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Abstract

Pricing of the riders of variable annuity (VA) products is complicated, and
it is common practice to assume that the policyholder of a variable annuity
(VA) contract with guaranteed minimum withdrawal benefit (GMWB) to
withdraw all the time in order to get maximum value out of the riders of
the contract. Intuitive as it seems, this assumption does not necessarily
represents the optimal strategy all the time. In this paper we use a simplified
two-period model to explore the interactive relationship of the values between
GMWB and guaranteed minimum death benefit (GMDB). Then we extend
our findings to a ten-period model and use crude Monte-Carlo simulation to
see whether the findings hold true. We discovered that while it is reasonable
to assume that the policyholder always withdraws under the most common
withdrawal rate assumptions, it will no longer be optimal if the withdrawal
rate is much lower or higher than the inverse of the maturity of the contract.

Keywords: Variable Annuity, Guaranteed Minimum Withdrawal Benefit,
Guaranteed Minimum Death Benefit, Monte-Carlo Simulation, Optimal
Strategy



1 Introduction

1.1 Variable Annuities

Variable annuities are a type of product that has gained increased interest
over the past decades. In short, it is an insurance product that allows policy-
holders to allocate their premiums to investment accounts and therefore gain
the corresponding revenue as annuity payouts. Compared to participating
insurance contracts, which provides the policyholders dividends according to
the performance of the insurance company, variable annuities allow you to
choose the allocation of premium in investment funds with different risk level
and each policyholder receives different payouts given the performance of the
investment fund they choose.

A common feature that comes with variable annuities is the different
types of guarantees in such polices. The types of guarantees can be broadly
categorized into Guaranteed Minimum Death Benefit(GMDB) and Guaran-
teed Minimum Living Benefit(GMLB). GMLB can be furthered categorized
into Guaranteed Minimum Allocation Benefit(GMAB), Guaranteed Mini-
mum Income Benefit(GMIB) and Guaranteed Minimum Withdrawal Bene-
fit(GMWB). In our paper we will specifically look at GMWB and GMDB
riders. Policyholders in contracts with a GMWB rider are allowed to period-
ically withdraw a specified amount during the accumulation of the annuity
until the allowed withdrawal amount is depleted or the contract reaches ma-
turity, regardless of the performance of the investment account. Therefore
the GMWB rider protects the policyholders against downside market risks.
The GMDB rider allows the policyholder to get a specified payout if he or she
expires before maturity. The amount that is guaranteed is usually related to
the policyholder’s remaining account value and the initial premium.

The complexity of pricing these riders is that as policyholders make with-
drawals, the amount of investment and the amount of death benefit will cor-
respondingly decrease. Therefore it is inherently an optimization between
the expected value of discounted future cash flows and immediate realized
values. This may sound familiar, as we know that the pricing of American
call and put options is a fundamentally identical process. Indeed, as in Liu
(2010), viewing GMWB as a more dynamic version of the Bermudan option
is a strategy widely adopted in pricing VA contracts.
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1.2 Pricing of GMWB

To price a GMWB, we need to make some assumptions about the behavior
of the policyholders in terms of withdrawal strategy and surrenders. These
assumptions decide what type of model we choose. If we assume the poli-
cyholders make constant withdrawals and they never surrender their policy,
it is a type of static model. Once the strategy is fixed, we will be able to
track the evolution of the contract value based on the investment-linked fund
model we adopt, and price the GMWB by calculating the discounted future
cash flows. This was well developed in Milevsky and Salisbury (2005). More
complicated versions of this model, as in Bacinello et al. (2011), where they
assumed a fixed surrender percentage (which is zero by default), are com-
monly used to price a GMWB contract. Additional random factors can be
added to the model to study the marginal influence of different parameters,
Bauer and Ha (2013) assumed stochastic mortality rate or stochastic risk free
interest rate.

The most realistic and complicated model for pricing GMWB is the dy-
namic model. In this model, the policyholder can withdraw any amount or
choose to surrender the policy at any time before maturity. If the policyholder
chooses to withdraw more than the guaranteed amount or surrenders the pol-
icy before maturity, he or she will be subject to a penalty fee. This makes the
model much more complicated. To utilize this model, Zhuliang Chen (2007)
uses partial differential equation, and Anna Rita Bacinello (2013) uses dy-
namic programming. These methods are computationally more expensive
compared to the static pricing model.

A compromise between the dynamic model and the static model, which
is often referred to as the mixed model, is a model that allows policyholders
to surrender at any time in the life of the contract but assumes that the pol-
icyholder withdrawals exactly when and what contractually specified . With
the choice to surrender the policy, the policyholder must evaluate the contin-
uation value of the policy and compare that with the immediate surrender
value. This resembles the pricing of American options, since they are both
trying to evaluate the continuation value of the contract at each time step.
The challenge is how to decide the continuation value. The most intuitive
way is the nested Monte Carlo simulation, which simulates the future value of
the contract at each step by attempting to exhaust as many future values as
possible and calculate the discounted expected value to decide whether each
withdrawal should be made. This method is computationally expensive, if
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at all possible, even with the modern computing power. Some efforts have
been made by Cathcart and Morrison (2009) in pricing the GMWB in short
time horizons using nested Monte Carlo. More often, one seeks to reduce the
problem of dimension. As proposed by Lonstaff and Shwarts (2001), least-
squares Monte Carlo (LSM) is an example of the available tools. Bacinello
et al. (2011), Bauer and Ha (2013) and several others has also adopted LSM.

1.3 Motivation of study

We try to explore in this paper whether withdrawing all the time is indeed the
optimal strategy in a static model and whether it holds true under different
withdrawal rate assumptions. We start by looking at a simplified two-period
model and then we try to extend to a more common ten-period model.

The rest of the paper is consisted of two main parts. We first examine
the two period model to determine how withdrawal strategies could impact
the values of GMWB and GMDB riders. Then we extend our experiment to
a ten-period model and test if the optimal strategy is still to withdraw all
the time under different withdrawal rates.

2 Model Description

2.1 GMWB, GMDB and the withdrawal strategy

First we need to define the meaning of “value” in our context. GMWB and
GMDB riders only generate value when the guaranteed amount is greater
than what the insured could have gotten without the riders. For instance,
if the insured dies before maturity, GMDB usually guarantees that at least
the premium will be returned. This means that if the investment account
ends up being more valuable than the guaranteed death benefit, the GMDB
rider will eventually have 0 realized value. In terms of GMWB, withdrawing
does not generate value by itself, since the insured is practically withdrawing
from what he deposited in the investment account in the first place. Value
is generated when the investment account is not doing well enough, and the
guaranteed withdrawal at a particular term exceeds the investment account
value. In this perspective, the function of GMDB and GMWB much resem-
bles that of an option, in that they have positive exercise value when certain
conditions are met, and are worthless otherwise.
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So how do withdrawal decisions influence the value of the riders? If
GMWB is to have value, then withdrawals must be made. But GMDB value
on the other hand, is usually negatively correlated to withdrawals. This is
because in practice, the insurer usually reduces the guaranteed death benefit
after a withdrawal is made. One such adjustment is the pro rata adjustment.
This means that after each withdrawal, the GMDB will be reduced by a
proportion that is identical or comparable to the proportional reduction in
the investment account value that the withdrawal has brought forth.

Therefore intuitively, if one chooses to withdraw at a time when the invest-
ment account value drops below a certain level, the withdrawal amount will
exceed the investment account value, and the GMWB will have a value equal
to the difference between the withdrawal amount and the investment account
value at time 1. However, the insured also reduces the GMDB account value
in the future since that account is subject to a pro rata adjustment.

2.2 The general model

We adopt a VA contract with GMWB and GMDB riders and use assump-
tions similar to that of Gan (2013). The assumptions regarding policyholder
behaviors for our model are:

• The policyholder can choose to withdraw a specified amount at the end
of each year until maturity

• The policyholder never surrenders the policy

At each time step, the policyholder must be in one of the three status:

• The policyholder withdraws the maximum allowable amount

• The policyholder does not withdraw

• The policyholder dies

Compared to Gan (2013), who adopted an entirely static model, we use a
semi-static model in which the policyholder can choose whether or not to
withdraw at each period. The following are the notations we need.
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Notation Meaning
St Investment-link fund value at time t
At Policyholder’s Account value at time t
Wt Withdrawal benefit at time t
Dt Death benefit at time t
Et Maximum amount that can be withdrawn at time t
Kt Actual withdrawal amount at time t
AW

t Remaining total amount that can be withdrawn at time t
AD

t Death benefit account at time t
g Annual guaranteed withdrawal amount
Xw Annual guaranteed withdrawal rate
T Maturity

The initial values are as follows,

S0 = A0

AW
0 = A0, A

D
0 = A0

g = XwA0

We use (.)−t and (.)+
t to denote the values immediately before and after

the withdrawal decision. For t=0,1... T-1, the account value is correlated to
the investment-link fund change

A−
t+1 = A+

t

St+1

St

The withdrawal account and death benefit account remain unchanged

AW−
t+1 = AW+

t

AD−
t+1 = AD+

t

Death benefit at time t is

Dt = AD
t

At t = 1, 2, 3...T , the insured can choose to withdraw g, and the maximum
amount that can be withdrawn at time t is

Et = min(g, AW
t )
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Rendering the withdrawal benefit at time t

Wt = max(0, Et − A−
t )

Depending on whether the policyholder actually withdraws or not at time
t, the actual withdraw amount at time t is

Kt =

{
0, not withdraw
Et, withdraw

The account value after the withdrawal decision is

A+
t = A−

t −Kt

The evolution of the GMWB and GMDB account is as follows

AW+
t = AW−

t −Kt

AD+
t = AD−

t

A−
t

A+
t

Then the time 0 value of the GMWB and GMDB benefit is

V0 =
T∑
t=1

t−1px0(1− qx0+t−1)Wte
−rt

+
T∑
t=1

t−1px0qx0+t−1Dte
−rt

(1)

2.3 The two-period model

In our experiment, we start by examining the simplest interactive scenario,
which is the two-period model, in which the policyholder is allowed to with-
draw at time 1 and time 2.

We will study how the value of the riders will be influenced by the with-
drawal decision at time 1. We assume that the policyholder can choose to
withdraw at time 1 and time 2. However, we will see from the mathematical
derivation that, even though at time 2 the insured is allowed to choose to
withdraw, the withdrawal does not affect the value of the death benefit.

The evolution of relevant accounts and values are similar to that of the
general model. At time 0, we have the initial account value A0. The initial
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withdrawal account AW and death benefit account AD are both assumed to
take the value of A0 at time 0. A contract specified allowed withdrawal rate
for each period is denoted by Xw, and is bounded by 0 ≤ Xw ≤ 1. Thus
we have the guaranteed withdrawal g at time 1 g = A0XW . Given a specific
risk free interest rate and a stock volatility σ, we can simulate the random
investment account change with R1 and R2, the evolution of the account
value is now

A1 = A0R1

A2 = A+
1 R2

with A+
1 representing the account value after the withdrawal is made at time

1.
Now at time 1, assume the policyholder makes the withdrawal if he or she

is alive. The GMWB value is denoted by W1 = max(g−A1, 0). The GMDB
value at time 1 is denoted by D1 = max(AD−A1, 0). The new account value
after the withdrawal decision becomes

A+
1 = max(A1 − g, 0)

and the remaining withdrawal account value and death benefit account value
becomes

A+
w = max(Aw − g, 0)

and

A+
D = AD

A+
1

A1

At time 2, which is the last period in our scenario, the account value becomes
A2 = A+

1 R2. The amount that the policyholder can withdraw at time 2
is min(A+

w , g). Thus the survival benefit is now the withdrawal minus the
account value at time 2, which gives us

W2 = max
(
min(A+

w , g)− A2, 0
)

Lastly, we also have the GMDB value

D2 = max(A+
D − A2, 0)

With the information above, we have the value of the riders at time 0

Vw = p1W1e
−r + q1D1e

−r + p1p2W2e
−2r + p1q2D2e

−2r
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with p1, q1, p2, q2 representing the mortality rates at time 1 at time 2.
Expanding the equation gives

Vw = p1e
−r max

(
A0Xw − A0R1, 0

)
+ q1e

−r max

(
A0 − A0R1, 0

)
+ p1p2e

−2r max

(
min

(
A0Xw, A0(1−Xw)

)
−R2 max(A0R1 − A0Xw, 0), 0

)
+ p1q2e

−2r max

(
A0

max(A0R1 − A0Xw, 0)

A0R1

− (A0R1 − A0Xw)R2, 0

)
(2)

If the policyholder chooses not to withdraw at time 1, there would be
no GMWB value at time 1, and GMDB value is the same as D1. At time
2, the policyholder’s investment account value becomes A∗

2 = A0R1R2. And
the GMWB value and GMDB value at time 2 are

W ∗
2 = max(g − A2, 0)

D∗
2 = max(AD − A2, 0) = max(A0 − A2, 0)

This gives us the value of both riders at time 0

V ∗
w = q1D1e

−r + p1p2W
∗
2 e

−2r + p1q2D
∗
2e

−2r

Expanding the equation gives

V ∗
w = q1e

−r max(A0 − A0R1, 0)

+ p1p2e
−2r max(A0Xw − A0R1R2, 0)

+ p1q2e
−2r max(A0 − A0R1R2, 0)

(3)

By taking the difference of (2) and (3), we get the difference of the com-
bined value of GMWB and GMDB at time 0 between withdrawing and not
withdrawing at time 1. Taking out the common parameters gives equation 4
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Vw − V ∗
w =(A0p1e

−r){max(Xw −R1, 0)

+ p2e
−r[max(Xw −R2 max(R1 −Xw, 0), 0)

−max(Xw −R1R2, 0), 0)]

+ q2e
−r[max(

max(R1 −Xw, 0)

R1

− (R1 −Xw)R2, 0)

−max(1−R1R2, 0)]}

(4)

3 Numerical Experiment

3.1 The two-period model

We adopt the mortality rate from the 1996IAM mortality table and use
age 40 female as a sample policyholder. That gives us p1 = 0.999451 and
p2 = 0.999407. Also we set risk-free rate r = 0.03 and stock volatility
σ = 0.2. Initial account value A0 = 100 so that the numbers we eventually
get are percentages of the original amount. Xw in this case is first set to be
0.5 because the most common contract specification for Xw is Xw = 1/T ,
and in this scenario T = 2. Using the log-normal growth factor at time 1
and time 2 (R1 and R2) as variables and the time 0 difference Vw − V ∗

w as
dependent, we get Figure 1.

Figure 1: The x-axis and the y-axis both start from 0.5 and end at 2, because these are the 0.1% and

99.9% value of the log-normal distribution er−0.5σ2+σN , where N is a standard normal random variable.
The z-axis is Vw − V ∗

w , which is the difference between the value of both riders combined after making
and not making the withdrawal at time 1. The color bar on the right indicates the corresponding value
for different surface colors. Any colors from yellow to red indicates non-negative values, and colors from
green to blue indicates negative values.
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We first notice that the surface is generally above 0, with a small area of
values smaller but close to 0. This means that the withdrawal decision at
time 1 is very unlikely to decrease the total value of both riders under our
specification. Only in some extreme cases, where R1 is large and R2 is small
will Vw − V ∗

w be negative.
We are curious about how the withdrawal rate might change the look of

the surface. Thus we continue to draw the same graph with Xw taking values
from 10% to 90%, and the results are in Figure 2
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(a) Xw = 10%

(b) Xw = 20%

(c) Xw = 30%
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(d) Xw = 40%

(e) Xw = 50%

(f) Xw = 60%
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(g) Xw = 70%

(h) Xw = 80%

(i) Xw = 90%

Figure 2: Xw changes the shape of the surface and the range of values

As can be seen, the shape of the surface looks very different when Xw

is less than 20%. We observe that there are large areas of negative values,
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meaning that the withdrawal at time 1 decreased the total value of both
riders. This is possibly due to the fact that when the withdrawal rate is
small, it is unlikely that the GMWB will generate value, while the GMDB
will. Since withdrawal decisions and GMDB values are negatively correlated,
the withdrawal at time 1 has no GMWB value and decreased GMDB value
at time 2.

When Xw is above 40%, the shape of the surface remains generally un-
changed. We notice the negative area first shrinks and then grows, and at
90% withdrawal rate we would be able to reach very negative results. In fact,
along with the growth of withdrawal rate, the graph has more extreme val-
ues appearing on both ends. This seems counter-intuitive at the beginning,
since GMDB value should not create such difference. So why is it that the
withdrawal at time 1 has reduced a great deal of the rider value?

Imagine an extreme case where the withdrawal rate is very close to 100%,
meaning that the policyholder practically surrenders the policy should he
chooses to withdrawal at any time. When he thus chooses, he will be entitled
the greater of the investment-linked account value or the GMWB guaranteed
value. By our definition of value, we know that unless the investment-link
fund fails to achieve any kind of growth over the period, the GMWB will have
0 value since it only offers no more than A0. This means that, withdrawing
at time one is denying the potential growth in the investment-link account
value or GMDB value at time 2. On the contrary, not withdrawing at time
1 and withdrawing at time 2 will allow the policyholder to get protection
against further decline at time 2, thereby potentially generating huge GMWB
value while not giving up GMDB value. This reasoning can be backed up
by observing that the lowest values on the surface seems to appear in areas
where both R1 and R2 are small, especially R2.

For the moment, we have seen that under different withdrawal rates, there
is a potential that not withdrawing at certain times will enable greater total
values of the riders. We need to extend this model to a more commonly seen
ten-period contract to verify our conclusions.

What is also worth noting is that, the surface area is not a direct trans-
lation of the actual probability of the underlying events. As the x-axis and
y-axis are the exponential values taken from the log-normal distribution and
arranged numerically, areas in the middle generally have a higher underlying
probability density function compared to those in the corners.
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3.2 The ten-period model

As mentioned in Chapter 2.2, we are assigning a dummy variable Kt to each
withdrawal decision withKt = 1 representing that the policyholder makes the
withdrawal. This requires that we exhaust all possible withdrawal strategies
to find out the optimal one. We are using Monte Carlo simulation to achieve
this. Given the maturity T , we have 2T different strategies for a single
contract. The following are the specifications for the simulated contract

number of sample paths gender age premium maturity
10,000 female 40 20,000 10

Table 1: premium is set to be 20,000 so that the results does not bother too much with smaller digits. The
sample paths for the investment-link fund for different withdrawal strategies are not repetitive, meaning
that strategy 1 and strategy 2 have independent sample paths. We set seed (1) in the beginning to insure
reproducibility

We first use a withdrawal rate Xw = 1/T = 10%. Risk free rate and stock
volatility are as before r = 0.03, σ = 0.2. The results are shown in Figure 3
and Table 2
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Figure 3: The x axis is the number of withdrawals actually made in each strategy, and altogether there
are 210 = 1024 different strategies. The order within the same number of withdrawals is those that
withdraws the earliest are on the left, e.g. for strategies with only one withdrawal but at different time,
the one that withdraws at time 1 is the left most, and the one that withdraws at time 10 is the right most,
followed by the strategy with 2 withdrawals at time 1 and time 2. The y axis on the left is the value for
GMDB, and the right is GMWB+GMDB

number of withdrawals max(std) min(std)
0 173(2) 173(2)
1 174(2) 150(2)
2 184(4) 132(2)
3 270(13) 115(1)
4 552(26) 97(1)
5 1184(48) 147(9)
6 2501(77) 551(26)
7 4179(106) 1834(59)
8 7262(148) 4687(108)
9 10929(185) 9338(161)
10 15772(223) 15772(223)

Table 2: range of values for different withdrawal strategies with Xw = 10%. Bold font is the global
maximum value
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The value of GMWB is much greater than the value of GMDB. Strate-
gies with more than 5 withdrawals have a total value ranging from several
thousand to sixteen thousand, while the GMDB value is always less than
200. The maximum value is obtained by withdrawing 10 out of 10 times.
And the more we withdraw, the higher the GMWB value is. These results
are consistent with what we have observed in the two-period model.

An unexplained pattern in Figure 3 is the irregular curve of GMDB value.
It seems that the way we arrange the withdrawal strategy has an direct in-
fluence on why this pattern exists. First, we notice that GMDB value is in-
creasing within the group of strategies with the same number of withdrawals
and decreasing with the number of withdrawals. To understand this, we
need to know the order of the withdrawal strategy. We use strategies with 9
withdrawals as an example to demonstrate the way the strategies are ordered
(Table 3), with 1 representing withdrawing at time t, and 0 representing not
withdrawing at time t. This means the strategies that withdraws the earliest
is on the left in Figure 3. Therefore, this tells us that by postponing the
withdrawals, the value of both GMWB+GMDB is increased.

Total Value(GMDB)
withdrawal decision at t

1 2 3 4 5 6 7 8 9 10
9412(54) 1 1 1 1 1 1 1 1 1 0
9659(56) 1 1 1 1 1 1 1 1 0 1
9452(57) 1 1 1 1 1 1 1 0 1 1
9402(58) 1 1 1 1 1 1 0 1 1 1
9338(61) 1 1 1 1 1 0 1 1 1 1
9594(64) 1 1 1 1 0 1 1 1 1 1
9704(65) 1 1 1 0 1 1 1 1 1 1
10034(66) 1 1 0 1 1 1 1 1 1 1
10234(67) 1 0 1 1 1 1 1 1 1 1
10929(68) 0 1 1 1 1 1 1 1 1 1

Table 3: withdrawal strategy order

The reasoning behind this is as follows. For the GMWB, given that
the investment account value diverges as we go further into the life of the
contract, it is more likely that the investment account will reach extreme
values in later stages. Since GMWB is essentially an insurance against the
loss of investment account values over time, the longer we postpone the with-
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drawals, the higher the withdrawal benefit could be. The same reasoning can
be applied to GMDB. Recalling that the guaranteed death benefit account
will be adjusted pro rata after withdrawals are made, withdrawing early will
inevitably decrease the GMDB value in every period afterwards.

So far we seem to have concluded that the withdrawing all the time is
still the optimal strategy. But is it true for all Xw’s? We know from the two
period model that withdrawal rate could negatively influence the total value
of both riders. Therefore we set the withdrawal rate to be values other than
1/T to see if the conclusion about the optimal strategy holds. The following
are the results.

Figure 4: Xw = 1%
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Figure 5: Xw = 15%

number of withdrawals max(std) min(std)
0 173 (2) 173 (2)
1 177 (2) 140 (3)
2 297 (1) 113 (14)
3 1063 (1) 91 (44)
4 3073 (20) 319 (89)
5 6790 (68) 2267 (149)
6 13320 (141) 7909 (223)
7 18365 (200) 13952 (263)
8 18276 (204) 14525 (259)
9 17118 (209) 14852 (241)
10 15336(218) 15336 (218)

Table 4: range of values for different withdrawal strategies with Xw = 15%. Bold font is the global
maximum value
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Figure 6: Xw = 20%

number of withdrawals max(std) min(std)
0 173(2) 173(2)
1 189(2) 131(4)
2 733(1) 98(33)
3 3413(14) 215(98)
4 9738(76) 3126(186)
5 19743(188) 13250(285)
6 19637(189) 13389(284)
7 18656(196) 13846(268)
8 18604(199) 14058(263)
9 17086(205) 14579(241)
10 14917(212) 14917(212)

Table 5: range of values for different withdrawal strategies with Xw = 20%. Bold font is the global
maximum value
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GMWB+GMDB
withdrawal decision at t

1 2 3 4 5 6 7 8 9 10
19743 0 0 0 0 0 1 1 1 1 1

Table 6: the maximum GMWB+GMDB value and its corresponding withdrawal strategy

When Xw is very small, the GMWB would have very little or no effect and
thus GMDB is the only rider that is valuable. In our case where Xw = 1%,
the GMWB has 0 value the whole time: all 10 periods over 10,000 sample
paths. Therefore we choose to never withdrawal in order to get full GMDB
value.

What interests us is when Xw > 10%. In this case, the optimal strategy is
no longer the strategy that withdraws all the time. In fact, when Xw = 15%,
the value reaches its maximum at 7 withdrawals, and then slowly declines
at 8, 9 and 10. The reasoning is as follows. Since 7 × 0.15 = 1.05 > 1,
withdrawing equal or more than 7 times will provide the same result, that is
the guaranteed withdrawal account will certainly be depleted, and therefore
the amount that is withdrawn from these strategies are all capped at A0.
This means that any withdrawals made after the 7th withdrawal will have
no additional value (because they are zero), and only reduces the GMDB
values. This also means that withdrawing from time 3 to time 9 for a total
of 7 withdrawals generates approximately the same GMWB values as with-
drawing from time 3 to time 10 for a total of 8 withdrawals, even though the
latter has one more withdrawal attempt in the last period. More importantly,
as we have discussed, with a fixed number of withdrawal opportunities, the
policyholder is tempted to postpone the withdraws as much as possible, in
order to get as much protection as possible against the underside risk of the
investment account. The optimal strategy is thus starting withdrawing at
time 4 until maturity, with a total withdrawal of 7 times.

We can see that when Xw = 20% (Figure 6 and Table 5) the optimal
strategy is now to withdraw 5 times. The order of withdrawal is shown in
Table 6. This confirms our previous analysis.

4 Conclusion

In this paper, we explored the interactive relationship of the value between
GMWB and GMDB in a semi-static model and decided whether it is always
optimal to withdraw all the time under different withdrawal rates.
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Our conclusion is, when the withdrawal rate is 1/T , it is optimal to
withdraw all the time and the value of GMWB is much greater than that
of GMDB in the optimal strategy. However, when the withdrawal rate is
much lower or higher than 1/T , withdrawing all the time is no longer the
best strategy. Specifically, when withdrawal rate is very low, the value of
GMDB is greater than that of GMWB and therefore not withdrawing at all
is the best strategy. If withdrawal rate is higher than 1/T , then the smallest
integer n that gives nXw ≥ 1 is the number of withdrawals to be made in
the optimal strategy. In addition, the withdrawals starts at T − n.

From what we have discovered in this paper, we speculate that with
different configurations of other factors, such as mortality rate and risk-free
interest rate, we might also come up with optimal strategies that are not mak-
ing constant withdrawals. This is worth studying from the risk management
perspective, since our usual assumptions about the different parameters of
the contract and policyholder behaviors are not exactly realistic all the time.
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