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Abstract

The derivative estimate is essential to the hedging of variable annuities. Although
resimulation estimate method is widely used, it still has the drawbacks of the bias of
estimators and huge computational work. An alternative method which named as pathwise
estimate, is explored and discussed in this essay. Besides ordinary “Greeks”, for example,
delta and rho, this essay also investigates the estimate of derivatives with respect to annual
withdrawal amount of guaranteed minimum withdrawal benefit. Apart from traditional
resimulation estimate, this essay also analyzes pathwise estimate method with the support
of automatic differentiation theory. Based on theoretical analysis and numerical results,
this essay shows the advantages of pathwise estimate over resimulation method.
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Chapter 1

Introduction

Hedging strategies should be taken into consideration when writing variable annuity prod-
ucts, and reliable estimates of sensitivities are essential for such strategies, both practically
and theoretically (Broadie and Glasserman, 1996). The traditional resimulation estimate
method is popular around practitioners, however, it still has several disadvantages, includ-
ing heavy computational burden and the bias of estimators. This prompted researchers
to find a supplement or an alternative to the resimulation estimate. This essay explores
the performance of one of the alternatives, which is the pathwise method, in estimating
sensitivities of variable annuities, and finds its advantages over the resimulation estimate.
Apart from delta and rho, this essay also explores the estimate of derivatives with respect
to annual withdrawal amount, based on forward-mode automatic differentiation.

There is a growing literature regarding the pricing and sensitivity estimate of variable
annuities. Bacinello et al. (2011) propose a unifying framework for the valuation of variable
annuities. Bauer et al. (2008) discuss the pricing of variable annuity contracts under
optimal policyholder behavior. The work of Gan (2013) introduces the details of the pricing
of variable annuities with the guaranteed minimum withdrawal benefit (GMWB) and the
guaranteed minimum death benefit (GMDB) using Monte Carlo simulation. Broadie and
Glasserman (1996) investigates the application of the pathwise method and likelihood ratio
method in the estimate of security price derivatives, and Broadie and Kaya (2004) includes
more details about simulation algorithm and numerical examples on that topic. Cathcart
et al. (2015) extend the sensitivity estimate from securities to variable annuities, and Giles
and Glasserman (2005) gives an important conclusion that the computational complexity of
the adjoint calculation is no more than 4 times greater than the complexity of the original
algorithm. Zhou (2017) presents a detailed explanation of the reverse-mode automatic
differentiation.
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The essay is organized as follows: In Chapter 2, we provide an overview of variable an-
nuities, including the definition of GMDB and GMWB. A Monte Carlo simulation model
for pricing variable annuities with GMWB and GMDB riders is also presented in Chap-
ter 2. In Chapter 3, an introduction of the resimulation estimate and pathwise estimate
is presented, and it also introduces the details of the pathwise estimate of derivatives
with respect to annual withdrawal amount based on the idea of automatic differentiation.
Chapter 4 demonstrated numerical results of derivative estimates, as well as the analysis
based on these outcomes. In Chapter 5, the conclusion of the research is made, and future
research directions are also presented.
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Chapter 2

Review of Variable Annuities

In this chapter, we give a brief introduction of variable annuities, and describe the most
common guarantees of them. A general pricing approach of variable annuities via Monte
Carlo simulation is also provided in this chapter.

2.1 Basics of Variable Annuities

A variable annuity is a type of annuity contract that allows for the accumulation of capital
on a tax-deferred basis, designed for obtaining a post-retirement income (Bauer et al.,
2008). Basically, a variable annuity can be considered as a fund-linked insurance contract,
including a package of financial options on the policy account value (Bauer et al., 2008).
Compared with traditional life insurance products, the main feature of variable annuities
is that they are associated with a large variety of possible guarantees.

Guarantees, also known as guaranteed minimum benefits, can be divided into two
types: guaranteed minimum death benefits(GMDB) and guaranteed minimum living ben-
efits(GMLB). The GMLB options can be categorized into three main groups: guaranteed
minimum accumulation benefits(GMAB), guaranteed minimum income benefits(GMIB)
and guaranteed minimum withdrawal benefits(GMWB) (Bacinello et al., 2011). In this
essay, we focus on the pricing estimate and derivative estimate for GMDB and GMWB.

If the insured dies during the deferment period, the beneficiary will obtain a death ben-
efit. The GMDB is usually available during the accumulation period, while some insurers
are willing to provide it also after retirement (Bacinello et al., 2011). The GMWB allows
periodical withdrawal from the policy account, even if the account value reduces to zero.
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At maturity, the policyholder can take out or annuitize any remaining funds if the account
value did not vanish due to withdrawals. In this case, since the policyholders are permitted
to withdraw money from the account when investments performances are unsatisfactory,
it reduces the risk which policyholders have to bear.

2.2 Pricing GMWB and GMDB via Monte Carlo

The work of Gan (2013) gives notations and formulas for the pricing of variable annuities.

Table 2.1: Notations of Variable Annuity Pricing

Symbol Meaning
St The underlying mutual fund at time t of the variable annuity
At The account value at time t
Wt The withdrawal benefit at time t
Dt The death benefit at time t
GW
t The remaining total amount that can be withdrawn after time t

GE
t The maximum amount that can be withdrawn annually

GD
t The guaranteed minimum death benefit at time t

xW The proportion of the premium that can be withdrawn annually
T The maturity of the contract

Also, in order to distinguish between the values of a state variable (e.g., At) immediately
before and after the occurrence of such event, we use (.)−t and (.)+t to denote the two values,
respectively.

In our Monte Carlo valuation of the variable annuity contracts, we have those assump-
tions:

• the underlying mutual fund is simulated as:
S0 = 1, St = St−1 · exp

([
r − 1

2
σ2
]

+ σZ
)

for t = 1, 2, ..., T , where r denotes the interest rate, σ denotes the volatility, and Z
is a standard normal random variable. In this essay, we assume that r = 3% and σ
= 20%, and the number of paths is 1000;

• all the events happen only at anniversary date;
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• for a contract with the GMWB rider, the policyholder takes maximum annual with-
drawals;

• there are no fees or lapses;

• the mortality follows the 1996 IAM mortality tables provided by the Society of Ac-
tuaries

At time t = 0, we have

GW
0 = A0, G

E
0 = xWA0, G

D
0 = A0.

For t = 0, 1, ..., T -1, first we consider the evaluation of the state variables between t+

and (t+ 1)−, which is described as follows. The account value evolves as

A−t+1 = A+
t

St+1

St

In the time interval between t+ and (t + 1)−, the guaranteed minimum death benefit,
the maximum amount can be withdrawn annually, and the remaining total amount that
can be withdrawn, do not change, i.e.,

GD−
t+1 = GD+

t , GE−
t+1 = GE+

t , GW−
t+1 = GW+

t

The evolution of the state variables between (t+1)− and (t+1)+ is described as follows.
The death benefit at time t+ 1 is calculated as

Dt+1 = max(0, GD−
t+1 − A−t+1)

Since we have the assumption that the policyholder always takes maximally available
withdrawals annually, the withdrawal amount at year t+ 1 is given by

Et+1 = min(GE−
t+1, G

W−
t+1 )

and the maximum amount that can be withdrawn annually does not change, i.e., GE+
t+1 =

GE−
t+1. The withdrawal benefit at time t+ 1 is given by

Wt+1 = max(0, Et+1 − A−t+1)

The account value becomes
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A+
t+1 = max(0, A−t+1 − Et+1)

The remaining total amount that can be withdrawn after time t+ 1 becomes

GW+
t+1 = max(0, GW−

t+1 − Et+1)

The guaranteed minimum death benefit will be adjusted pro rata as follows:

GD+
t+1 =

A+
t+1

A−t+1

GD−
t+1

Then the present value of the GMDB and the GMWB benefits is given by

PV =
T∑
t=1

t−1px0(1− qx0+t−1)Wte
−rt +

T∑
t=1

t−1px0qx0+t−1Dte
−rt (2.1)

where x0 is the age of the policyholder. We treat the value of the GMDB rider and the
GMWB rider as the average of PV along all paths.

It can be noticed that the pricing of variable annuities is based on the calculation,
storage and reuse of intermediate variables, for instance, A−t , A+

t , GW
t , GD

t , and so on.
With these intermediate variables, the values of Wt and Dt can be obtained step by step,
and finally the present value can be calculated. More importantly, these intermediate
variables can be applied in the process of the derivative estimate, which is analyzed in
Chapter 3.
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Chapter 3

Sensitivities for Variable Annuities

The theoretical background and practical methodology of variable annuity sensitivity es-
timate are discussed in this chapter. The first section gives a brief introduction of the
resimulation method, pathwise method, and automatic differentiation theory. The second
section demonstrates the expressions of the pathwise estimate of delta, rho, and derivatives
with respect to annual withdrawal amounts.

3.1 Sensitivity Estimation Methods

This section presents a general description of the resimulation estimate and the pathwise
estimate, and compares the advantages and disadvantages of the two methods. Automatic
differentiation theory is also introduced in this section, since it provides methodological
support for the pathwise estimate.

3.1.1 Resimulation estimate

A natural finite difference approach, which is named resimulation method, is popular in
practice. The work of Broadie and Glasserman (1996), Cathcart et al. (2015) and Glasser-
man (2013) give explanations of this method. An initial simulation is run to determine
a base price, then the parameter which is taken the derivative with respect to is per-
turbed, and a second simulation is run to determine a perturbed price. The estimate of
the derivative is the difference between these two simulated prices divided by the parameter
perturbation.
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Suppose that the present value PV of a variable annuity depends on a parameter θ and
we want to estimate dPV

dθ
at θ = θ0. Denote the simulation estimator of the price at θ = θ0

by PV (θ0), then the estimated price is the sample average over independent simulations
of PV (θ0). Then the parameter will be perturbed to θ1 = θ0 + h, and the new simulation
estimator PV (θ1) can be computed.

Here we need to introduce the concept of finite difference. A finite difference is a
mathematical expression of the form f(x + b) − f(x + a) (Wilmott et al., 1995). It has
three types: forward, backward, and central finite differences. Generally, the first-order
forward, backward, and central differences can be defined as follows:

• forward finite difference: 4hf(x) = f(x+ h)− f(x)

• backward finite difference: 5hf(x) = f(x)− f(x− h)

• central finite difference: δhf(x) = f(x+ 1
2
h)− f(x− 1

2
h)

where h is a constant (Petro, 2016).

The resimulation estimator of the derivative is the forward finite difference divided by
h, which is PV (θ1)−PV (θ0)

h
. In order to meet the definition of a sensitivity, the value of h

should be relatively small. Similarly, the resimulation estimate is the average over all trials
of this estimator. A common set of random numbers should be used when calculating the
two simulation estimators.

From the description of the resimulation estimate, we can see that one of the advantages
of it is that it involves no programming effort beyond what is required for the pricing sim-
ulation itself (Broadie and Glasserman, 1996). However, the outcome of the resimulation
estimate is biased resulting from finite difference approximation to the derivative. Also,
it can be inferred that estimating finite differences with respect to n parameters requires
n+ 1 simulations, which brings considerable computational burden.

3.1.2 Pathwise estimate

Regarding these disadvantages of the resimulation method, new methods of estimating
derivatives were developed, including the pathwise estimate, the likelihood ratio estimate,
and a mixture of these two methods. In this essay, we focus on the pathwise method, which
avoids simulating at multiple parameter values. Under appropriate conditions, unbiased es-
timators can be calculated using this method. The work of Broadie and Glasserman (1996)
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uses the pathwise estimate to investigate derivatives of three types of products, including
a path independent model (European options), a path dependent model (Asian options),
as well as a model with multiple state variables (options with stochastic volatility). Cath-
cart et al. (2015) extends the application of the pathwise method and the likelihood ratio
method to the sensitivity estimate of GMWB, of which the calculation process includes
more intermediate variables and hence more complicated compared with Asian options.

Compared with the resimulation estimate, the pathwise method has several advantages:

1. It can provide unbiased estimate under appropriate conditions. Let PV (θ) denote
the discounted payoff of a variable annuity, then the present value of the variable annuity
is given by α(θ) = E[PV (θ)]. Consider the estimator with respect to θ, we can find the
derivative of α(θ) = E[PV (θ)] analytically along each simulation path using

PV
′
(θ) = lim

h→0

PV (θ + h)− PV (θ)

h

If the interchanging of differentiation and taking expectations is justified, that is if

E

[
d

dθ
PV (θ)

]
=

d

dθ
E[PV (θ)]

then 1
n

∑n
i=1 Y

′
i (θ) is an unbiased estimator of α

′
(θ) (Cathcart et al., 2015) (Broadie

and Glasserman, 1996).

2. Even more important is the fact that the computational savings. All n derivatives
can be estimated from a single simulation, which avoids the repeat of pricing simulation and
brings improvement in speed. We will show this point more intuitively in later discussion.

3.1.3 Automatic differentiation

In this essay, apart from Greeks that are commonly seen in computational finance, i.e.,
derivatives with respect to initial account value (delta) and interest rate (rho), the estimate
of derivatives with respect to annual withdrawal amount is also studied. In virtue of the
complicated nature of variable annuity pricing, automatic differentiation is considered to
be an appropriate approach to implement the pathwise estimate.

Automatic differentiation, also called algorithmic differentiation or computational dif-
ferentiation, is a set of techniques to numerically evaluate the derivative of a function
specified by a computer program. By applying chain rule, derivatives of arbitrary order
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can be computed efficiently. Compared with classical symbolic differentiation and numer-
ical differentiation, automatic differentiation solves the problem of coding inefficiency and
round-off errors, although it has a higher requirement on software (Neidinger, 2010).

Automatic differentiation has two different modes. In forward-mode auto differen-
tiation, we first fix the independent variable to which differentiation is performed and
computes the derivative of each sub-expression recursively, i.e.,

∂y

∂x
=

∂y

∂w1

∂w1

∂x
=

∂y

∂w1

(
∂w1

∂w2

∂w2

∂x

)
=

∂y

∂w1

(
∂w1

∂w2

(
∂w2

∂w3

∂w3

∂x

))
= · · ·

In reverse-mode automatic differentiation, we first fix the dependent variable to be
differentiated and computes the derivative with respect to each sub-expression recursively,
i.e.,

∂y

∂x
=

∂y

∂w1

∂w1

∂x
=

(
∂y

∂w1

∂w1

∂w2

)
∂w2

∂x
=

((
∂y

∂w1

∂w1

∂w2

)
∂w2

∂w3

)
∂w3

∂x
= · · ·

The derivative with respect to annual withdrawal amount estimate in this paper makes
the use of the forward-mode auto differentiation. As mentioned above, the estimate of
derivatives can be achieved by adding some extra calculations in the pricing estimate,
which will be explained in detail in next section.

3.2 Pathwise Estimate of Derivatives

Since the process of the resimulation estimate, which is introduced in the previous section,
is almost same among the different derivatives, in this part we concentrate on the details of
the pathwise estimate of derivatives. First, we will discuss the estimate of two ”ordinary”
Greeks, including delta and rho, then the case of annual withdrawal amount.

3.2.1 Estimate of delta

The derivative delta is defined as the sensitivity of the pay-off with respect to initial account
value. Applying chain rule, it can be derived from 2.1 that

delta =
T∑
t=1

∂PV

∂Dt

· ∂Dt

∂A0

+
T∑
t=1

∂PV

∂Wt

· ∂Wt

∂A0
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where

∂PV

∂Wt

= t−1px0(1− qx0+t−1)e−rt

∂PV

∂Dt

= t−1px0qx0+t−1e
−rt

Since Dt+1 = max(0, GD−
t+1 − A−t+1) ,

∂Dt

∂A0

=
∂Dt

∂(GD−
t − A−t )

·
(
∂GD−

t

∂A0

− ∂A−t
∂A0

)
with ∂Dt

∂(GD−
t −A−t )

= 1{GD−
t >A−t }

.

Since

GD−
t = GD+

t−1 =
A+
t−1

A−t−1
GD−
t−1 =

t−1∏
k=1

A+
k

A−k
· A0 = A+

t−1 ·
t−2∏
k=0

A+
k

A−k+1

= A+
t−1 ·

t−2∏
k=0

Sk
Sk+1

= A+
t−1 ·

1[
exp

(
r − 1

2
σ2 + σZ

)]t−1
it is clear that

∂GD−
t

∂A0
= 0.

Also we have
∂A−t
∂A0

=
t−1∏
k=1

∂A+
k

∂A−k
·
t−1∏
k=1

∂A−k+1

∂A+
k

· ∂A
−
1

∂A0

Since A−t = A+
t−1 · St

St−1
, A+

t = max(0, A−t − Et) , we have

∂A−t
∂A+

t−1
=

St
St−1

∂A+
t

∂A−t
= 1{A−t >Et}
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So

∂Dt

∂A0

=
∂Dt

∂(GD−
t − A−t )

·
(
∂GD−

t

∂A0

− ∂A−t
∂A0

)
= 1{GD−

t >A−t }
·

(
0− St

S0

·
t−1∏
k=1

1{A−k >Ek}

)

As for ∂Wt

∂A0
, since Wt = max(0, Et − A−t ) ,

∂Wt

∂A0

=
∂Wt

∂(Et − A−t )
·
(
∂Et
∂A0

− ∂A−t
∂A0

)
where ∂Wt

∂(Et−A−t )
= 1{Et>A

−
t }

.

Since Et = min(GE−
t , GW−

t ) , GE−
t+1 = GE+

t , GW−
t+1 = GW+

t , GE
0 = xWA0 , GD

0 = A0 ,

we can obtain that

∂Et
∂A0

=


xW 0 < t 6 1

xW

1− (t− 1)xW
1
xW

< t 6 1
xW

+ 1

0 t > 1
xW

+ 1

and
∂A−t
∂A0

= St

S0
·
t−1∏
k=1

1{A−k >Ek} same as above.

Similarly, the derivative with respect to interest rate r, which is named rho, can be
obtained using this method. Also, this method can be generalized to the case of higher-
order derivatives.

3.2.2 Estimate of rho

The derivative rho is defined as the sensitivity of the pay-off with respect to the interest
rate. Similarly, it can also be calculated by chain rule, as

rho =
T∑
t=1

∂PV

∂Dt

· ∂Dt

∂r
+

T∑
t=1

∂PV

∂Wt

· ∂Wt

∂r

where ∂PV
∂Dt

and ∂PV
∂Wt

given in the discussion of delta above.
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Since Dt = max(0, GD−
t − A−t ),

∂Dt

∂r
=

∂Dt

∂GD−
t

· ∂G
D−
t

∂r
+
∂Dt

∂A−t
· ∂A

−
t

∂r

where ∂Dt

∂GD−
t

= 1{GD−
t >A−t }

, ∂Dt

∂A−t
= −1{GD−

t >A−t }
.

Also we know that, GD−
t = GD+

t−1 =
A+

t−1

A−t−1

GD−
t−1 , so

∂GD−
t

∂r
=
∂GD+

t−1

∂r
=
∂GD+

t−1

∂A+
t−1
·
∂A+

t−1

∂r
+
∂GD+

t−1

∂A−t−1
·
∂A−t−1
∂r

+
∂GD+

t−1

∂GD+
t−2
·
∂GD+

t−2

∂r

where
∂GD+

t−1

∂A+
t−1

=
GD−

t−1

A−t−1

,
∂GD+

t−1

∂A−t−1

= −A+
t−1·G

D−
t−1

(A−t−1)
2 ,

∂GD+
t−1

∂GD+
t−2

=
A+

t−1

A−t−1

.

Also we have

∂A+
t−1

∂r
=

t−1∏
k=1

∂A+
k

∂A−k
·
t−2∏
k=1

∂A−k+1

∂A+
k

· ∂A
−
1

∂r

=
t−1∏
k=1

1{A−k >Ek} ·
St−1
S1

· ∂A
−
1

∂r

Since A−1 = A0 · S1

S0
= A0 exp

(
r − 1

2
σ2 + σZ

)
,

∂A+
t−1

∂r
=

t−1∏
k=1

1{A−k >Ek} ·
St−1
S1

· A0 exp

(
r − 1

2
σ2 + σZ

)
Similarly,

∂A−t−1
∂r

=
t−2∏
k=1

∂A+
k

∂A−k
·
t−2∏
k=1

∂A−k+1

∂A+
k

· ∂A
−
1

∂r

=
t−2∏
k=1

1{A−k >Ek} ·
St−1
S1

· A0 exp

(
r − 1

2
σ2 + σZ

)

As for
∂GD+

t−2

∂r
and

∂A−t
∂r

, we can see that it has the same form with
∂GD+

t−1

∂r
and

∂A−t−1

∂r

respectively, which is discussed in detail above. Also, it suggests that during the process of

calculating derivatives using the pathwise method, intermediate variables (not only
∂GD+

t−1

∂r
)

can be stored and reused repeatedly, which brings many computational savings.
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3.2.3 Estimate of derivatives with respect to annual withdrawal
amount

Now we want to investigate how annual withdrawal amount affects the present value of
variable annuities. More precisely, we want to see the effects on present value from with-
drawals occurring at different years. From the analysis in the previous chapter, it is clear
that once the premium, the withdrawal rate and the maturity are determined, the annual
withdrawals amounts are determined as well. In other words, we can calculate annual
withdrawals amounts using the three values, and treat these amounts as a vector, which
can be an input when calculating the present value.

From the analysis in the previous chapter, the pricing formula of a variable annuity is
defined as follows:

PV =
T∑
t=1

t−1px0(1− qx0+t−1)Wte
−rt +

T∑
t=1

t−1px0qx0+t−1Dte
−rt

∂PV

∂Es
=

T∑
t=1

∂PV

∂Wt

· ∂Wt

∂Es
+

T∑
t=1

∂PV

∂Dt

· ∂Dt

∂Es
, for s = 1, 2, · · · , T , t = s, · · · , T

where ∂PV
∂Wt

= t−1px0(1− qx0+t−1)e−rt, ∂PV
∂Dt

= t−1px0qx0+t−1e
−rt.

First, we consider the ∂PV
∂Wt

. Since Wt = max(0, Et − A−t ),

When t = s, ∂Wt

∂Es
= ∂Wt

∂Et
= 1{Et>A

−
t }

.

When t = s+ 1, · · · , T ,

∂Wt

∂Es
=
∂Wt

∂A−t
· ∂A

−
t

∂A+
t−1
·

[
t−2∏
k=s

∂A+
k+1

∂A−k+1

·
∂A−k+1

∂A+
k

]
· ∂A

+
s

∂Es
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From the analysis above, the relevant derivatives can be calculated as follows:

∂Wt

∂A−t
= −1{Et>A

−
t }

∂A−t
∂A+

t−1
=

St
St−1

∂A+
t

∂A−t
= 1{A−t >Et}

∂A+
t

∂Et
= −1{A−t >Et}

It is clear that the calculation of those derivatives can be embedded to the process of

pricing of variable annuities. Also,

[
t−2∏
k=s

∂A+
k+1

∂A−k+1

· ∂A
−
k+1

∂A+
k

]
· ∂A

+
s

∂Es
can be treated as

∂A+
t−1

∂Es
, which

will be reused in the later calculation.

Regarding the calculation of ∂Dt

∂Es
, since Dt = max(0, GD−

t − A−t ),

∂Dt

∂Es
=

∂Dt

∂(GD−
t − A−t )

· (∂G
D−
t

∂Es
− ∂A−t
∂Es

) , for s = 1, 2, · · · , T , t = s+ 1, · · · , T

where ∂Dt

∂(GD−
t −A−t )

= 1{GD−
t >A−t }

.

From the analysis above,

GD−
t = GD+

t−1

=
A+
t−1

A−t−1
·GD−

t−1

=
A+
t−1

A−t−1
·GD+

t−2

=
A+
t−1

A−t−1
·
A+
t−2

A−t−2
·GD+

t−3

=
A+
t−1

A−t−1
·
A+
t−2

A−t−2
· · · A

+
s

A−s
·GD−

s
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Since A−t−1 = A+
t−2 ·

St−1

St−2
,

GD+
t−1 = A+

t−1 ·
St−2
St−1

· St−3
St−2

· · · Ss
Ss+1

· G
D−
s

A−s

= A+
t−1 ·

Ss
St−1

· G
D−
s

A−s

where Ss

St−1
· G

D−
s

A−s
is a constant with respect to Et.

Consequently,

∂GD−
t

∂Es
=
∂GD+

t−1

∂A+
t−1
·
∂A+

t−1

∂Es
=

Ss
St−1

· G
D−
s

A−s
·
∂A+

t−1

∂Es

where
∂A+

t−1

∂Es
is discussed above.

As for
∂A−t
∂Es

, similarly,

∂A−t
∂Es

=
∂A−t
∂A+

t−1
·
∂A+

t−1

∂Es

=
St
St−1

·
∂A+

t−1

∂Es

Based on the analysis above,

∂Dt

∂Es
= 1{GD−

t >A−t }
·
(
Ss
St−1

· G
D−
s

A−s
− St
St−1

)
·
∂A+

t−1

∂Es
, for s = 1, 2, · · · , T , t = s+ 1, · · · , T

where Ss

St−1
· G

D−
s

A−s
is a constant with respect to Es.

Based on the analysis above, we can notice that a vital property of pathwise estimate
is the application of intermediate variables. In the traditional resimulation method, when
estimating n derivatives, the number of simulations required is n + 1, which means n + 1
times of computational efforts. However, using the pathwise method, with the application
of intermediate variables, the derivative estimate can be finished in only one valuation.

The new intermediate variables, which are needed for the estimate of derivatives (for

instance,
∂A+

t−1

∂Es
), are calculated with those original intermediate variables calculated in

the pricing process, such as A−t , A+
t , GW

t , GD
t , etc. This means that the calculation of
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new intermediate variables can be implemented right after the calculation of original ones.
In the view of coding, this just brings a few lines of codes added on the initial pricing
codes. Associated with the unbiased property of pathwise estimators, which is introduced
in the previous section, we can assume that pathwise method enhances the efficiency of the
derivative estimate, and can be considered as a satisfying alternative of the resimulation
method. Some numerical results are presented in Chapter 4.
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Chapter 4

Numerical Results

In this part, we present several numerical results of the resimulation and the pathwise
estimate of variable annuities sensitivities, including delta, rho and derivatives with respect
to annual withdrawal amount. We assume that the account value A0 = 105, the age of the
insured is 50 and the gender is female, the maturity is 10, 20, 25, respectively. The reason
why these three number of maturities are chosen is that they cover the cases of short,
medium and long maturity, which can give a better view of the effect of annual withdrawal
amount on present value. Also, we let withdrawal rate xW equal to 1/maturity, which
means that the withdrawal rate is 10%, 5%, 4% correspondently. Under this assumption
of withdrawal rate, the annual withdrawal amount of each year is equal to xWA0, which is
designed for computational and analytical convenience.

Regarding the choice of h of the resimulation methods, it is worth noting that there is a
trade-off on the choice of h – the smaller h can decrease the bias in the estimate, however,
it will increase the variance of the estimator at the same time (Bacinello et al., 2011). We
choose h = 1 for the delta resimulation and h = 10−6 for the rho resimulation. When
calculating the sensitivities with respect to annual withdrawal amount, we set h equals
to 1% of annual withdrawal amount. In the case of rho estimate, since the value of h is
relatively small, the value of rho in the table is the original estimate value divided by 104

for analytical convenience.

18



Table 4.1: Resimulation and pathwise estimate of derivatives of variable annuities

Maturity
10 (Std.Err) 20 (Std.Err) 25 (Std.Err)

Present Value
Simulation estimate 8037.865 365.896 7260.205 326.623 6567.016 298.318

Delta
Resimulation estimate -0.243 0.009 -0.175 0.007 -0.147 0.006
Pathwise estimate -0.245 0.009 -0.178 0.007 -0.151 0.006

Rho
Resimulation estimate -18.159 0.645 -26.086 0.928 -27.085 0.982
Pathwise estimate -18.159 0.645 -26.086 0.928 -27.085 0.982

E1

Resimulation estimate 0.271 0.011 0.191 0.008 0.157 0.007
Pathwise estimate 0.269 0.011 0.191 0.008 0.157 0.007

ET
Resimulation estimate 0.329 0.011 0.229 0.008 0.181 0.006
Pathwise estimate 0.327 0.011 0.229 0.008 0.181 0.006

Parameters: r = 3%, σ = 20%. All simulation results based on 1000 trials.

Here we treat the resimulation method as a “benchmark” to test the performance of the
pathwise method. First, from the table, it can be noticed that both of the point estimates
and standard errors of the resimulation and pathwise methods are very similar, especially
in the case with longer maturity, which means that the pathwise estimate is acceptable.
The reason why the outcomes of two methods are not identical can be explained as follows.

Take the example of the derivative with respect to ET , from the analysis above, the
pathwise estimator of ∂PV

∂ET
is

∂PV

∂ET
=
∂PV

∂WT

· ∂WT

∂ET
+
∂PV

∂DT

· ∂DT

∂ET

Since DT = max(0, GD−
T − A−T ) , GD−

T = GD+
T−1 , A−T = A+

T−2 ·
ST−1

ST−2
, ∂DT

∂ET
= 0. Then in

the case of pathwise estimator, ∂PV
∂ET

= ∂PV
∂WT
· ∂WT

∂ET
= T−1px0(1− qx0+T−1)e−rT · 1{ET>A

−
T }

.
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Regarding the resimulation estimator, we use {·}′ to denote the values after perturba-
tion, and the pathwise estimator is obtained as

∂PV

∂ET
=
PV ′ − PV

h
=

T−1px0(1− qx0+T−1)e−rT · (W ′
T −WT )

h

Since WT = max(0, ET −A−T ) , W ′
T = max(0, ET + h−A−T ) , the details of the resimu-

lation and pathwise estimator is demonstrated in the table:

Table 4.2: Resimulation and pathwise estimate of the derivative with respect to ET

ET > A−T ET = A−T
WT ET − A−T 0
W ′
T ET + h− A−T h

Resimulation estimator T−1px0(1− qx0+T−1)e−rT T−1px0(1− qx0+T−1)e−rT
Pathwise estimator T−1px0(1− qx0+T−1)e−rT 0

ET < A−T
ET + h > A−T ET + h = A−T ET + h < A−T

WT 0 0 0
W ′
T ET + h− A−T 0 0

Resimulation estimator T−1px0(1− qx0+T−1)e−rT ·
(

1 +
ET−A−T

h

)
0 0

Pathwise estimator 0 0 0

From the table, it is clear that in the paths with “ET = A−T ” or “ET < A−T and ET +h >
A−T ”, the resimulation and pathwise estimator are different, which contributes to the minor
difference between the two estimates. The similar problem can appear in the estimate of
other derivatives. However, the probability that this discrepancy appears is very small.
First, since the account value A−t is calculated based on the random variation of underlying
stock price, it is almost impossible that the account value at time period t is exactly the
same with annual withdrawal amount; Also, regarding the case of “ET < A−T and ET +h >
A−T ” , it is mentioned in the previous discussion that the value of perturbation h is relatively
small, hence the probability that “ET < A−T and ET + h > A−T ” is also small. This is why
the two estimates are not identical, but still very close.

The other reason for the divergence of the two estimates is the difference between is the
choice of h. To find an “appropriately small” h is the key of the resimulation method. From

20



the analysis above, it can be seen that if h is not small enough, ET −A−T and ET +h−A−T
can have different signs, which leads to the estimate error. However, if h is too small, the
jump between PV and PV ′ will not be obvious enough, and the implication of “derivative”
can not be fully reflected. This is also one of the problems of the resimulation method,
which needs sufficient consideration in the resimulation estimate.

Also, it can be noticed that the derivative with respect to ET is larger than E1, which
means that the increase in the final annual withdrawal amount will bring higher increase
than first withdrawal in present value.
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Chapter 5

Conclusion and Future Work

In this essay, we use two different methods, the resimulation estimate and the pathwise
estimate, to investigate the derivatives of variable annuities with respect to initial account
value A0 (delta), interest rate r (rho), and annual withdrawal amount E. Also, we did a
comparison of the two methods, and find the advantages of the pathwise estimate over the
resimulation estimate.

From the analysis above, we can see that the resimulation method is straightforward
and requires no extra efforts on coding, however, the multiple valuations bring much com-
putational work, and estimates obtained from the resimulation method are biased. The
main advantages of the pathwise method are accuracy, speed, and simpleness. It is able
to provide unbiased estimate under appropriate conditions, and by mixing the process
of derivatives estimate and pricing estimate, it brings great computational savings. Al-
though it needs extra coding efforts, it can still be considered as a satisfactory estimate
method compared with the resimulation method, especially in the case where a large set of
derivatives are required. Also, Giles and Glasserman (2005) proved that the computational
complexity of the adjoint calculation is no more than 4 times greater than the complexity
of the original algorithm, which demonstrates the feasibility of generalizing the pathwise
estimate to the cases which require higher-order derivatives.

Future work can be devoted to following issues. First, based on the resimulation esti-
mate and the pathwise estimate presented in this essay, variance reduction techniques can
be applied to the original simulation estimators to improve the accuracy of the estimate.
Second, the likelihood ratio methods can be employed to the derivative estimate and com-
pared with the pathwise method. Cathcart et al. (2015) mentioned that the combination
of the pathwise method and the likelihood ratio method has more satisfying performance
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when estimating higher-order Greeks, which is relevant to hedging variable annuity expo-
sures since accurate and unbiased estimates of higher-order derivatives allow taking the
convexity of liabilities with respect to key market exposures into consideration. Finally,
while using forward-mode automatic differentiation to estimate derivative with respect to
annual withdrawal amount in this paper, the reverse-mode automatic differentiation is also
deserved to explore.
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