
The Impact of Clustering Method for Pricing a Large Portfolio of VA Policies 

 

 

By 

 

 

Zhenni Tan 

 

 

 

 

 

 

 

A research paper presented to the 

 

University of Waterloo 

 

In partial fulfillment of the requirements for the degree of 

 

Master of Mathematics 

 

in 

 

Actuarial Science 

 

 

 



 ii 

Waterloo,  Ontario, Canada, 2017 

 

 

 

 

 

©(Zhenni Tan) 2017 

 



 

 iii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 



 

 iv 

Abstract 

The purpose of this article is to find an efficient way to price a large portfolio of variable 

annuity contracts. We achieve this goal by improving a three-step procedure proposed by Gan 

(2013). The three-step procedure includes:(1)the k-prototypes method; (2)Monte Carlo 

Simulation for Variable Annuities; (3) The Kriging Method. The three-step method in Gan 

(2013) is studied and reproduced in this article. Additionally, three methods to identify 

representative contracts are considered, analyzed, and tested. The performances of these 

alternatives are measured by the speed and the accuracy.  
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The Impact of Clustering Method for Pricing a Large Portfolio of VA Policies 

 

1 Variable Annuity 

 

Variable annuities(VAs) are popular life insurance products in the insurance industry. VAs are 

long-term contracts designed for offering post-retirement income (Bacinelloa, Millossovich, 

Olivieri, & Pitacco, 2011). VAs have attractive features such as dynamic investment 

opportunity and guarantees against the investment and early death risks.  

 

A single premium or recurrent premiums from policyholders are invested into the different risk 

return portfolio decided by the policyholders. There are different reference funds in each 

different risk return portfolio. Different risk return portfolio can be changed at no cost under 

some constraint conditions (for example, no more than once a year). Fees of additional 

guarantees, asset management, administration and expenses are charged by reduction of the 

account value (Bacinelloa, Millossovich, Olivieri, & Pitacco, 2011). Also, policyholders can 

surrender the contract, withdraw a portion of account value and annuitize the account value 

after some specific time. Many guarantees were first introduced in the 1990s (Bauer, Kling, & 

Russ, 2008) 

 

The VAs combine funds with one or more guarantees. Without a guarantee, VAs are same as 

investment funds for policyholders and there is no risk for the insurer, comparing with the 

traditional life insurance. “Insurers act as a steward of the investment funds “(Hardy, 2003). 

Guarantees transfer the risk from the policyholders to the insurers, so the risk management and 

pricing of VAs is very important. For example, EquiTable Life, one of the world oldest insurer, 

had sold a product with the option of a 7% guaranteed annuity rate at maturity in 1970s. In 

1993, the annuity rate at that time became lower than the  initial guaranteed rate and 

policyholders exercised that guarantee. The liability of EquiTable Life increased massively 
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(McNeil, Frey, & Embre, 2015). In this case, the insurer underestimated the risk of this 

guarantee.  

 

Except the financial risk, insurer also faces the longevity and policyholder behavior risks, 

which are same as the traditional life insurance. However, these risks interact each other and 

the interaction is not fully understood. Appropriate risk management is required. Pricing and 

hedging of guarantees are the major concern of the contract design. This risk should be 

considered during the process of pricing. For example, Bacinelloa, Millossovich, Olivieri and 

Pitacco(2011) introduced a unifying valuation approach for VAs depending on different 

assumptions of policyholder behavior  

 

1.1Guaranteed Minimum Benefits 

 

There are two main classes of guarantees: Guaranteed Minimum Death Benefit (GMDB)and 

Guaranteed Minimum Living Benefit (GMLB). There are three types of benefits in GMLB: 

Guaranteed Minimum Accumulation Benefit (GMAB), Guaranteed Minimum Income Benefit 

(GMIB), Guaranteed Minimum Withdrawal Benefit (GMWB).   

 

The simplest form of guaranteed benefit is Guaranteed Minimum Accumulation Benefit, it 

provides a minimum account value at maturity. Usually, the minimum account value is the 

initial premium amount. It gives the policyholders the chance of renewing account value at 

maturity when the investment performance is bad.  

 

Guaranteed Minimum Income Benefit also provides a guaranteed account value at maturity, 

but policyholders only can take out the account value in the form of an annuity at a specified 
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annuity rate. This guarantee also reduces the risk from the annuity rate at maturity. In the 

money means that the annuity payment resulting from converting the guaranteed account value 

at a specified annuity rate is greater than the actual account value at current annuity rate. 

Usually, policyholders can annuitize the real account value during a time period, and the 

predefined annuity rate for the guaranteed account value is always conservative, that the 

offered roll-up rates are greater than the risk-free rate of interest. Because of this, the option 

may not be in the money even if the guaranteed account value is greater than the actual account 

value. The policyholders will not exercise it (Bauer, Kling, & Russ, 2008). 

1.1.1 Guaranteed Minimum Death Benefit 

 

With the Guaranteed Minimum Death Benefit, the beneficiary can receive a guaranteed amount 

if the policyholder dies before maturity. There is a variety of designs for Guaranteed Minimum 

Death Benefit: Return of Premium, Annual Roll-Up, Annual Ratchet, and Annual Reset 

(Bacinelloa, Millossovich, Olivieri, & Pitacco, 2011). 

 

𝐺𝑡
𝐷is the guaranteed amount, t is the death time before the maturity T. The guaranteed amount 

is the single premium paid. P is the premium. 

𝐺𝑡
𝐷 = 𝑃 

 

This is the basic form of a death benefit, which is called Return of Premium Death Benefit. 

Return of Premium Death Benefit is used in this article. There are some other types of GMDB 

are not used in this article. However, some further research about pricing large portfolio may 

be designed for these more complex types of benefits, which are annual roll-up, annual ratchet 

and annual reset. 
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Policyholders receive the maximum of guaranteed amount and account value. The benefit 

is𝑏𝑡
𝐷 = max(𝐴𝑡 , 𝐺𝑡

𝐷) , 𝑡 ≤ 𝑇. If there is no guaranteed amount, 𝐺𝑡
𝐷 = 0 , the policyholders will 

receive the account value  

1.1.2 Guaranteed Minimum Withdrawal Benefit 

 

With a GMWB option, policyholders can withdraw money from the policy account even if 

account value is zero. The account value may decrease to zero because of bad investment 

performance or the longevity of the policyholders. The guaranteed withdrawal amount is the 

minimum of the remaining total amount that can be withdrawn and the maximum amount that 

can be withdrawn annually. The remaining total amount is 𝐺𝑡
𝑤, which is a specified amount 

like single premium. The maximum annual withdrawal is a certain proportion 𝑥𝑤 of 𝐺0
𝑤,which 

is 𝐺𝑡
𝐸 = 𝑥𝑤𝐺0

𝑤  (Bauer, Kling, & Russ, 2008). 

 

There are some special forms of GMWB, which are not used in this article. However, some 

further research about pricing large portfolio may be designed on these more complex types of 

benefits, which are the step up GMWB and the GMWB for life. 

2 The Three-step Method of Pricing a Large Portfolio of VA Policies 

 

The following section reviews the three-step method of pricing a large portfolio of VAs in Gan 

(2013). The Three-step are (1) obtaining k centroids by the k-prototypes method, (2) obtaining 

the values of centroids by the Monte Carlo simulation, and (3) obtaining the value of the large 

portfolio by the kriging method (Isaaks & Srivastava, 1990). 
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2.1 The k-Prototypes Method 

Data clustering is a method used to group items into different clusters. The items in the same 

cluster are similar and the items in different clusters are dissimilar. Huang (1998) introduced a 

k-prototypes algorithm that allows for clustering objects with mixed numeric and categorical 

attributes. The k-prototype algorithm can be used to cluster a large portfolio of the VA contracts 

with mixed numeric and categorical attributes.  

 

We define a large portfolio that contains n VA contracts as 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛). We denote 

the ith contract in the portfolio as 𝑥⃑𝑖. Attributes of each contract are classified into numerical 

attributes and categorical attributes. Assuming there are d attributes, the 𝑑1 attributes are 

numerical, the𝑑2 = 𝑑 − 𝑑1attributes are categorical. Then the distance between two contracts’ 

attributes is, 

𝐷(𝑥⃑, 𝑦⃑, 𝜆) = √∑(𝑥ℎ + 𝑦ℎ)2

𝑑1

ℎ=1

+ ∑ 𝛿(𝑥ℎ ,  𝑦ℎ)

𝑑

ℎ=𝑑1+1

 

𝛿(𝑥ℎ ,  𝑦ℎ) = {
0, if 𝑥ℎ = 𝑦ℎ

1, if  𝑥ℎ ≠ 𝑦ℎ
 

 

The 𝑥ℎis the hth attribute of contract 𝑥⃑ . The λ is a parameter used to balance the weight of 

numerical attributes and categorical attributes.  

 

All numerical attributes in the distance function should be normalized. The numerical attributes 

minus the mean and divide the standard deviation of𝑥1ℎ , 𝑥2ℎ , 𝑥3ℎ , … , 𝑥1𝑛ℎ , ℎ = 1,2,3, … , 𝑑1. 

Otherwise, the distance will be almost only influenced by the attributes from premium, which 

is a very large number comparing with other attributes.  
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However, there are some shortcomings for this distance function. Firstly, 𝛿(𝑝, 𝑞) = 0 for p =

q and 𝛿(𝑝, 𝑞) = 1 for 𝑝 ≠ 𝑞 are used for categorical attributes, it does not reflect the real 

situation appropriately. Stanfill and Waltz(1986) observed that it is true that 𝛿(𝑝, 𝑞) = 0 for 

p = q , but it is not necessarily true that 𝛿(𝑝, 𝑞) = 1  for 𝑝 ≠ 𝑞 in supervised learning. 

Secondly, the   is user-defined, and all numerical attributes have equal weight. An 

inappropriate   may lead to inaccurate clustering and numerical attributes may not have equal 

effect on clustering (Ahmad & Dey, 2007). 

The k-prototype algorithm tries to minimize the function 𝑃𝜆 = ∑ ∑ 𝐷(𝑥⃑, 𝜇⃑𝑗, 𝜆)𝑥∈𝐶𝑗

𝑘
𝑗=1 , where 

𝐷(. ) is the distance function, k is the number of centroids and 𝐶𝑗 is the jth cluster, 𝜇𝑗is the 

centroids of the 𝐶𝑗 cluster. We call the contracts that belong to a cluster a member of that 

particular cluster. The k-prototype algorithm can update the cluster memberships 𝛾𝑖
(0)

given the 

centroids, and it can update the centroids given cluster memberships. This process is repeated 

until some conditions (explained in step1.4) happened. This process includes the following 

steps, 

Step 1.1: Initialize the centroids 

K distinct contracts are randomly chosen from the portfolio as an initial centroid, which is 

𝜇⃑1
(0)

, 𝜇2
(0)

, 𝜇⃑3
(0)

, … , 𝜇⃑𝑘
(0)

. 

Step 1.2: Update the clustering memberships 

Then, the clustering memberships are updated 𝛾1, 𝛾2, 𝛾3, … , 𝛾𝑛 as, 

𝛾𝑖
(0)

= argmax
1≤𝑗≤𝑘

 𝐷(𝑥⃑, 𝜇⃑𝑗
(0)

, 𝜆), 

Where 𝐷(. ) is the distance function. 
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Step 1.3: Update the Centroids. 

The centroids are updated at this step as, 

𝜇⃑𝑗ℎ
(1)

=
1

𝐶𝑗
∑ 𝑥ℎ

𝑥∈𝐶𝑗

, ℎ = 1,2,3, … , 𝑑1 

𝜇⃑𝑗ℎ
(1)

= modeℎ(𝐶𝑗), ℎ = 𝑑1 + 1, … , 𝑑 

 

where 𝐶𝑗 = {𝑥⃑𝑖 ∈ 𝐶𝑗: 𝛾𝑖
(0)

= 𝑗} for 𝑗 = 1,2,3, … , 𝑘 and the modeℎ(𝐶𝑗) is the value of the 

hth categorical attributes, which appeared most frequently. The hth attribute can take hm

different values𝐴ℎ1, 𝐴ℎ2, 𝐴ℎ3, … , 𝐴ℎ𝑚ℎ
.The 𝑓ℎ𝑡(𝐶𝑗) is how many times the hth attribute 

equal to values  𝐴ℎ𝑡, 𝑡 = 1,2,3, … , 𝑚ℎ, which is, 

𝑓ℎ𝑡(𝐶𝑗) = |𝑥⃑ ∈ 𝐶𝑗 : 𝑥ℎ = 𝐴ℎ𝑡|, 𝑡 = 1,2,3, … , 𝑚ℎ . 

Then, 

modeℎ(𝐶𝑗) = argmax
1≤𝑡≤𝑚ℎ

 𝑓ℎ𝑡(𝐶𝑗), ℎ = 𝑑1 + 1, … , 𝑑 

Step 1.4: Repeat Step2 and Step 3 until the stop condition is satisfied. 

The stop condition is there is no change for the centroids or memberships after the update, 

or it reaches the maximum iteration times. 

Step 1.5: Nearest neighbor mapping 
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k centroids are obtained by k-prototype method, and the centroids are denoted as 

𝜇⃑1, 𝜇2, 𝜇⃑3, … , 𝜇⃑𝑘. Given the centroids, the representative VA contracts, 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑘, can 

be selected as follows, 

𝑧𝑗 = argmax
𝑥∈𝑋

 𝐷(𝑥⃑, 𝜇⃑𝑗 , 𝜆) 

The representative variable annuity contract  𝑧𝑗  is closest to the centroid  𝜇⃑𝑗in the total 

contract portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛) . After this step, note that the duplication is 

checked to make sure that the VA representative contracts are different with each other, 

which is,𝐷(𝑧𝑟 , 𝑧𝑠, 𝜆) > 0 , for all1 ≤ 𝑟 < 𝑠 ≤ 𝑘. 

 

This k-prototypes algorithm could be slow because there are a lot of distance calculations with 

large k and n. In such case, according to the Gan (2013), the portfolio of VA contracts is first 

divided into subsets and then repeat the cluster process inside each subset. According to Gan 

(2013): “200000 contracts portfolio is divided into 33 subsets with 3 or 4 centroids in each 

subset.” Then 100 representative contracts are produced quickly. According to the Gan (2013): 

“if the portfolio is large and the policies are evenly distributed, it produces the similar result as 

the k-prototype algorithm without subsets”. However, it will produce the inaccurate result if 

the portfolio is small. According to an example in Gan (2013),{1,2,3,4,5,6,7,8,9} in Figure 1 

is clustered into {1,2,3},{4,5,6},{7,8,9}.However, after we divide  {1,2,3,4,5,6,7,8,9} into two 

subsets: {1,2,3,4,5}and{6,7,8,9}, then cluster the {1,2,3,4,5} into two centroids, and cluster 

the {6,7,8,9} into one centroid. Then, the result is {1,2,3}, {4,5}, {6,7,8,9}.     
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2.2 Monte Carlo Simulation for Variable Annuities 

 

After the representative contracts are selected after the clustering process, the value of the 

contracts can be evaluated by the Monte Carlo simulation for VAs in Bauer, Kling, Russ 

(2008). The following mathematical notations are used to describe the Monte Carlo method 

for pricing the GMDB rider and the GMWB rider.  

 

The underlying mutual fund at time t of the VA is denoted by  𝑆𝑡. The account value at time t 

is denoted as 𝐴𝑡. The withdrawal benefit at time t is denoted as𝑊𝑡. The death benefit at time t 

is denoted as 𝐷𝑡. The remaining total amount can be withdrawn and the maximum amount can 

be withdrawn annually are denoted as 𝐺𝑡
𝑊and 𝐺𝑡

𝐸. The guaranteed death benefit is denoted 

as 𝐺𝑡
𝐷. The certain proportion of the premium  𝐺0

𝑊is denoted as𝑥𝑤, that can be withdrawn 

annually 𝐺𝑡
𝐸 = 𝑥𝑤𝐺0

𝑊. The maturity time of the contracts is T.    
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In this article, the impact of clustering in the three-step method is discussed in test Section3. 

Since Gan (2013) only considered the GMDB rider and the GMWB rider, the same 

assumptions are applied in this article. There are two possible events of policyholders under 

this assumption; the policyholders withdraw money or dies. 

 

The value immediately before and after the events happened at time t are denoted as (. )𝑡
− 

and(. )𝑡
+.  

 

In this article, the Black-Scholes model is used to model the underlying mutual fund𝑆𝑡. For the 

Black-Scholes model, the underlying mutual fund of the variable annuity is simulated as, 

 𝑆0 = 1, 𝑆𝑡 = 𝑆𝑡−1exp ([𝑟 −
𝜎2

2
] + 𝜎𝑍)

 

Where the r =3% denotes the interest rate and the σ =20% denotes the volatility of the 

underlying mutual fund 𝑆𝑡, Z denotes a standard normal random variable. 1000 paths of 𝑆𝑡are 

simulated. 

 

The following policyholder behavior is assumed: the policyholders take the maximum 

available withdrawals annually; All events occur at anniversary date t without fees and lapses; 

The 1996 IAM mortality Tables for males and females from SOA are used in the Monte Carlo 

process. 

 

The initial values of guaranteed benefits are, 

𝐺0
𝑊 = 𝐴0, 𝐺0

𝐸 = 𝑥𝑤𝐴0, and 𝐺0
𝐷 = 𝐴0 
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The development of account value between  (𝑡)+and (𝑡 + 1)− is, 

𝐴𝑡+1
− = 𝐴𝑡

+
𝑆𝑡+1

𝑆𝑡
 

During the development between (𝑡)+and (𝑡 + 1)−, the guaranteed minimum benefit does not 

change during the year if the corresponding guaranteed benefits are not roll-up base, so 𝐺𝑡+1
𝑊− =

𝐺𝑡
𝑊+, 𝐺𝑡+1

𝐸− = 𝐺𝑡
𝐸+, 𝐺𝑡+1

𝐷− = 𝐺𝑡
𝐷+ .  

 

At the anniversary date (𝑡 + 1), the additional death benefit with a GMDB, comparing with 

the contracts without a GMDB, is, 

𝐷𝑡+1 = max (0, 𝐺𝑡+1
𝐷− − 𝐴𝑡+1

− ). 

 

If the account value is greater, the policyholders receive the account value and the additional 

benefit is zero. If the guaranteed death benefit of the contract with a GMDB is greater than the 

account value, the policyholders exercise the option and gets the additional benefit  𝐺𝑡+1
𝐷− −

𝐴𝑡+1
− . 

 

The guaranteed withdrawal amount is the minimum of remaining total amount and annually 

withdrawal amount. The guaranteed withdrawal amount is, 

𝐸 = min (𝐺𝑡+1
𝑊−, 𝐺𝑡+1

𝐸− ) 

 

We assume the policyholders take the maximum available amount, so the additional 

withdrawal benefit with GMWB is, 
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 𝑊𝑡+1 = max (0, 𝐸 − 𝐴𝑡+1
− ) 

 

If the account value is greater, the policyholders receive the account value and the additional 

benefit is zero. If the guaranteed withdrawal benefit of the contract with a GMWB rider is 

greater than the account value, the policyholders exercise the option and gets the additional 

benefit 𝐸 − 𝐴𝑡+1
− .  

 

If there is no GMWB rider, let 𝑥𝑤 = 0. Then 𝐸 = 0, and the additional withdrawal benefits 

𝑊𝑡+1 = max(0, 𝐸 − 𝐴𝑡+1
− = 0) = 0 without a GMWB. 

 

The account value after t+1 becomes 𝐴𝑡+1
+ = max(0, 𝐴𝑡+1

− − 𝐸) after the events of 

withdrawals. The remaining total amount that can be withdrawn after t+1 becomes𝐺𝑡+1
𝑊+ =

max(0, 𝐺𝑡+1
𝑊− − 𝐸), and the maximum amount can be withdrawal annually, 𝐺𝑡+1

𝐸− , does not 

change. The guaranteed minimum death benefit will be a pro rata scheme adjustment,𝐺𝑡+1
𝐷+ =

𝐴𝑡+1
+

𝐴𝑡+1
− 𝐺𝑡+1

𝐷− . The pro rata scheme is used to avoid the adverse selection effects, and the 

withdrawals reduce the guaranteed death benefits. If 𝐴𝑡+1
− = 0, the Guaranteed death benefit 

becomes zero.  

 

Then the value of a GMDB rider and a GMWB rider can be priced as the present value of the 

additional value of death and withdrawal benefits, comparing with the contracts without a 

GMDB rider and a GMDB. It is the value of the withdraw and death benefit in total. 

𝑉(𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑇+1) = ∑
01 xt p (1 − 𝑞𝑥0+𝑡−1)𝑊𝑡

𝑇+1

𝑡=1

𝑒−𝑟𝑡 + ∑
01 xt p 𝑞𝑥0+𝑡−1𝐷𝑡

𝑇+1

𝑡=1

𝑒−𝑟𝑡 
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The value of a GMDB rider and a GMWB rider by Monte Carlo method is the average of 

𝑉(𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑇+1)  along all paths. 

  

2.3 The Kriging Method 

 

After the value of representative contracts are calculated by the Monte Carlo method, the 

kriging method (Isaaks & Srivastava, 1990) is applied in Gan (2013) .  

 

The representative VA contracts, 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑘  are selected by the clustering algorithm. Let 

𝑦𝑗, 𝑗 = 1,2,3, … , 𝑘 be the fair value of 𝑧𝑗  which is priced by the Monte Carlo method. The 

kriging weights 𝑤𝑖1, 𝑤𝑖2, 𝑤𝑖3, … 𝑤𝑖𝑘  can be used to estimate the fair value of VA contracts 𝑥⃑𝑖 

by the following formula, 

𝑦̂𝑖 = ∑ 𝑤𝑖𝑗 ∙ 𝑦𝑗

𝑘

𝑗=1

. 

The kriging weights ikiii wwww ,...,,, 321 can be calculated by the following linear equations,  
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Where the i is a control variable, which is used to make sure that ∑ 𝑤𝑖𝑗
𝑘
𝑗=1 = 1. 

 

𝑉𝑟𝑠 = 𝛼 + exp (−
3

𝛽
𝐷(𝑧𝑟 , 𝑧𝑠 , 𝜆)) , 𝑟, 𝑠 = 1,2,3, … , 𝑘, 
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𝐷𝑖𝑗 = 𝛼 + exp (−
3

𝛽
𝐷(𝑥⃑𝑖, 𝑧𝑗, 𝜆)) , 𝑗 = 1,2,3, … , 𝑘, 

 

The 𝐷(. ) function is the distance function mentioned in the clustering section,𝛼 ≥ 0 and 𝛽 ≥

0 are two parameters. The above linear equation system has a unique solution 

because 𝐷(𝑧𝑟 , 𝑧𝑠, 𝜆) > 0 for all 𝑟, 𝑠 = 1,2,3, … , 𝑘,. 

 

Then the fair value of whole portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛)can be estimated by the following 

formula, 

𝑌̂ = ∑ 𝑦̂𝑖

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖𝑗 ∙ 𝑦𝑗

𝑘

𝑗=1

𝑛

𝑖=1

= ∑ 𝑤𝑗 ∙ 𝑦𝑗

𝑘

𝑗=1

 

with 

𝑤𝑗 = ∑ 𝑤𝑖𝑗

𝑛

𝑖=1

 

Then the efficient way of estimate the fair value of whole portfolio  𝑋(𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛) is 

solving the following linear equation system, 
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 Where the  is a control variable, which is used to make sure that  ∑ 𝑤𝑗
𝑘
𝑗=1 = 𝑛, and 𝐷𝑗 =

∑ 𝐷𝑖𝑗 ,   𝑗 = 1,2,3, … , 𝑘𝑛
𝑖=1 . Also, this linear equation system is the sum of both sides of the 

previous linear equation system from𝑖 = 1,2,3, … , 𝑛. It is more efficient because we only need 
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to solve one linear equation system instead of solving n linear equation systems and then sum 

the results. 

3 Proposed Alternatives to Step 1 

 

In this section, some alternatives to step1 are introduced and tested. Clustering is a data mining 

technique that is used for observing interesting objects, and it is an unsupervised learning 

algorithm comparing with classification (Ahmad & Dey, 2007). More similar objectives are 

partitioned into same cluster, and interesting objectives may be discovered. The k-prototypes 

algorithm generalizes the k-means and k-modes algorithms, which is efficient in cluster large 

data sets with mixed numerical and categorical values. 

 

The clustering part is time consuming in the three-step method for valuation of  large portfolio 

of VAs at most of the time. Speed and accuracy are two important performance measures of 

the pricing method for a large portfolio. Different data clustering methods are considered.  

 

Firstly, four different kinds of methods are tested in the first step: nearest neighbor mapping 

across the subset(MAS), mapping within the subset (MWS), rounding of discrete attributes 

(RDA) and simple random sampling (SRS). 

3.1 Nearest neighbor mapping across the subset(MAS) and mapping within the 

subset (MWS) 

 

The k-prototypes are used in the MAS, MWS and RDA method. The only difference is how 

the representative contracts are selected. The k-centroids 𝜇⃑1, 𝜇⃑2, 𝜇⃑3, … , 𝜇⃑𝑘are obtained by k-

prototype algorithm. Then, for the MAS, the representative contracts are selected from the 

whole portfolio. For the MWS method, the representative contracts are selected from each 
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subset of the portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛). For example, 100000 contracts are divided into 

20 subsets, each subset has 5000 contracts. For the MAS method, we obtain 5 centroids in the 

subset, then choose 5 closest contracts from the whole portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛) that 

contains 100000 contracts. For the MWS method, we obtain 5 centroids in the subset, then 

choose 5 closest contracts from the 5000 contracts in the same subset as representative 

contracts. The MWS method can save a lot of time comparing with the MAS method of 

avoiding a lot of distance calculations in the nearest neighbor mapping closest contract step. 

However, the closest contracts in the MAS method usually have shorter distances to the 

centroids. The 5000 contracts in each subset are also included in the whole portfolio 𝑋 =

(𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛), and it is possible that exists contracts with shorter distances to the centroids 

from other subsets. This impact on accuracy is tested in Table 4 and Table 5. For example, in 

Figure 2, if the centroid is denoted as C and the closest contract in the same subset is B. The 

contract with shortest distance to the centroid is denoted as A, but it is not divided into same 

subset. As a result, the B is the representative contract by the MWS method, and the A is the 

representative contract by the MAS method. The closer total distance in MAS increases the 

accuracy of the result. However, the duplication produced in MAS decrease the accuracy. It is 

necessary to analyze which one has the stronger influence on the accuracy. 
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3.2 Rounding of Discrete Attributes (RDA) 

 

For the RDA method, the step of selecting closest contracts as representative contracts is 

removed, which can save a lot of time. The centroids are applied in the Monte Carlo step and 

kriging step directly. The numerical attributes of centroids 𝜇⃑1, 𝜇⃑2, 𝜇⃑3, … , 𝜇⃑𝑘 are normalized, 

which is the mean of the normalized numerical attributes from the contracts in the same cluster. 

However, the original numerical attributes are needed for Monte Carlo simulation to calculate 

the value of centroids. To estimate the original numerical attributes of canters, the mean and 

variance of numerical attributes are estimated from the whole portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛). 

For example, we can estimate mean age  and standard deviation age of age from the whole 

portfolio 𝑋 = (𝑥⃑1, 𝑥⃑2, 𝑥⃑3, … , 𝑥⃑𝑛). The age attribute in the centroid𝜇⃑1 is denoted as 𝜇11. The 

original age is𝜇11 × 𝜎𝑎𝑔𝑒 + 𝜇𝑎𝑔𝑒 . Additionally, the age and maturity need to be rounded to the 

nearest integer after we get the original number. The results of the RDA method can be used 
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to compare with the results in the MAS method and the MWS method to see the influence of 

nearest contract mapping.   

3.3 Simple Random Sampling (SRS) 

 

For the SRS method, k contracts are selected randomly from the whole portfolio without 

clustering at all. The resulting random sample with size k is used in the Monte Carlo step and 

kriging step. The results of the SRS method can be used to compare with the results in MAS, 

MWS, and RDA methods to study the influence of clustering in the pricing process. However, 

the influence of clustering the data in reality may be stronger than the results from the 100000 

synthetic contracts created by uniform distributions.  

 

Secondly, the different ways of dividing the whole portfolio of VA contracts into subsets are 

tested. The number of subsets are additional managerial decisions with different portfolio size, 

an appropriate way of dividing the whole portfolio can save time and improve accuracy of the 

results.  

 

The result of a full-scaled Monte Carlo method with 100000 contracts and 10000 replications 

is used to measure the accuracy of the results by the tested methods. In each replication, one 

sample path of the underlying fund is simulated and the value of the VA contract is calculated 

accordingly. The number of paths increase to 10000, so the result of full-scaled Monte Carlo 

method is close to the true value of the large portfolio.  The full-scaled MC result is denoted 

by subscript “MC”. Also, each tested method is repeated for 100 times to get the mean and 

variance of each result. 
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4 Numerical Experiment Set 

 

The assumptions in the following table are used to create a large portfolio of synthetic VA 

contracts. 100000 contracts are created in this article. N is the natural number and R is the real 

number. Each contract 𝑥⃑𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5, 𝑥𝑖6)  has six attributes: Maturity, Age, 

Premium, 𝑥𝑤, Gender and Type, hence the d1 is equal to 4, and 𝑑2 is equal to 𝑑 − 𝑑1 = 6 −

4 = 2. 

Attribute Values 

Guarantee type 
GMDB only, GMDB + 

GMWB 

Gender Male, Female 

Age N∩[20,60]  

Premium R∩[10000,500000]  

GMWB withdrawal 

rate 

0.04, 0.05, 0.06, 0.07, 

0.08 

Maturity N∩[10,25] 

  

However, some assumptions about clustering part are changed to test the impact of clustering 

method for pricing a large portfolio of VA policies from Gan (2013).  

5 Test Results 
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In Gan (2013), there is no description about how the nearest neighbor mapping is done, whether 

within subsets or across subsets. However, Gan (2015) discussed the “duplication”. Based on 

this, to our best understanding, the MAS method is used because it is the only method that will 

produce duplicated representative contracts. This speculation is explained after Table 3, 

because of this, the results of the MAS method are used as the MAS to which the other methods 

are compared. 

 

The total value of the 100000 synthetic VA contracts by the MAS are produced for 100 times. 

The percentage error of the MAS estimator compared to the full-scaled MC estimator is 

calculated by|
𝑣𝑎𝑙𝑢𝑒𝑀𝐴𝑆

𝑣𝑎𝑙𝑢𝑒𝑀𝐶
− 1| × 100,  

where 𝑣𝑎𝑙𝑢𝑒𝑀𝐴𝑆is the value by the MAS method, and 𝑣𝑎𝑙𝑢𝑒𝑀𝐶 is the value by the full-scaled 

Monte Carlo method with 10000 paths, which is close to the actual value of the large portfolio. 

The MAS method is repeated 100 times, then 𝑣𝑎𝑙𝑢𝑒𝑀𝐴𝑆of the 100 macro-replications are 

obtained. Also, percentage error of the100 macro-replications are obtained. The mean and 

standard error of the percentage error can be calculated by the 100 macro-replications.  
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From Table 1, the number of centroids per subset and the total number of centroids both have 

a strong impact on accuracy. The accuracy improves as the total number of centroids increases, 

which is similar to one of the finding in Gan (2013). Our experiment also reveals that 

increasing the number of centroids per subset can increase the accuracy of the result even when 

the total number of centroids is fixed.  

 

In Table 2, the 100*1 is the (total number of centroids)* (the number of centroids per subset). 

The 100*1 is the fastest. By increasing 1 centroid per subset to 10 centroids to subset, total 

time increase to the 40.40 seconds with the 3.88% error. By increasing 100 total number of 

centroids to 2000, total time increase to the 73.35 seconds with the 5.37% error, which spends 

more time with less accuracy. According to this, to increase the accuracy, increase the number 

of centroids per subset is more efficient than increase the total number of centroids, even both 

of these can increase the accuracy. More efficient means producing more accurate results with 

similar running times.  

 

Increasing the number of centroids per subset can increase the accuracy of the result even when 

the total number of centroids is fixed. Unfortunately, we pay the price for this higher accuracy 

because increasing the number of centroids per subset also increase the time needed in the 



 

 22 

clustering step. For example, when the total number of centroids is 100 and the number of 

centroids per subset is 25, there are less distance calculations comparing with the number of 

centroids per subset is 50, like Figure 3. The black space in Figure 3 represents the number of 

distance calculations. The area of black space in the right plot with 2 subsets is greater than the 

left plot with 4 subsets, which means it has more distance calculations. Additionally, increase 

the number of centroids per subset does not increase the time of Monte Carlo step and kriging 

weight step because the total number of centroids is fixed.  

 

 

When the number of subsets increase, the decrease of the accuracy can be explained by Figure 

4. Figure 4 is a simplified example of 400 points with two attributes, and there are 8 centroids 

in total. The contracts in this article are more complex, but it has the similar process of data 

clustering. The first plot is clustering without subset. Then the portfolio is divided into two 

subsets, the second plot is the first subset with half points selected from the whole portfolio 

randomly, and the third plot is the second subset. The fourth plot is the combination of the 

second plot and the third plot, it re-divides the whole portfolio into different clusters with the 

centroids produced by the second plot and third plot. After one portfolio is divided into two 

subsets, the total distance between the contracts to their centroids, which is in the fourth plot, 

is almost the double of the original total distance, which is in the first plot. The points in the 

cluster have longer distance to the centroids in the second or the third plot with 4 centroids 

than the first plot with 8 centroids. The points are uniformly distributed around the space, so 
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the total distance of first plot is same as the second plot, which is similar for the third plot. As 

a result, the total distance of the fourth plot, which is 14.00736, is close to the sum of the total 

distance in the second and the third plot, which is almost the double of the total distance in the 

first plot, which is 7.594413. The k-prototype algorithm tries to minimize the  𝑃𝜆 =

∑ ∑ 𝐷(𝑥⃑, 𝜇⃑𝑗 , 𝜆)𝑥∈𝐶𝑗

𝑘
𝑗=1 , and dividing subsets increase the total distance, which influence the 

performance of the clustering. The centroids represent the closer contracts better. Longer total 

distance means there are some contracts represented by the centroids further away. Dividing 

the points into subsets according to the space in these plots instead of dividing randomly may 

solve this problem, but it is difficult to divide the contracts with six different attributes in the 

same way, and the user-defined standards increase the risk of producing inaccurate results. For 

example, dividing the 400 points equally into two subsets by the x attributes is different with 

y attributes. The clustering results are different according to the decision made by the user.   
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Given an extreme example, all centroids are in the centroid of the space if there is one centroid 

per subsets. It is obviously a poor clustering result. All in all, it produces a bad result with a 

small number of centroids per subset even we have a large number of total centroids. 
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From Table 3, there are a lot of duplications happened in the MAS. The duplication decreases 

the number of representative contracts used to estimate the portfolio value in further steps, so 

it decreases the accuracy. There are three disadvantages of the duplication. First, we cannot 

control the desired number of distinct centroids after removing the duplication Second, it 

would be a waste of time finding centroids that lead to duplicated representative contracts. 

Third, if there are no enough centroids due to duplication, it will produce a poor result. For 

example, there are 77 duplicated centroids in the 100 total centroids with 1 centroids per subset 

in Table 3. The accuracy of this example in Table 4 and Table 5 is poor because only 23 

centroids are used in the MC and kriging steps. 
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Because of this, the following three alternative methods without duplication are tested and 

presented. From Table 4, the MWS method has a better performance on the upper right corner 

of Table 4 and Table 5, comparing with MAS. In the MAS method, if the centroids are very 

close to each other, one same contract may be selected as representative contract for two 

different centroids. The number of duplications ranges from 2 to 1600, or 2% to 80%, for 

different combinations of (total number of centroids) and (the number of centroids per subset). 

The negative impact on accuracy from the duplication is obvious. The reason why there is no 

duplication by the MWS method is that the 100000 synthetic contracts are different with the 

continuous uniform distribution of the premium attribute. The 100000 different synthetic 

contracts are divided into different subsets, so it is impossible to select same representative 

contracts from the different subset. From the simplified example in Figure 4, the centroids in 

the same subset are not close enough to have same representative contracts, so there is no 

duplication in the MWS method. 

  

As the number of centroids per subset increase, we can see the duplication in the MAS method 

decrease and the accuracy is close to each other from the last row of Table 4, which is less than 

1%. Also, it spends more time on the distance calculations as the number of centroids per 
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subset increase. However, by the MWS method, for each centroid, we only need to calculate 

the distances of the centroid to the contracts in the same subset to select the closest contract. 

By the MAS method, the distances of the centroid to the contracts in the whole portfolio are 

calculated to select one representative contract for the centroid. From the (MWS) and (time 

difference in percentage) part in Table 6, the MWS method saves a lot of time in 

step1comparing with the MAS method. Also, the MWS method saves a lot of time in 

(2,000*50) case with less duplication in the MAS method. 

 

In Table 4, for the RDA method, the result is better for the results on the bottom left corner of 

Table 4 and Table 5, comparing with MAS. There is no duplication in this method because 

centroids are mean of numerical values and most frequent category values of the attributes in 

contracts from this cluster. It is rare that contracts from two different clusters have the same 

mean. Even there is no duplication, the centroids, which have same representative contracts by 

the MAS method, approach to the same. Even it is not exact same, its performance is still very 

close to the MAS. Because of this, when the number of centroids per subset is small, it is not 

close to the real value, which is similar as MAS. However, it is better when the contracts are 

divided into subsets by an appropriate way and it has less influence from the centroids approach 

to the same. It has smallest total distance by using centroids directly. Additionally, this method 

is faster than the MAS method and MWS method because we skip the step of nearest mapping. 

 

From Table 4 and Table 5, dividing the whole portfolio into different number of subsets does 

not influence the accuracy when we use the SRS method instead of clustering. It has a very 

good performance when there is a small number of centroids per subset, comparing with other 

three methods. We do not need to consider how to divide the subsets by the SRS method. The 

accuracy increases as the total number of sample increase. This method skips the clustering 

step and saves a lot of time. However, to get an accurate enough result, the sample size is larger 

than the other three methods, which increase the time of the Monte Carlo step and the Kriging 
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step. Further research is needed to test the trade-off between time of the clustering method and 

the time of the further two steps. If there are higher requirements for the accuracy, the 

clustering step is necessary to save time. Additionally, interesting objects may be observed by 

the clustering step. There is a conjecture that the uniform distributions of the attributes impact 

the accuracy. If a real large portfolio of VA contracts is priced, the clustering step may have 

more influence on the accuracy because it is not uniform distributed any more. The synthetic 

contracts are not good enough to test the accuracy of the algorithm. 
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In Table 6, 100*1 by the MAS method spends less time on the Monte Carlo method and 

Kriging method because the duplicated centroids are removed. It spends around 350% to 400 

% time for the step2 and step3 because the number of distinct centroids is around 23 in the 

MAS method, and 100/23=435%. Around 77 duplicated centroids are removed in the MAS 

method. However, the MAS method spends more time in the nearest contract mapping step. It 

saves 58.65%, 56.77% and 98.5% in the step1 for the MWS method, the Rounding method, 

and the SRS method. For the 2000*50, the total time by the MAS method is greater than the 

total time by the MWS method obviously. It saves 14.8%, 15.42% and 59.5% in the total time 

for the MWS method, the Rounding method, and the SRS method. The time of the first step in 

the MWS method is even very close to the rounding method. The time on the Monte Carlo 

method and the Kriging method for the MWS method, the rounding method and the SRS 

method are close to each other because there is no duplication and the same number of 

representative contracts are calculated in these two steps.  

 

6 Conclusion 

 

Four different methods for identifying representative contracts in a large portfolio of VAs are 

alternatives of the three-step method proposed by Gan (2013). To compare the four different 

methods for identifying representative contracts in a large portfolio of VAs, we examine the 

four methods by comparing the accuracy and speed of the results. The MAS method is used 

by Gan (2013). By comparing MAS method and MWS method, MAS method could produce 
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duplication and increase the inaccuracy overall. By comparing MAS method and RDA method, 

we find that it is unnecessary to make nearest neighbor mapping. The MAS method, MWS 

method and RDA method include clustering, and the SRS method does not have clustering. 

For all three clustering methods simulated with comparable computation, we should perform 

cluster on large subsets rather than smaller. SRS is really fast in identifying representative 

contracts and its results are reasonably accurate. 

 

In further research, we will consider a combination of SRS method and clustering method so 

that it has both high accuracy and fast. For example, we select a random sample and find total 

centroids from the random subset. This alternative method produces a good result when we 

tested the 5000 samples with 100 centroids. The mean of percentage error is 2.01%, comparing 

with the full-scaled Monte Carlo result and the mean of the time is 8.95 seconds. Secondly, 

more complicate VA benefits and stock dynamic can be tested.  For example, we can consider 

guaranteed benefits with roll-up and ratchet. We can consider the stock dynamic such as 

regime-switching. Lastly, the substitutions of Monte Carlo method or the Kriging method also 

can be tested to find the preferred plan.
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