Motivation Polynomial Approach Better Bound Conclusion

Discrete Bernoulli Convolutions Taking the Convoluted out of Bernoulli Convolutions

Michelle Delcourt

University of Illinois, at Urbana-Champaign

April 20, 2013

Motivation Polynomial Approach Better Bound Conclusion

This is joint work with Neil J. Calkin, Julia Davis, Zebediah Engberg, Jobby Jacob, and Kevin James.

A Bernoulli convolution for 0 < q < 1 is the convolution

$$\mu_q(X) = b(X) * b(X/q) * b(X/q^2) * ...$$

where *b* is the discrete Bernoulli measure concentrated at 1 and -1 each with weight $\frac{1}{2}$.

In 1935 Jessen and Wintner showed that μ_q is continuous for any q.

A Bernoulli convolution for 0 < q < 1 is the convolution

$$\mu_q(X) = b(X) * b(X/q) * b(X/q^2) * \dots$$

where *b* is the discrete Bernoulli measure concentrated at 1 and -1 each with weight $\frac{1}{2}$.

In 1935 Jessen and Wintner showed that μ_q is continuous for any q.

Alternatively, for 0 < q < 1, consider the functional equation

$$F(t) = \frac{1}{2}F\left(\frac{t-1}{q}\right) + \frac{1}{2}F\left(\frac{t+1}{q}\right)$$

for t on the interval $I_q := \left[\frac{-1}{1-q}, \frac{1}{1-q}\right]$.

There is a unique bounded solution $F_q(t)$, the distribution function of μ_q , $F_q(t) = \mu_q([-\infty, t])$.

Alternatively, for 0 < q < 1, consider the functional equation

$$F(t) = \frac{1}{2}F\left(\frac{t-1}{q}\right) + \frac{1}{2}F\left(\frac{t+1}{q}\right)$$

for t on the interval $I_q := \left[\frac{-1}{1-q}, \frac{1}{1-q}\right]$.

There is a unique bounded solution $F_q(t)$, the distribution function of μ_q , $F_q(t) = \mu_q([-\infty, t])$.

Jessen and Wintner showed that $F_q(t)$ is either absolutely continuous or purely singular. The major question is:

Which values of q make $F_q(t)$ absolutely continuous?

When $0 < q < \frac{1}{2}$, Kershner and Wintner have shown that $F_q(t)$ is always singular. For these values of q, the solution $F_q(t)$ is an example of a so called *Cantor function*, a function that is constant almost everywhere.

Jessen and Wintner showed that $F_q(t)$ is either absolutely continuous or purely singular. The major question is:

Which values of q make $F_q(t)$ absolutely continuous?

When $0 < q < \frac{1}{2}$, Kershner and Wintner have shown that $F_q(t)$ is always singular. For these values of q, the solution $F_q(t)$ is an example of a so called *Cantor function*, a function that is constant almost everywhere.

Jessen and Wintner showed that $F_q(t)$ is either absolutely continuous or purely singular. The major question is:

Which values of q make $F_q(t)$ absolutely continuous?

When $0 < q < \frac{1}{2}$, Kershner and Wintner have shown that $F_q(t)$ is always singular. For these values of q, the solution $F_q(t)$ is an example of a so called *Cantor function*, a function that is constant almost everywhere.

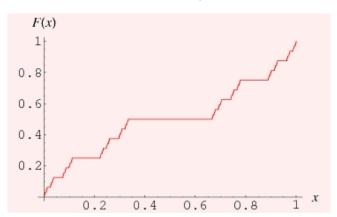
Jessen and Wintner showed that $F_q(t)$ is either absolutely continuous or purely singular. The major question is:

Which values of q make $F_q(t)$ absolutely continuous?

When $0 < q < \frac{1}{2}$, Kershner and Wintner have shown that $F_q(t)$ is always singular. For these values of q, the solution $F_q(t)$ is an example of a so called *Cantor function*, a function that is constant almost everywhere.

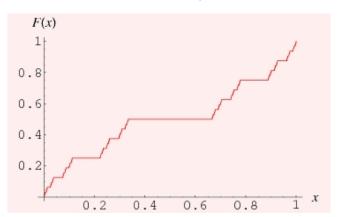
Devil's staircase

From www.mathworld.com, a plot of the Devil's staircase:



Devil's staircase

From www.mathworld.com, a plot of the Devil's staircase:



The case when $q > \frac{1}{2}$ is much harder and more interesting.

In 1939 Erdős showed that if q is of the form $q = \frac{1}{\theta}$ with θ a *Pisot number*, then $F_q(t)$ is again singular.

A *Pisot number* is an algebraic integer greater than 1 in absolute value, whose conjugates are all less than 1 in absolute value.

The case when $q > \frac{1}{2}$ is much harder and more interesting.

In 1939 Erdős showed that if q is of the form $q = \frac{1}{\theta}$ with θ a *Pisot number*, then $F_q(t)$ is again singular.

A *Pisot number* is an algebraic integer greater than 1 in absolute value, whose conjugates are all less than 1 in absolute value.

The case when $q > \frac{1}{2}$ is much harder and more interesting.

In 1939 Erdős showed that if q is of the form $q = \frac{1}{\theta}$ with θ a *Pisot number*, then $F_q(t)$ is again singular.

A *Pisot number* is an algebraic integer greater than 1 in absolute value, whose conjugates are all less than 1 in absolute value.

The case when $q > \frac{1}{2}$ is much harder and more interesting.

In 1939 Erdős showed that if q is of the form $q = \frac{1}{\theta}$ with θ a *Pisot number*, then $F_q(t)$ is again singular.

A *Pisot number* is an algebraic integer greater than 1 in absolute value, whose conjugates are all less than 1 in absolute value.

In 1995 Solomyak showed that almost every $q>\frac{1}{2}$ yields a solution $F_q(t)$ that is absolutely continuous.

Surprisingly, no actual example of such a q is known.

Specifically, $q=rac{2}{3}$ is a mystery.

In 1995 Solomyak showed that almost every $q>\frac{1}{2}$ yields a solution $F_q(t)$ that is absolutely continuous.

Surprisingly, no actual example of such a q is known.

Specifically,
$$q=rac{2}{3}$$
 is a mystery.

In 1995 Solomyak showed that almost every $q>\frac{1}{2}$ yields a solution $F_q(t)$ that is absolutely continuous.

Surprisingly, no actual example of such a q is known.

Specifically, $q = \frac{2}{3}$ is a mystery.

If $F_q(t)$ is absolutely continuous, then one may consider its derivative $f_q(t) := F_q'(t)$,

$$f(t) = \frac{1}{2q} f\left(\frac{t-1}{q}\right) + \frac{1}{2q} f\left(\frac{t+1}{q}\right).$$

The existence of an absolutely continuous solution $F_q(t)$ is equivalent to the the existence of an $L^1(I_q)$ solution $f_q(t)$ to f(t).

If $F_q(t)$ is absolutely continuous, then one may consider its derivative $f_q(t) := F_q'(t)$,

$$f(t) = \frac{1}{2q} f\left(\frac{t-1}{q}\right) + \frac{1}{2q} f\left(\frac{t+1}{q}\right).$$

The existence of an absolutely continuous solution $F_q(t)$ is equivalent to the the existence of an $L^1(I_q)$ solution $f_q(t)$ to f(t).

Motivated by work of Girgensohn in 2007, for $q=\frac{2}{3}$, Calkin shifted the interval $I_q=[-3,3]$ to [0,1] for simplicity and considered transform $T:L^1([0,1])\longrightarrow L^1([0,1])$ where

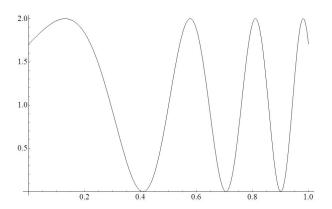
$$T: f(x) \longmapsto \frac{3}{4}f\left(\frac{3x}{2}\right) + \frac{3}{4}f\left(\frac{3x-1}{2}\right).$$

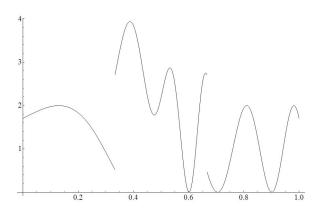
Started with an arbitrary initial function $f^0(t) \in L^1(I_q)$ and iterate the transform T to gain a sequence of functions $f^0, f^1, f^2, ...$

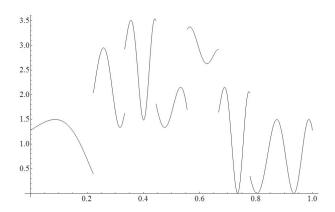
Motivated by work of Girgensohn in 2007, for $q=\frac{2}{3}$, Calkin shifted the interval $I_q=[-3,3]$ to [0,1] for simplicity and considered transform $T:L^1([0,1])\longrightarrow L^1([0,1])$ where

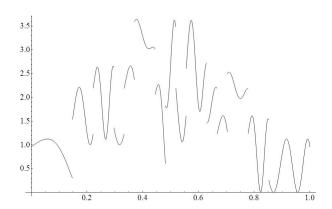
$$T: f(x) \longmapsto \frac{3}{4}f\left(\frac{3x}{2}\right) + \frac{3}{4}f\left(\frac{3x-1}{2}\right).$$

Started with an arbitrary initial function $f^0(t) \in L^1(I_q)$ and iterate the transform T to gain a sequence of functions f^0, f^1, f^2, \ldots









Intuitively, this transform takes two scaled copies of f(x): one on the interval $\left[0, \frac{2}{3}\right]$ and the other on $\left[\frac{1}{3}, 1\right]$, and adds them.

The scaling factor of $\frac{3}{4}$ gives us that

$$\int_0^1 f(x)dx = \int_0^1 Tf(x)dx.$$

In this setting, the question to be answered is: starting with the function $f^0(x) = 1$, does the iteration determined by this transform converge to a bounded function?

Intuitively, this transform takes two scaled copies of f(x): one on the interval $\left[0,\frac{2}{3}\right]$ and the other on $\left[\frac{1}{3},1\right]$, and adds them.

The scaling factor of $\frac{3}{4}$ gives us that

$$\int_0^1 f(x)dx = \int_0^1 Tf(x)dx.$$

In this setting, the question to be answered is: starting with the function $f^0(x) = 1$, does the iteration determined by this transform converge to a bounded function?

Intuitively, this transform takes two scaled copies of f(x): one on the interval $\left[0,\frac{2}{3}\right]$ and the other on $\left[\frac{1}{3},1\right]$, and adds them.

The scaling factor of $\frac{3}{4}$ gives us that

$$\int_0^1 f(x)dx = \int_0^1 Tf(x)dx.$$

In this setting, the question to be answered is: starting with the function $f^0(x) = 1$, does the iteration determined by this transform converge to a bounded function?

Instead of viewing T as a transform on [0,1], we consider a combinatorial analogue.

Consider the two maps $\operatorname{dup}_n, \operatorname{shf}_n: \mathbb{R}^n \longrightarrow \mathbb{R}^{3n}$ defined by

$$n$$
 times $\operatorname{\mathsf{dup}}_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n, \overbrace{0, ..., 0}^n)$

$$n \text{ times}$$

 $shf_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (\overbrace{0, ..., 0}^{n}, a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n).$

Instead of viewing T as a transform on [0,1], we consider a combinatorial analogue.

Consider the two maps $\operatorname{dup}_n, \operatorname{shf}_n : \mathbb{R}^n \longrightarrow \mathbb{R}^{3n}$ defined by

$$\mathsf{dup}_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n, \overbrace{0, ..., 0}^{n \text{ tirries}})$$

$$\mathsf{shf}_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto \overbrace{(0, ..., 0, a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n)}^{n \text{ times}}.$$

Instead of viewing T as a transform on [0,1], we consider a combinatorial analogue.

Consider the two maps $\operatorname{dup}_n, \operatorname{shf}_n : \mathbb{R}^n \longrightarrow \mathbb{R}^{3n}$ defined by

$$\mathsf{dup}_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n, \overbrace{0, ..., 0}^{n \text{ times}})$$

$$n \text{ times}$$

 $shf_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (\overbrace{0, ..., 0}^n, a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n).$

Instead of viewing T as a transform on [0,1], we consider a combinatorial analogue.

Consider the two maps $\operatorname{dup}_n, \operatorname{shf}_n : \mathbb{R}^n \longrightarrow \mathbb{R}^{3n}$ defined by

$$\mathsf{dup}_n: (a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n, \overbrace{0, ..., 0}^{n \text{ times}})$$

shf_n:
$$(a_1, a_2, ..., a_{n-1}, a_n) \longmapsto (\overbrace{0, ..., 0}^{n \text{ times}}, a_1, a_1, a_2, a_2, ..., a_{n-1}, a_{n-1}, a_n, a_n).$$

The combinatorial analogue of T on [0,1] with $f^0(x)=1$ is provided by the sequences

$$B_0 = (1)$$
 and

$$B_{n+1} = \operatorname{dup}_n(B_n) + \operatorname{shf}_n(B_n).$$

The fact that B_n has a total of 3^n terms follows directly from the definition of dup_n and shf_n.

The average value of B_n , $\mu(B_n) = \left(\frac{4}{3}\right)^n$.

The first few maximum values of B_n , m_n , are 1, 2, 3, 4, 6, 8, 11, 14, 18, 25, 33, 43, 56, 75, 99, 131, 176, 232, ...

Does m_n also grow like $\left(\frac{4}{3}\right)^n$?

The fact that B_n has a total of 3^n terms follows directly from the definition of dup_n and shf_n.

The average value of B_n , $\mu(B_n) = \left(\frac{4}{3}\right)^n$.

The first few maximum values of B_n , m_n , are 1, 2, 3, 4, 6, 8, 11, 14, 18, 25, 33, 43, 56, 75, 99, 131, 176, 232, ...

Does m_n also grow like $\left(\frac{4}{3}\right)^n$?

The fact that B_n has a total of 3^n terms follows directly from the definition of dup_n and shf_n.

The average value of B_n , $\mu(B_n) = \left(\frac{4}{3}\right)^n$.

The first few maximum values of B_n , m_n , are 1, 2, 3, 4, 6, 8, 11, 14, 18, 25, 33, 43, 56, 75, 99, 131, 176, 232, ...

Does m_n also grow like $\left(\frac{4}{3}\right)^n$?

The fact that B_n has a total of 3^n terms follows directly from the definition of dup_n and shf_n.

The average value of B_n , $\mu(B_n) = \left(\frac{4}{3}\right)^n$.

The first few maximum values of B_n , m_n , are 1, 2, 3, 4, 6, 8, 11, 14, 18, 25, 33, 43, 56, 75, 99, 131, 176, 232, ...

Does m_n also grow like $\left(\frac{4}{3}\right)^n$?

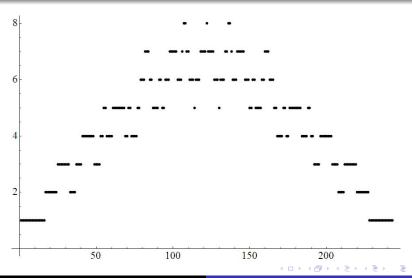
The fact that B_n has a total of 3^n terms follows directly from the definition of dup_n and shf_n.

The average value of B_n , $\mu(B_n) = \left(\frac{4}{3}\right)^n$.

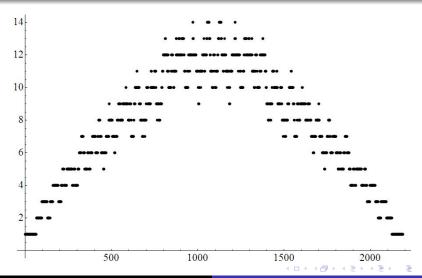
The first few maximum values of B_n , m_n , are 1, 2, 3, 4, 6, 8, 11, 14, 18, 25, 33, 43, 56, 75, 99, 131, 176, 232, ...

Does m_n also grow like $\left(\frac{4}{3}\right)^n$?

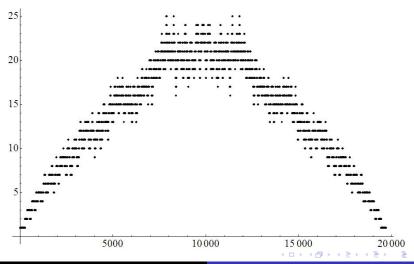
Index versus B₅ entry



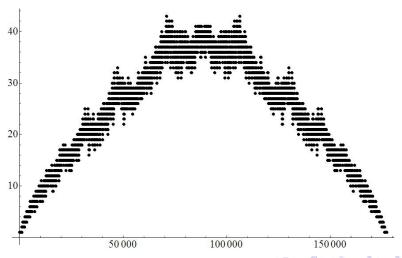
Index versus B_7 entry



Index versus B₉ entry



Index versus B₁₁ entry



Polynomial Approach

Consider the polynomial $p_n(x) := b_0 + b_1 x + ... + b_t x^t$ where $B_n = (b_0, b_1, ..., b_t)$ is the Bernoulli sequence on level n where $t = 3^n - 1$.

We see that the duplication b_0 , b_0 , b_1 , b_1 , ..., b_r , b_r corresponds to the polynomial $(1 + x)p_n(x^2)$. Shifting the sequence 3^n places to the right corresponds to multiplication by x^{3^n} .

Thus, for $p_0(x) = 1$ we have the recurrence

$$p_{n+1}(x) = (1+x)p_n(x^2)(1+x^{3^n}).$$

Consider the polynomial $p_n(x) := b_0 + b_1 x + ... + b_t x^t$ where $B_n = (b_0, b_1, ..., b_t)$ is the Bernoulli sequence on level n where $t = 3^n - 1$.

We see that the duplication b_0 , b_0 , b_1 , b_1 , ..., b_r , b_r corresponds to the polynomial $(1 + x)p_n(x^2)$. Shifting the sequence 3^n places to the right corresponds to multiplication by x^{3^n} .

Thus, for $p_0(x) = 1$ we have the recurrence

$$p_{n+1}(x) = (1+x)p_n(x^2)(1+x^{3^n}).$$

Consider the polynomial $p_n(x) := b_0 + b_1 x + ... + b_t x^t$ where $B_n = (b_0, b_1, ..., b_t)$ is the Bernoulli sequence on level n where $t = 3^n - 1$.

We see that the duplication b_0 , b_0 , b_1 , b_1 , ..., b_r , b_r corresponds to the polynomial $(1 + x)p_n(x^2)$. Shifting the sequence 3^n places to the right corresponds to multiplication by x^{3^n} .

Thus, for $p_0(x) = 1$ we have the recurrence

$$p_{n+1}(x) = (1+x)p_n(x^2)(1+x^{3^n}).$$

This formula allows us to explicitly solve for $p_n(x)$.

Theorem

The polynomials $p_n(x)$ satisfy

$$p_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i}\right) \prod_{i=0}^{n-1} \left(1 + x^{2^{n-1}(3/2)^i}\right).$$

This follows by induction.

This formula allows us to explicitly solve for $p_n(x)$.

Theorem

The polynomials $p_n(x)$ satisfy

$$p_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i}\right) \prod_{j=0}^{n-1} \left(1 + x^{2^{n-1}(3/2)^j}\right).$$

This follows by induction.

A Bound on the Coefficients

By factoring p_n in a clever way, we can put a bound on how fast the coefficients grow with the level n.

Theorem

The maximum values obeys $m_n = O((\sqrt{2})^n)$.

A Bound on the Coefficients

By factoring p_n in a clever way, we can put a bound on how fast the coefficients grow with the level n.

Theorem

The maximum values obeys $m_n = O((\sqrt{2})^n)$.

To start, define polynomials q_n, r_n, s_n by

$$q_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i}\right)$$
 $s_n(x) = \prod_{\substack{1 \le j \le n-1 \ j \text{ odd}}} \left(1 + x^{2^{n-1}(3/2)^j}\right)$

$$r_n(x) = \prod_{\substack{1 \le j \le n-1 \\ i \text{ even}}} \left(1 + x^{2^{n-1}(3/2)^j}\right) = \prod_{j=1}^{\lfloor (n-1)/2 \rfloor} \left(1 + x^{2^{n-1}(9/4)^j}\right).$$

To start, define polynomials q_n , r_n , s_n by

$$q_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i}\right)$$
 $s_n(x) = \prod_{\substack{1 \le j \le n-1 \ j \text{ odd}}} \left(1 + x^{2^{n-1}(3/2)^j}\right)$

$$r_n(x) = \prod_{\substack{1 \leq j \leq n-1 \ j \text{ even}}} \left(1 + x^{2^{n-1}(3/2)^j}\right) = \prod_{j=1}^{\lfloor (n-1)/2 \rfloor} \left(1 + x^{2^{n-1}(9/4)^j}\right).$$

We see that

$$p_n(x) = q_n(x) (1 + x^{2^{n-1}}) r_n(x) s_n(x).$$

Consider the polynomial $q_n(x)r_n(x)$. Because 9/4 > 2, we have distinct powers of x when we expand $q_n(x)r_n(x)$.

In other words, the coefficients are all either 0 or 1. Hence the coefficients of $q_n(x)r_n(x)(1+x^{2^{n-1}})$ are all either 0, 1, or 2.

We see that

$$p_n(x) = q_n(x) \left(1 + x^{2^{n-1}}\right) r_n(x) s_n(x).$$

Consider the polynomial $q_n(x)r_n(x)$. Because 9/4 > 2, we have distinct powers of x when we expand $q_n(x)r_n(x)$.

In other words, the coefficients are all either 0 or 1. Hence the coefficients of $q_n(x)r_n(x)(1+x^{2^{n-1}})$ are all either 0, 1, or 2.

We see that

$$p_n(x) = q_n(x) (1 + x^{2^{n-1}}) r_n(x) s_n(x).$$

Consider the polynomial $q_n(x)r_n(x)$. Because 9/4 > 2, we have distinct powers of x when we expand $q_n(x)r_n(x)$.

In other words, the coefficients are all either 0 or 1. Hence the coefficients of $q_n(x)r_n(x)(1+x^{2^{n-1}})$ are all either 0, 1, or 2.

In particular, the coefficients are bounded. On the other hand, there are at most n/2 terms in the product defining $s_n(x)$.

Hence there are at most $2^{n/2}$ nonzero terms in the polynomial $s_n(x)$ since we have 2 choices from each term in the product.

Therefore the coefficients of $p_n(x)$ are all $O(2^{n/2}) = O((\sqrt{2})^n)$.

In particular, the coefficients are bounded. On the other hand, there are at most n/2 terms in the product defining $s_n(x)$.

Hence there are at most $2^{n/2}$ nonzero terms in the polynomial $s_n(x)$ since we have 2 choices from each term in the product.

Therefore the coefficients of $p_n(x)$ are all $O(2^{n/2}) = O((\sqrt{2})^n)$.

In particular, the coefficients are bounded. On the other hand, there are at most n/2 terms in the product defining $s_n(x)$.

Hence there are at most $2^{n/2}$ nonzero terms in the polynomial $s_n(x)$ since we have 2 choices from each term in the product.

Therefore the coefficients of $p_n(x)$ are all $O(2^{n/2}) = O((\sqrt{2})^n)$.

Better Bound

Normalize

Seeing that our sequence on level n has length 3^n , we naturally index it by the first 3^n nonnegative integers.

In certain circumstances, it is advantageous to normalize the indexing in such a way that each index is on the interval [0, 1].

To this end, we can simply take the image of $k \in \{0, 1, 2, ..., 3^n - 1\}$ under the map $k \mapsto k/3^n$.

Normalize

Seeing that our sequence on level n has length 3^n , we naturally index it by the first 3^n nonnegative integers.

In certain circumstances, it is advantageous to normalize the indexing in such a way that each index is on the interval [0, 1].

To this end, we can simply take the image of $k \in \{0, 1, 2, ..., 3^n - 1\}$ under the map $k \mapsto k/3^n$.

Normalize

Seeing that our sequence on level n has length 3^n , we naturally index it by the first 3^n nonnegative integers.

In certain circumstances, it is advantageous to normalize the indexing in such a way that each index is on the interval [0, 1].

To this end, we can simply take the image of $k \in \{0, 1, 2, ..., 3^n - 1\}$ under the map $k \mapsto k/3^n$.

Notation

Let $g_n(x)$ denote the n^{th} level Bernoulli sequence where now $x \in [0, 1]$. In other words,

$$g_n\left(\frac{k}{3^n}\right) = b_k$$
 for $k = 0, 1, ...3^n - 1$.

For a subset $S \subset [0, 1]$, we define

$$\Gamma_n(S) = \max_{x \in \overline{S}} g_n(x)$$

where
$$\overline{S} = S \cap \left\{0, \frac{1}{3^n}, \frac{2}{3^n}, \dots, \frac{3^n-1}{3^n}\right\}$$
.

Notation

Let $g_n(x)$ denote the n^{th} level Bernoulli sequence where now $x \in [0, 1]$. In other words,

$$g_n\left(\frac{k}{3^n}\right) = b_k$$
 for $k = 0, 1, ...3^n - 1$.

For a subset $S \subset [0, 1]$, we define

$$\Gamma_n(S) = \max_{x \in \overline{S}} g_n(x)$$

where
$$\overline{S} = S \cap \Big\{0, \frac{1}{3^n}, \frac{2}{3^n}, \dots, \frac{3^n-1}{3^n}\Big\}.$$

An Example

We now walk through an example to demonstrate our algorithm.

Each entry on level n can be written as a sum of entries of previous levels. In this particular example we write each entry on level n as a sum of entries on level n – 3.

We break up the interval [0,1] into subintervals of length 1/81. Let's see what we get.

An Example

We now walk through an example to demonstrate our algorithm.

Each entry on level n can be written as a sum of entries of previous levels. In this particular example we write each entry on level n as a sum of entries on level n-3.

We break up the interval [0,1] into subintervals of length 1/81. Let's see what we get.

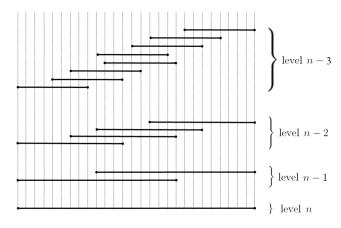
An Example

We now walk through an example to demonstrate our algorithm.

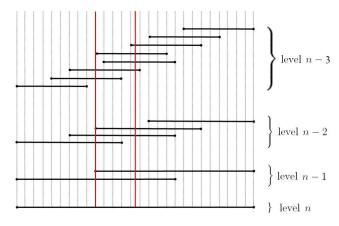
Each entry on level n can be written as a sum of entries of previous levels. In this particular example we write each entry on level n as a sum of entries on level n-3.

We break up the interval [0,1] into subintervals of length 1/81. Let's see what we get.

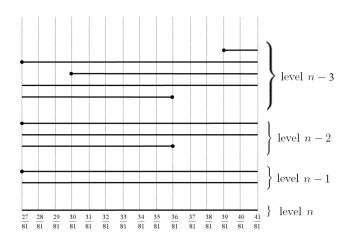
Pullback diagram



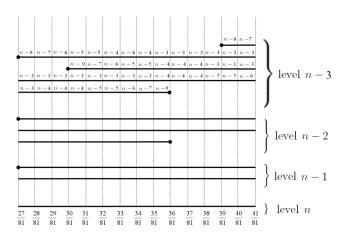
Pullback diagram



Pullback diagram



Pullback diagram



Largest real root

1	Dalumanaial	1
Interval	Polynomial	Largest real root
1	$x^{n}-2x^{n-3}-x^{n-9}$	1.301688030
2	$X^{n} - X^{n-3} - X^{n-4} - X^{n-7}$	1.288452726
3	$X^{n} - X^{n-3} - X^{n-4} - X^{n-6}$	1.304077155
4	$X^{n} - X^{n-3} - X^{n-4} - X^{n-5} - X^{n-9}$	1.349240712
5	$x^{n} - x^{n-3} - x^{n-7} - 2x^{n-5}$	1.342242489
6	$X^{n} - X^{n-3} - X^{n-4} - X^{n-5} - X^{n-6}$	1.380277569
7	$X^{n} - X^{n-3} - X^{n-4} - X^{n-5} - X^{n-6}$	1.380277569
8	$X^{n} - X^{n-3} - X^{n-4} - X^{n-5} - X^{n-7}$	1.366811194
9	$x^{n} - x^{n-3} - 2x^{n-4} - x^{n-9}$	1.375394454
10	$x^{n} - x^{n-3} - 2x^{n-4}$	1.353209964
11	$x^{n} - x^{n-3} - 2x^{n-4}$	1.353209964
12	$x^{n}-2x^{n-3}-x^{n-5}$	1.363964602
13	$x^{n} - 2x^{n-3} - x^{n-5} - x^{n-9}$	1.385877646
14	$x^{n}-2x^{n-3}-x^{n-6}-x^{n-7}$	1.383834352

1.33997599527...

This example gives us the bound $m_n = O((1.385877646...)^n)$.

Continuing this process by pulling back 25 levels for n=33, we see that 1.33997599527... is the largest real root of the polynomial

$$X^{33} - 752X^8 - 520X^7 - 319X^6 - 231x^5 - 141X^4 - 101X^3 - 54X^2 - 50X - 83, \\$$

Therefore $m_n = O((1.33997599527...)^n)$

1.33997599527...

This example gives us the bound $m_n = O((1.385877646...)^n)$.

Continuing this process by pulling back 25 levels for n=33, we see that 1.33997599527... is the largest real root of the polynomial

$$X^{33} - 752X^8 - 520X^7 - 319X^6 - 231x^5 - 141X^4 - 101X^3 - 54X^2 - 50X - 83, \\$$

Therefore $m_n = O((1.33997599527...)^n)$.

Conclusion

Upper Bound

The maximums satisfy $m_n = O((1.33997599527...)^n)$.

We conjecture that $m_n=O\left(\left(rac{4}{3}
ight)^n
ight)$, and therefore $F_q(t)$ is absolutely continuous at $q=rac{2}{3}$.

Upper Bound

The maximums satisfy $m_n = O((1.33997599527...)^n)$.

We conjecture that $m_n = O\left(\left(\frac{4}{3}\right)^n\right)$, and therefore $F_q(t)$ is absolutely continuous at $q = \frac{2}{3}$.

Upper Bound

The maximums satisfy $m_n = O((1.33997599527...)^n)$.

We conjecture that $m_n = O\left(\left(\frac{4}{3}\right)^n\right)$, and therefore $F_q(t)$ is absolutely continuous at $q = \frac{2}{3}$.

- Can our bound improvement algorithm be pushed to further lower the bound given more computational power?
- Is it possible to conclusively prove our conjecture?
- Furthermore, is there an explicit formula to describe m_n for any arbitrary level?
- What else can be said regarding the global behavior of the Bernoulli sequence B_n ?

- Can our bound improvement algorithm be pushed to further lower the bound given more computational power?
- Is it possible to conclusively prove our conjecture?
- \odot Furthermore, is there an explicit formula to describe m_n for any arbitrary level?
- What else can be said regarding the global behavior of the Bernoulli sequence B_n ?

- Can our bound improvement algorithm be pushed to further lower the bound given more computational power?
- Is it possible to conclusively prove our conjecture?
- **③** Furthermore, is there an explicit formula to describe m_n for any arbitrary level?
- What else can be said regarding the global behavior of the Bernoulli sequence B_n ?

- Can our bound improvement algorithm be pushed to further lower the bound given more computational power?
- Is it possible to conclusively prove our conjecture?
- **③** Furthermore, is there an explicit formula to describe m_n for any arbitrary level?
- What else can be said regarding the global behavior of the Bernoulli sequence B_n ?

Upper Bound Further Questions

Thank you for listening!