binom{n}{2n/3} \cdot 4^{2n/3}$ signatures.
- (4n/2)! = (2n)! ways to match "in" points to "out" points.

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{\textit{M}(4n)} \text{ where } \textit{M}(4n) := \frac{(4n)!}{\left(\frac{4n}{2}\right)! \cdot 2^{4n/2}}.$$



M(4n) is the number of perfect matchings on 4n points.

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}}$$
$$\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}}$$
$$\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}}$$
$$\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}}$$
$$\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}}$$
$$\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

 $Y = Y(n) := \# S_3$ -decompositions of a random element of $P_{n,4}$.

$$\begin{split} \mathbb{E}[Y] &= \frac{\binom{n}{2n/3} \cdot 4^{2n/3} \cdot (2n)!}{M(4n)} = 4^{5n/3} \frac{\binom{n}{2n/3}}{\binom{4n}{2n}} \\ &\sim \frac{3}{\sqrt{2}} \left(\frac{3^3}{2^4}\right)^{n/3} = \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}. \end{split}$$

We would like to use the second moment method.

Lemma

If Y is a non-negative random variable and $\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \to 0$ as $n \to \infty$, then a.a.s. Y > 0.

By a.a.s. Y > 0 we mean

$$\mathbb{P}[Y=Y(n)>0]\to 1$$

as $n \to \infty$ with the restriction that 3|n.

We would like to use the second moment method.

Lemma

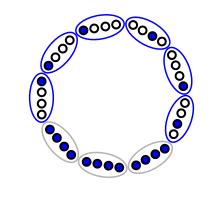
If Y is a non-negative random variable and $\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \to 0$ as $n \to \infty$, then a.a.s. Y > 0.

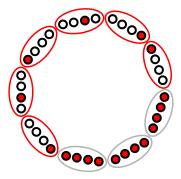
By a.a.s. Y > 0 we mean

$$\mathbb{P}[Y=Y(n)>0]\to 1$$

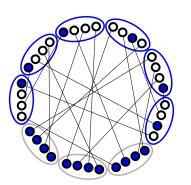
as $n \to \infty$ with the restriction that 3|n.

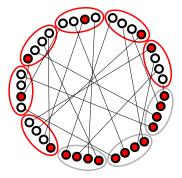
To calculate $\mathbb{E}[Y^2]$, we fix two signatures, say S_1 and S_2





To calculate $\mathbb{E}[Y^2]$, we fix two signatures, say S_1 and S_2 , and see how many configurations jointly they extend to.





Recall

$$\mathbb{E}[Y] \sim \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

Unfortunately

$$\mathbb{E}[Y^2] \sim \sqrt{\frac{3}{2}} \cdot \frac{9}{2} \left(\frac{27}{16}\right)^{2n/3}$$

and therefore

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}} > 1$$

Recall

$$\mathbb{E}[Y] \sim \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

Unfortunately

$$\mathbb{E}[Y^2] \sim \sqrt{\frac{3}{2}} \cdot \frac{9}{2} \left(\frac{27}{16}\right)^{2n/3}$$

and therefore.

$$\frac{\mathbb{E}[\mathit{Y}^2]}{\mathbb{E}[\mathit{Y}]^2} \sim \sqrt{\frac{3}{2}} > 1$$

Recall

$$\mathbb{E}[Y] \sim \frac{3}{\sqrt{2}} \left(\frac{27}{16}\right)^{n/3}.$$

Unfortunately

$$\mathbb{E}[Y^2] \sim \sqrt{\frac{3}{2}} \cdot \frac{9}{2} \left(\frac{27}{16}\right)^{2n/3}$$

and therefore,

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}} > 1.$$

Finding S_3 -Decompositions

- Main Result
- Small Subgraph Conditioning Method

We will try the small subgraph conditioning method of Robinson and Wormald.

When this method works, conditioning on small subgraph counts alters $\mathbb{E}[Y]$ by a constant factor.

"Mysteriously" by conditioning on the numbers of enough small subgraphs, we can reduce Var[Y] to any small fraction of $\mathbb{E}[Y]^2$.

We will try the small subgraph conditioning method of Robinson and Wormald.

When this method works, conditioning on small subgraph counts alters $\mathbb{E}[Y]$ by a constant factor.

"Mysteriously" by conditioning on the numbers of enough small subgraphs, we can reduce Var[Y] to any small fraction of $\mathbb{E}[Y]^2$.

We will try the small subgraph conditioning method of Robinson and Wormald.

When this method works, conditioning on small subgraph counts alters $\mathbb{E}[Y]$ by a constant factor.

"Mysteriously" by conditioning on the numbers of enough small subgraphs, we can reduce Var[Y] to any small fraction of $\mathbb{E}[Y]^2$.

We will try the small subgraph conditioning method of Robinson and Wormald.

When this method works, conditioning on small subgraph counts alters $\mathbb{E}[Y]$ by a constant factor.

"Mysteriously" by conditioning on the numbers of enough small subgraphs, we can reduce Var[Y] to any small fraction of $\mathbb{E}[Y]^2$.

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \ge -1$ be real, $j \ge 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n), j \ge 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables wit

$$\mathbb{E}\left[Y[X_1]_{\ell_1}, \dots, [X_i]_{\ell_i}\right] \qquad j$$

$$\frac{\mathbb{E}[Y]}{\mathbb{E}[Y]} \to \prod_{i=1} (\lambda_i (1 + \delta_i))$$

for any fixed ℓ_1, \ldots, ℓ_j where $[X]_{\ell}$ is the falling factorial;

$$\frac{\mathbb{E}[Y(n)^2]}{2} < \exp\left(\sum \lambda_i \delta_i^2\right) + o(1) \ as \ n o \infty$$

hen, $\mathbb{P}[Y(n)>0]=\exp\left(-\sum_{i}\lambda_{i}\right)+o(1)$

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \geq -1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n), j \geq 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

o For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$;

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]} \to \prod_{i=1}^j \left(\lambda_i \left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1, \ldots, ℓ_j where $[X]_{\ell}$ is the falling factorial;

$$\frac{\mathbb{E}[Y(n)^2]}{\pi (N-n)^2} \le \exp\left(\sum \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

hen, $\mathbb{P}[Y(n)>0]=\exp\left(-\sum_{i}\lambda_{i}\right)+o(1)$

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \geq -1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n), j \geq 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

2

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\cdots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to \prod_{i=1}^j (\lambda_i(1+\delta_i))^{\ell_i}$$

for any fixed ℓ_1, \ldots, ℓ_j where $[X]_\ell$ is the falling factorial;

$$\mathbb{E}[Y(n)^2] \le \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

Thon

$$P[Y(n) > 0] = \exp\left(-\sum_{\delta_j = -1} \lambda_j\right) + o(1).$$

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \geq -1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n), j \geq 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty;$

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty$$

Then

$$p[Y(n) > 0] = \exp\left(-\sum_{\delta_j = -1} \lambda_j\right) + o(1).$$

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \ge -1$ be real, $j \ge 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n), j \ge 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\cdots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty;$

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

Then

$$\mathbb{P}[Y(n) > 0] = \exp\left(-\sum_{\delta_i = -1} \lambda_i\right) + o(1)$$

Theorem (Robinson and Wormald 1992)

Let $\lambda_i > 0$ and $\delta_i \ge -1$ be real, $j \ge 1$. Suppose for each n there are non-negative random variables $X_i = X_i(n), j \geq 1$, and Y = Y(n) defined on the same probability space such that X_i is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

1 For each $j \ge 1, X_1, X_2, \ldots, X_j$ are asymptotically independent Poisson random variables with

$$\mathbb{E}[X_i] o \lambda_i, \,\, ext{for all } i \in [j];$$

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty;$

$$\sum_{i} \lambda_{i} \delta_{i}^{2} < \infty;$$

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

Then.

$$\mathbb{P}[Y(n) > 0] = \exp\left(-\sum_{\delta_i = -1} \lambda_i\right) + o(1).$$

Theorem (Robinson and Wormald 1992)

Let $\lambda_i > 0$ and $\delta_i \geq -1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_i = X_i(n), j \geq 1$, and Y = Y(n) defined on the same probability space such that X_i is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

1 For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty;$

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

Then.

$$\mathbb{P}[Y(n) > 0] = \exp\left(-\sum_{\delta_j = -1} \lambda_j\right) + o(1).$$

Theorem (Bollobás 1980)

For d fixed, let X_j denote the number of cycles of length j in the random multigraph resulting from a pairing in $P_{n,d}$. For $j \ge 1$, X_1, \ldots, X_j are asymptotically independent Poisson random variable with means $\lambda_i = \frac{(d-1)^i}{2 \cdot i}$, for all $i \in [j]$.

In
$$P_{n,4}$$
, $\mathbb{E}[X_j] \to \lambda_j := \frac{3^j}{2 \cdot j}$

Theorem (Bollobás 1980)

For d fixed, let X_j denote the number of cycles of length j in the random multigraph resulting from a pairing in $P_{n,d}$. For $j \ge 1$, X_1, \ldots, X_j are asymptotically independent Poisson random variable with means $\lambda_i = \frac{(d-1)^i}{2 \cdot i}$, for all $i \in [j]$.

In
$$P_{n,4}$$
, $\mathbb{E}[X_j] \to \lambda_j := \frac{3^j}{2 \cdot j}$.

Theorem (Robinson and Wormald 1992)

Let $\lambda_i > 0$ and $\delta_i \ge -1$ be real, $j \ge 1$. Suppose for each n there are non-negative random variables $X_i = X_i(n), j \ge 1$, and Y = Y(n) defined on the same probability space such that X_i is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

1 For each $j \geq 1, X_1, X_2, \ldots, X_i$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to \prod_{i=1}^j \left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty$;

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \ \textit{as} \ n \to \infty.$$

Then.

$$\mathbb{P}[Y(n) > 0] = \exp\left(-\sum_{\delta_i = -1} \lambda_i\right) + o(1).$$

We need to show that for each $j \ge 1$,

$$\frac{\mathbb{E}\left[YX_{j}\right]}{\mathbb{E}[Y]} \to \lambda_{j} \left(1 + \delta_{j}\right)$$

and more generally (easy generalization)

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1, \ldots, ℓ_i .

For each $j \ge 1$,

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{\text{oriented } j-\text{cycle } C} | \text{extensions of orientations of } C |.$$

We compute δ_j such that

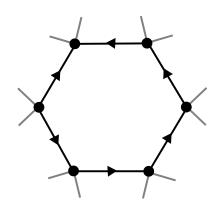
$$\frac{\mathbb{E}\left[YX_{j}\right]}{\mathbb{E}[Y]} \to \lambda_{j} \left(1 + \delta_{j}\right).$$

For each $j \ge 1$,

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{\text{oriented } j-\text{cycle } C} |\text{extensions of orientations of } C|.$$

We compute δ_i such that

$$\frac{\mathbb{E}\left[YX_{j}\right]}{\mathbb{E}[Y]} \to \lambda_{j} \left(1 + \delta_{j}\right).$$



An oriented cycle with *j* vertices has:

s sinks,
s sources, and
j – 2s non-sinks, non-sources.

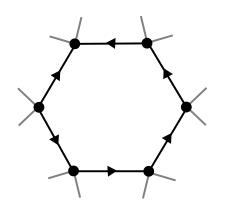
$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$



An oriented cycle with *j* vertices has: *s* sinks,

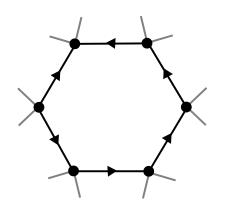
s sources, and j-2s non-sinks, non-sources.

$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$



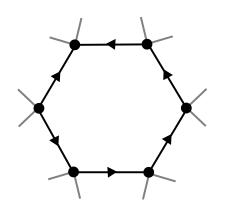
An oriented cycle with *j*vertices has:
s sinks,
s sources, and
i – 2s non-sinks, non-sources.

$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$



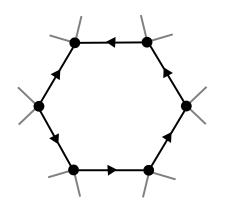
An oriented cycle with *j*vertices has:
s sinks,
s sources, and
j – 2s non-sinks, non-sources.

$$\frac{[n]_j}{j} \binom{j}{2s} (4 \cdot 3)^j.$$



An oriented cycle with *j*vertices has:
s sinks,
s sources, and
j – 2s non-sinks, non-sources.

$$\frac{[n]_j}{j} \binom{j}{2s} (4 \cdot 3)^j.$$



An oriented cycle with *j*vertices has:
s sinks,
s sources, and
j – 2s non-sinks, non-sources.

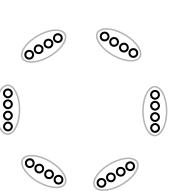
$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle

$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

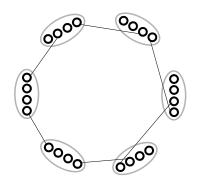
- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle



$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

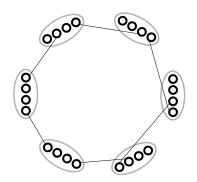
- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle
- •
- •

•



$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

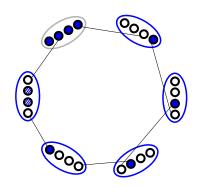
- $\binom{n}{j}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle
- $(4 \cdot 3)^j$ matchings
- $\binom{j}{j-2s} = \binom{j}{2s}$ choices of non-sink non-source cells



$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle
- $(4 \cdot 3)^j$ matchings
- $\binom{j}{j-2s} = \binom{j}{2s}$ choices of non-sink non-source cells

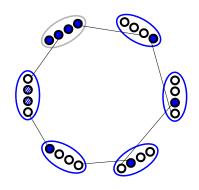
۵



$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle
- $(4 \cdot 3)^j$ matchings
- $\binom{j}{j-2s} = \binom{j}{2s}$ choices of non-sink non-source cells
- 2 assignments

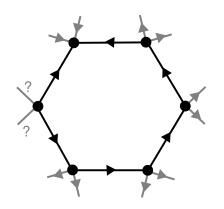
How to extend the orientation to the rest of the graph?

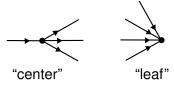


$$\frac{[n]_j}{j}\binom{j}{2s}(4\cdot 3)^j.$$

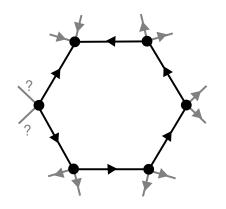
- $\binom{n}{i}$ choices of j cells
- $\frac{(j-1)!}{2}$ choices of cycle
- $(4 \cdot 3)^j$ matchings
- $\binom{j}{j-2s} = \binom{j}{2s}$ choices of non-sink non-source cells
- 2 assignments

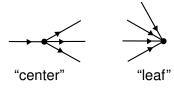
How to extend the orientation to the rest of the graph?



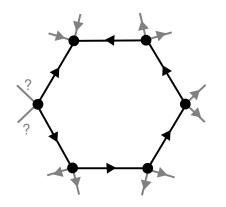


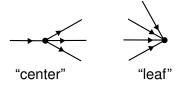
sinks are leaves, sources are centers, and non-sinks, non-sources



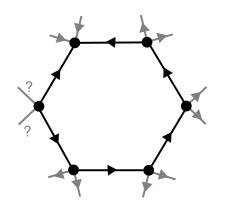


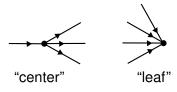
sinks are leaves, sources are centers, and non-sinks, non-sources



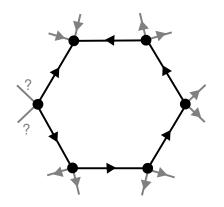


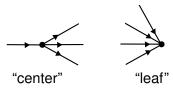
sinks are leaves, sources are centers, and non-sinks, non-sources





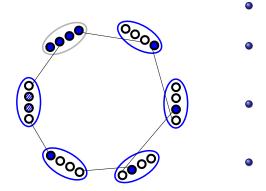
sinks are leaves, sources are centers, and non-sinks, non-sources are centers.



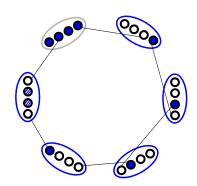


There are s leaves and j - s centers.

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} {j \choose 2s} (4 \cdot 3)^j \cdot 2^s {n-j \choose \frac{2n}{3} - j + s} 4^{\frac{2n}{3} - j + s} (2n-j)!$$



$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot 3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$

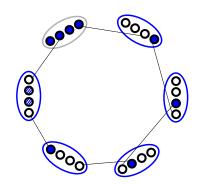


 2^s choices of special points for sources.

•

•

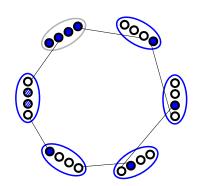
$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$



- 2^s choices of special points for sources.
- $\binom{n-j}{\frac{2n}{3}-(j-s)} = \binom{n-j}{\frac{2n}{3}-j+s}$ choices of outside centers.

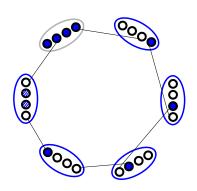
•

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$



- 2^s choices of special points for sources.
- $\binom{n-j}{\frac{2n}{3}-(j-s)} = \binom{n-j}{\frac{2n}{3}-j+s}$ choices of outside centers.
- 4^{2n/3-j+s} choices of special points for these centers.
- •

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} {j \choose 2s} (4\cdot3)^j \cdot 2^s {n-j \choose \frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$



- 2^s choices of special points for sources.
- $\binom{n-j}{\frac{2n}{3}-(j-s)} = \binom{n-j}{\frac{2n}{3}-j+s}$ choices of outside centers.
- 4^{2n/3-j+s} choices of special points for these centers.
- $\left(\frac{4n-2j}{2}\right)! = (2n-j)!$ matchings of "in" points to "out" points.

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot 3)^j \cdot 2^s \binom{n-j}{3} - j + s 4^{\frac{2n}{3} - j + s} (2n-j)!$$

Recal

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} 4^{2n/3} (2n)!}{M(4n)}.$$

Thus.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} = \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \frac{{2n \choose 3}!}{{2n \choose 3} - j + s}! \frac{{n \choose 3}!}{{n \choose 3} - s}! \frac{(2n - j)!}{(2n)!} 2^{3s}$$

$$\sim \frac{3^{j}}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \left(\frac{2n}{3}\right)^{j-s} \left(\frac{n}{3}\right)^{s} \frac{2^{3s}}{(2n)^{j}} = \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s}$$

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot 3)^j \cdot 2^s \binom{n-j}{3} - j + s 4^{\frac{2n}{3} - j + s} (2n-j)!$$

Recall

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} 4^{2n/3} (2n)!}{M(4n)}.$$

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} = \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \frac{(\frac{2n}{3})!}{(\frac{2n}{3} - j + s)!} \frac{(\frac{n}{3})!}{(\frac{n}{3} - s)!} \frac{(2n - j)!}{(2n)!} 2^{3s}$$

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$

Recall

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} 4^{2n/3} (2n)!}{M(4n)}.$$

$$\frac{\mathbb{E}[YX_{j}]}{\mathbb{E}[Y]} = \frac{3^{j}}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \frac{\left(\frac{2n}{3}\right)!}{\left(\frac{2n}{3} - j + s\right)!} \frac{\left(\frac{n}{3}\right)!}{\left(\frac{n}{3} - s\right)!} \frac{(2n - j)!}{(2n)!} 2^{3s}$$

$$\sim \frac{3^{j}}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \left(\frac{2n}{3}\right)^{j-s} \left(\frac{n}{3}\right)^{s} \frac{2^{3s}}{(2n)^{j}} = \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s}.$$

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$

Recall

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} 4^{2n/3} (2n)!}{M(4n)}.$$

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} = \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \frac{{2n \choose 3}!}{{2n \choose 3} - j + s}! \frac{{n \choose 3}!}{{n \choose 3} - s}! \frac{(2n - j)!}{(2n)!} 2^{3s}$$

$$\sim \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \left(\frac{2n}{3}\right)^{j-s} \left(\frac{n}{3}\right)^s \frac{2^{3s}}{(2n)^j} = \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s}.$$

$$\mathbb{E}[YX_j] = \frac{1}{M(4n)} \sum_{s=0}^{\lfloor j/2 \rfloor} \frac{[n]_j}{j} \binom{j}{2s} (4\cdot 3)^j \cdot 2^s \binom{n-j}{\frac{2n}{3}-j+s} 4^{\frac{2n}{3}-j+s} (2n-j)!$$

Recall

$$\mathbb{E}[Y] = \frac{\binom{n}{2n/3} 4^{2n/3} (2n)!}{M(4n)}.$$

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} = \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \frac{\left(\frac{2n}{3}\right)!}{\left(\frac{2n}{3} - j + s\right)!} \frac{\left(\frac{n}{3}\right)!}{\left(\frac{n}{3} - s\right)!} \frac{(2n - j)!}{(2n)!} 2^{3s}$$

$$\sim \frac{3^j}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} \left(\frac{2n}{3}\right)^{j-s} \left(\frac{n}{3}\right)^s \frac{2^{3s}}{(2n)^j} = \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s}.$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^j$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$
$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$
$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$

$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$

$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$
$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$
$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$
$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$
$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$
$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$
$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$

$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$

$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$

Note that $\binom{j}{2s}$ is the coefficient of x^{2s} in $q(x) := (1+x)^{j}$.

$$\frac{\mathbb{E}[YX_j]}{\mathbb{E}[Y]} \sim \frac{1}{j} \sum_{s=0}^{\lfloor j/2 \rfloor} {j \choose 2s} 2^{2s} = \frac{1}{j} \cdot \frac{(q(2) + q(-2))}{2}$$

$$= \frac{1}{2 \cdot j} \left(3^j + (-1)^j \right) = \frac{3^j}{2 \cdot j} \left(1 + \left(-\frac{1}{3} \right)^j \right)$$

$$= \lambda_j \left(1 + \left(-\frac{1}{3} \right)^j \right).$$

$$\delta_j = \left(-\frac{1}{3}\right)^j$$
.

Theorem (Robinson and Wormald 1992)

Let $\lambda_j > 0$ and $\delta_j \ge -1$ be real, $j \ge 1$. Suppose for each n there are non-negative random variables $X_j = X_j(n)$, $j \ge 1$, and Y = Y(n) defined on the same probability space such that X_j is integer valued and $\mathbb{E}[Y] > 0$ (for n sufficiently large). Furthermore, suppose

For each $j \ge 1, X_1, X_2, \dots, X_j$ are asymptotically independent Poisson random variables with $\mathbb{E}[X_i] \to \lambda_i$, for all $i \in [i]$:

$$\frac{\mathbb{E}\left[Y[X_1]_{\ell_1}\dots[X_j]_{\ell_j}\right]}{\mathbb{E}[Y]}\to\prod_{i=1}^j\left(\lambda_i\left(1+\delta_i\right)\right)^{\ell_i}$$

for any fixed ℓ_1,\ldots,ℓ_j where $[X]_\ell$ is the falling factorial; $\sum_i \lambda_i \delta_i^2 < \infty;$

$$\frac{\mathbb{E}[Y(n)^2]}{\mathbb{E}[Y(n)]^2} \leq \exp\left(\sum_i \lambda_i \delta_i^2\right) + o(1) \text{ as } n \to \infty.$$

Then.

$$\mathbb{P}[Y(n) > 0] = \exp\left(-\sum_{\delta_i = -1} \lambda_i\right) + o(1).$$

Then

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\sum_{j\geq 1}\frac{3^j}{2\cdot j}\left(-\frac{1}{3}\right)^{2j}\right)=\exp\left(\frac{1}{2}\sum_{j\geq 1}\frac{1}{j\cdot 3^j}\right)$$

Using $\sum_{i>1} \frac{x^i}{i} = -\ln(1-x)$ for all -1 < x < 1,

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\frac{1}{2}\left(-\ln(2/3)\right)\right)=\sqrt{\frac{3}{2}}.$$

By the small subgraph conditioning method a.a.s. Y > 0,

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}}$$

Then

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\sum_{j\geq 1}\frac{3^j}{2\cdot j}\left(-\frac{1}{3}\right)^{2j}\right)=\exp\left(\frac{1}{2}\sum_{j\geq 1}\frac{1}{j\cdot 3^j}\right)$$

Using $\sum_{i \ge 1} \frac{x^i}{i} = -\ln(1-x)$ for all -1 < x < 1,

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\frac{1}{2}\left(-\ln(2/3)\right)\right)=\sqrt{\frac{3}{2}}.$$

By the small subgraph conditioning method a.a.s. Y > 0, because

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}}$$

Then

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\sum_{j\geq 1}\frac{3^j}{2\cdot j}\left(-\frac{1}{3}\right)^{2j}\right)=\exp\left(\frac{1}{2}\sum_{j\geq 1}\frac{1}{j\cdot 3^j}\right)$$

Using $\sum_{i \ge 1} \frac{x^i}{i} = -\ln(1-x)$ for all -1 < x < 1,

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2
ight)=\exp\left(rac{1}{2}\left(-\ln(2/3)
ight)
ight)=\sqrt{rac{3}{2}}.$$

By the small subgraph conditioning method a.a.s. Y > 0, because

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}}$$

Then

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2\right)=\exp\left(\sum_{j\geq 1}\frac{3^j}{2\cdot j}\left(-\frac{1}{3}\right)^{2j}\right)=\exp\left(\frac{1}{2}\sum_{j\geq 1}\frac{1}{j\cdot 3^j}\right)$$

Using $\sum_{i \ge 1} \frac{x^i}{i} = -\ln(1-x)$ for all -1 < x < 1,

$$\exp\left(\sum_{j\geq 1}\lambda_j\delta_j^2
ight)=\exp\left(rac{1}{2}\left(-\ln(2/3)
ight)
ight)=\sqrt{rac{3}{2}}.$$

By the small subgraph conditioning method a.a.s. Y > 0, because

$$\frac{\mathbb{E}[Y^2]}{\mathbb{E}[Y]^2} \sim \sqrt{\frac{3}{2}}.$$

Thank you for listening!