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Efficient Simulation Designs for Valuation of Large Variable
Annuity Portfolios

Ben Mingbin Feng , Zhenni Tan, and Jiayi Zheng
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada

The valuation of large variable annuity portfolios is an important enterprise risk management task but is computationally
challenging due to the need for simulation. Existing methods in the literature only use simple experimental designs with significant
room for improvement. This article identifies three major components in an efficient valuation framework. In addition, we
propose optimal experimental designs and provides analytical insights for each component. Our numerical results show that our pro-
posal achieves significantly higher accuracy than state-of-the-art alternatives without requiring any additional computational resource.

1. INTRODUCTION
Variable annuities (VAs) are equity-linked annuity products that offer policyholders the opportunity to invest in predefined

sub-accounts, set up by insurance companies, that are invested in equities and/or bonds. Typically the policyholder makes one
lump-sum payment or a series of payments to the insurance company in exchange for benefit payments immediately or at
some future date. On one hand, VAs enable policyholders to gain investment returns through various types of rides. On the
other hand, VAs are exposed to both market risk and mortality risk, creating challenging risk management problems to insur-
ers, which can only be solved through time-consuming computer simulation experiments. The goal of this article is to propose,
analyze, and test an efficient simulation procedure to valuate large VA portfolios.

Over the last decade, VAs have become one of the most innovative and popular insurance products for retirees, with over
$2 billion annual sales in the United States from 2010 to 2017. One reason for such popularity is the flexibility that VAs offer
through different well-designed embedded guarantees to satisfy the needs of different policyholders. There are two main cate-
gories of embedded guarantees: guaranteed minimum death benefit (GMDB) and guaranteed minimum living benefit
(GMLB). A GMDB provides a guaranteed minimum amount to beneficiaries upon the death of the policyholder. A GMLB
often provides some form of guaranteed benefits to the beneficiaries upon survival of the policyholder at a certain time. See
Hardy (2003) for details of different VA guarantees.

VA guarantees range from the apparently straightforward embedded put options of standard guaranteed minimum maturity
benefits (GMMBs), through to complex combinations of path-dependent, exotic lookback, and tandem options, for example, in
the guaranteed minimum income benefit (GMIB) studied by Marshall, Hardy, and Saunders (2010). Because of the complexity
of the embedded guarantees, Monte Carlo simulation is often the only feasible method to estimate the fair market value of a
VA contract. Depending on the specific simulation models used, such estimation could be computationally intensive. Such
computational challenge is further aggravated due to the large size of VA portfolios in practice.

Efficient valuation of large VA portfolios has attracted significant research interest recently (see, for example, Gan 2013,
2015a; Gan and Lin 2015; Liu and Tan 2017; Xu et al. 2018). In this article, we consider a three-component valuation
framework as shown in Figure 1. The proposed procedure requires commensurate computation similar to those proposed in
Gan (2013) and Gan and Lin (2015) but has significantly higher accuracy. Figure 1 is a new representation of the valuation
framework, which we believe is more illustrative and straightforward than the original representation in Gan and Huang
(2017). We acknowledge that estimating sensitivities—that is, Greeks—is also an important task in practice. The proposed
simulation procedure can be easily adapted to such a case by replacing the valuation simulator by a Greek simulator.
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The main contributions of this article include the following:

� Innovative and efficient experimental designs in all three components of the valuation framework in Figure 1.
Specifically, we consider a new compressor that has provable optimality, a two-stage simulator that aims to optimally
allocate a given computation budget, and a simplistic predictor that serves as a worst-case benchmark for future develop-
ment of new predictors within the framework.

� General design principles and analytical insights for efficient simulation procedures in the three-component valuation
framework. For example, one should consider the synergy among the three components rather than designing each one
of them in isolation.

� A comprehensive numerical study to illustrate the advantages of the three components in our proposed simulation proce-
dures compared to other well-known alternatives. In particular, we demonstrate that the performance of each component
as well as the overall simulation procedure is significantly more accurate, less computationally demanding, or both com-
pared to well-known alternative procedures in the literature.

The remainder of this article is structured as follows. Relevant literatures on variable annuities, clustering algorithms, and simu-
lation designs is reviewed in Section 2. The designs and analyses for the compressor, simulator, and predictor are provided in
Sections 3, 4, and 5, respectively. Section 6 presents results of three numerical experiments to demonstrate the efficiency of our
proposed method. Section 7 concludes with main findings in the current research and inspirations for future research.

2. LITERATURE REVIEW
Broadly speaking, the selection of representative VAs contracts from a given large VA portfolio can be categorized into

three approaches: The first approach, as studied by Liu and Tan (2017) and Hejazi, Jackson, and Gan (2017), draws ideas from
low-discrepancy sequence in quasi Monte Carlo (Niederreiter 1992) and Latin hypercube sampling (McKay, Beckman, and
Conover 1979) to select representative contracts. Such selection of representative contracts has little reliance, if at all, on the
characteristics of the given portfolio; this is referred to as the “portability property” by Liu and Tan (2017). The second
approach matches some statistical properties—for example, moments—between the representative portfolio and the original
portfolio (e. g., Vadiveloo 2012; Gan and Valdez 2018). The last approach uses clustering algorithms to select representative
VA contracts. Gan (2013) proposed using the k-prototypes algorithm (Huang 1998) because it is suitable to cluster mixed-type
data; Gan and Huang (2017) proposed a TFCMþþ algorithm based on the well-known truncated fuzzy c-means (TFCM) algo-
rithm (Dunn 1973; Bezdek 2013; Gan, Lan, and Sima 2016) and is initialized by k-meansþþ (Arthur and Vassilvitskii 2007).
Our proposal falls into this last category and borrows ideas from clustering using representatives (Guha, Rastogi, and Shim
1998), which is a clustering algorithm designed specifically for large data sets.

Optimal simulation budget allocation (Chen et al. 2000, 2008; Lee et al. 2004) is an effective technique for improving the
efficiency of simulation experiments. See Glasserman (2004) and Broadie, Du, and Moallemi (2011) for optimal allocations in
financial and actuarial applications. In the same spirit, we show in Section 4 that, for accurate valuation of a VA portfolio, it is
optimal to allocate more simulations to contracts with greater complexity.

3. COMPRESSOR: HARNESS THE POWER OF RANDOMNESS
Gan (2013) and Gan and Lin (2015) argued that k-prototypes (Huang 1998) is a suitable clustering algorithm for selecting

representative contracts in a large VA portfolio; we agree with their arguments and use k-prototypes as a key component in the
compressor. They also suggested two ad hoc heuristics to the k-means algorithm to address some practical considerations. In

FIGURE 1. Three-Component Valuation Framework for Large VA Portfolios.
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this section we identify shortcomings in their heuristics and propose an alternative practical remedy with similar computations
and far better performance.

3.1. k-Prototypes and the Subset Clustering Heuristics
The following summary of the k-prototypes algorithm is based on Gan (2013) and Gan and Lin (2015). Let X ¼

fx1, x2, :::, xNg be a portfolio of N VA contracts, where xi encodes a vector of attributes (e.g., account value, gender, time to
maturity, etc.) of the ith VA contract. Suppose that all VA contracts can be represented by d attributes: the first d1 attributes
are numeric and the other d2 ¼ d�d1 are categorical. The dissimilarity or the distance between two contracts xi and xj is
defined as (Huang 1998)

Dðxi, xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd1
h¼1

ðxih�xjhÞ2 þ k
Xd

h¼d1þ1

1fxih ¼ xjhg
vuut , (1)

where xih (xjh) denotes the hth component of xi (xj, respectively) and 1f�g is the indicator function. The weight k is used to
balance the two types of attribute; this is not the focus of this article.

Remark 1. In our numerical experiments, every numerical attribute is standardized by subtracting its minimum and dividing
by its range. The standardized numerical attributes are between 0 and 1 and thus have the same range as the categorical attri-
bute, so we set k ¼ 1.

The goal of our compressor is to partition X into K homogeneous clusters C1, :::,CK such that contracts within the same
cluster are similar to each other and those in different clusters are distinct. Mathematically, the following within-cluster sum of
squared (WCSS) is minimized:

WCSSðX ;C1, :::,CKÞ ¼
XK
j¼1

X
x2Cj

D2ðx, �xjÞ, (2)

where Dð�, �Þ is as defined in (1) and �xj is the center or prototype of cluster Cj: The WCSS is a measure of the
“representativeness” of the selected VA contracts �X ¼ f�x1, :::, �xKg to the entire portfolio X ; the smaller it is, the more
representative �X is. After a random initialization of K cluster prototypes, the k-prototypes algorithm repeats the following two
steps until convergence:

1. Update memberships: Assign each VA contract to the closest prototype.
2. Update prototypes: For each cluster, update each numerical (categorical) attribute of the cluster prototype as the mean

(mode, respectively) of that attribute among all members in that cluster.

Gan (2013) and Gan and Lin (2015) proposed a clustering algorithm to select representative contracts, which we will referred
to as the subset clustering (SC) heuristic hereinafter. In essence, the SC heuristic adds the following two ad hoc modifications
to the standard k-prototypes algorithm:

� Divide and conquer: In practice, the size of the VA portfolio is often so large that direct application of k-prototypes
takes unacceptably long. So Gan (2013) and Gan and Lin (2015) proposed a heuristic that first divides the given portfolio
of N contracts into s subsets and then applies k-prototypes in each subset; the number of contracts and prototypes in each
subset is N/s and K/s respectively. The K/s prototypes across s subset are then collected for further processing.
Figure 2 illustrates the deficiency of such divide and conquer strategy using a two-dimensional example, where eight
clusters are desired from 400 uniform random points in the unit square ½�1, 1�2: Euclidean distance is used for illustration
so the k-prototypes algorithm coincides with the k-means algorithm. The problem is divided into two subsets, each hav-
ing 200 points and four clusters. The four distinct clusters in each subsets are labeled by different shapes and colors. As
shown in Figure 2, the four cluster centers in the first subset are fairly close to the cluster centers in the second subset.
Using similar logic, the representative VA contracts identified in each subset can be fairly similar. This is dissatisfying,
both intuitively and mathematically.
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� Nearest neighbor mapping: Though the prototypes identified by the k-prototypes algorithm encodes different VA con-
tracts, they are often not contracts in the given portfolio. So Gan (2013) and Gan and Lin (2015) proposed a cleanup
heuristic that maps each final prototype to the nearest neighbor, among all original VA contracts. The distinct nearest
neighbors are then used as the representative contracts.
This cleanup step has some undesirable consequences too. For instance, because the prototypes identified in different
subsets may be very similar, some cluster centers are mapped to the same nearest neighbor contract in the original port-
folio. This means that some prototypes are redundant and thus to be removed. This redundancy reduces the number of
representative contracts and wastes some computations. Last but not least, to the best of our knowledge, there is no sys-
tematic way to determine the number of subsets. Section 3, Page 797 in Gan (2013) suggested that “cluster each subset
into 3 or 4 clusters” without justifications.
This cleanup step is also costly and ineffective. It requires N � K pairwise distance calculations, which is a considerable
number of computations. Secondly, in our preliminary studies, such clean-up step in fact worsens the WCSS in the com-
pressor and does not offer any improvement in the valuation of the VA portfolio.

In summary, these two modifications are not the best use of computations and in some cases they can be wasteful.

3.2. The Simple Random Sampling and Clustering Method
To address the practical considerations in compressing large VA portfolios and to avoid the shortcomings of the SC heuris-

tic, we propose a new compressor design, called the simple random sampling and clustering (SRSC) method, that selects repre-
sentative contracts in a given large VA portfolio in two steps:

1. Draw a random sample of size n� from the given VA contracts.
2. Apply a chosen clustering algorithm to the selected random sample.

Remark 2. In our numerical experiments, the k-prototypes algorithm is used in the SRSC method mainly for illustration pur-
poses. Other clustering algorithms, such as TFCMþþ (Gan and Huang, 2017), can also be used. The key idea in the SRSC
method is to apply the clustering algorithm to a random sample drawn from the data set rather than to dataset itself, e.g., the
entire portfolio.

If the sample size is small relative to the original portfolio, then the execution time is significantly reduced. The cost of
such reduction is the risk of missing some clusters of the original portfolio in the random sample. Consider cluster Cj in the
original portfolio and let n� be the sample size in the first step of the SRSC method. In contrast to the SC method, where the
number of subsets s is chosen by experience or by some ad hoc heuristic, the random sample size n� in the SRSC can be
chosen with theoretical justification. Theorem 1 provides a theoretical requirement for the sample size n� in the SRSC method.
The sample size n� should be sufficiently large such that, for some 0 � f � 1, the probability of drawing less than f jCjj con-
tracts from Cj in the random sample is small. As argued in Guha, Rastogi, and Shim (1998), it is reasonable to assume that the

FIGURE 2. A 2D Illustration of the Deficiency of the SC Heuristic: (a) SC Heuristic in the First Subset and (b) SC Heuristic in the Second Subset. Note:
Suppose that eight clusters are desired from 400 uniform random points in ½�1, 1�2: The problem is divided into two subsets, each having 200 points and four
clusters (with different shapes and colors).
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probability of missing cluster Cj is low if the random sample contains at least f jCjj contracts from Cj, for some 0 � f � 1: Let
Xj be the number of contracts belonging to Cj in the random sample of SRSC method; then with sample size n� one can show
(see, for example, Guha, Rastogi, and Shim 1998) that lj ¼ E½Xj� ¼ n�

N jCjj:
Theorem 1. (Paraphrase of Theorem 1 in Guha, Rastogi, and Shim 1998). For a cluster Cj and a given probability threshold
d, if the sample size n� satisfies

n� 	 n�j :¼ fN þ N
jCjj ln

1
d

� �
þ N
jCjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1
d

� �� �2

þ 2f jCjj ln 1
d

� �s
, (3)

then the probability of drawing a small number of contracts from cluster Cj is small. Specifically,

PrðXj<f jCjjÞ<d: (4)

Proof. See Guha, Rastogi, and Shim (1998). w

Equation (3) is intuitive in that we need to sample more than a fraction f of the total portfolio for the sample to contain at
least f jCjj contracts belonging to cluster Cj with high probability. Denoting the smallest cluster in the portfolio by Cjmin , one
can show that n�jmin

¼ maxjfn�j g where n�j are as defined in (3). This means that, with a sample size of at least n�jmin
, the sample

contains at least f jCjj contracts from any cluster Cj with high probability 1�d:
Corollary 1 provides a similar sample size requirement under a more practical situation where we are only interested in

clusters larger than a certain size and require a fixed number of contracts from the smallest cluster.

Corollary 1. Consider a cluster Cj whose size is bounded below by jCjj 	 N
Kq for some q>1. For a given probability threshold

d, if the sample size n� satisfies

n� 	 n�j :¼ nKqþ Kq ln
1
d

� �
þ Kq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1
d

� �� �2

þ 2n ln
1
d

� �s
, (5)

then the probability of drawing less than n contracts from cluster Cj is small. Specifically,

PrðXj<nÞ<d: (6)

Proof. See Guha, Rastogi, and Shim (1998). w

The significance of Equation (5) is its independence of the original portfolio size N. This means that, if we believe (a) that
there are 100 clusters in the portfolio (i.e., K¼ 100), (b) we are interested only in clusters whose size is greater than half of the
average cluster size (i.e., q¼ 2), and (c) with 99% probability (i.e., d ¼ 0:01) at least 10 contracts from the smallest cluster
(i.e., n¼ 10) are sampled, then a sample size of about 5,000 suffices, regardless of the number of contracts in the portfolio.
Last but not least, because the prototypes identified by the SRSC method are not likely to be similar, it does not require the
nearest neighbor mapping cleanup step.

3.3. A Computational Comparison between the SC Heuristic and SRSC Method
The common goal for both the SC heuristic and the SRSC method is to identify K clusters in a portfolio of N contracts via

clustering algorithms. The SC method applies the k-prototypes algorithm s times, once in each subset to group N/s contracts
into K/s clusters. We paraphrase the SRSC method for ease of comparison. The random sampling step in the SRSC method
can be viewed as first randomly dividing the portfolio into s subsets and then randomly selecting one of the subsets, such that
n� ¼ N=s: Then the SRSC method applies that k-prototypes algorithm only once to group N/s contracts into K clusters. We
consider the per iteration computations required in these two cases.

Roughly speaking, the per iteration computations in a k-prototypes algorithm are a product of the number of pairwise dis-
tance calculations between contracts and cluster prototypes. Figure 3 depicts the pairwise distance calculations in the
two methods.
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� For the SC heuristic, the k-prototypes algorithm is applied s times, as shown by the five diagonal blocks in Figure 3(a).
In each iteration, the number of pairwise distance calculations equals N=s� K=s: So the total number of distance calcula-
tions per iteration, summing over all s subsets, is NK/s.

� For the SRSC method, the k-prototypes algorithm is applied once, as shown in the first column in Figure 3(b). In each
iteration, the number of pairwise distance calculations equals N=s� K ¼ NK=s:

Therefore, the two compressors require the roughly the same number of pairwise distance calculations per iteration (summing
over s subsets for the SC heuristic).

In the above discussions, the number of iterations in the k-prototypes algorithms is omitted. Our numerical experiments in
Section 6 show that our SRSC method has both shorter runtime and smaller WCSS compared to the SC heuristic under the
same settings.

4. SIMULATOR: WITH GREAT COMPUTING POWER COMES GREAT CONTRACT COMPLEXITY
In this section we propose a simulator that optimally allocates a given computation budget among the representative VA

contracts output by the compressor. For illustration we consider a simulation model that estimates the fair market value for
each VA contract and for the entire portfolio; the main ideas behind this optimal allocation can also be applied to estimation of
other quantities of interest such as Greeks.

We consider a fixed budget scenario where the available computing power is predetermined. In practice, this constraint
may be expressed as a time limit or a fixed monetary amount that the user is willing to spend. Equal allocation of this simula-
tion budget among all contracts is common in the literature (Gan 2013, 2015b; Gan and Lin 2015; Gan and Huang 2017;
Hejazi, Jackson, and Gan 2017). However, this is often a suboptimal usage of the simulation budget; the variance of the result-
ing portfolio value could be high. Our proposal optimally utilizes the available simulation budget so that the variance of the
estimated portfolio value is minimized.

Let �X ¼ f�x1, :::, �xKg be the set of representative VA contracts output by the compressor, as discussed in Section 3. Given a
simulation model that generates independent and identically distributed (i.i.d.) replications of the fair market value (or other
quantities of interest) of any VA contract, suppose that the value of the jth representative contract is estimated by the sample

average of Rj i.i.d. replications; that is, bY j ¼ 1
Rj

PRj

i¼1 V
ðiÞ
j : Then the value of the representative portfolio is given by bYp ¼PK

j¼1
bY j: In addition, denote the variance for each i.i.d. replication of the jth contract by rj :¼ Var½Yj�: Then the variance of

the portfolio fair market value is given by

r2p :¼ Var½bYp� ¼ Var
XK
j¼1

1
Rj

XRj

i¼1

VðiÞ
j

0@ 1A24 35 ¼
XK
j¼1

r2j
Rj

: (7)

Suppose that the given simulation budget allows a total of R i.i.d. replications across all contracts. The simulation
budget allocation scheme fR1, :::,RKg to minimizes the portfolio variance rp solves the following optimization problem:

FIGURE 3. Per Iteration Pairwise Distance Calculations Required for the SC and SRSC Methods: (a) Computations of the SC Method and (b) Computations
of the SRSC Method.
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min
R1, :::,RK

�XK
i¼1

r2i
Ri

����XK
i¼1

Ri ¼ R

�
: (8)

Problem (8) is common in the design and analysis of computer experiments (Glasserman 2004). Proposition 1 presents the
optimal budget allocation scheme in our setting.

Proposition 1. If R > 0 and rj>0 for some contract j, then the optimal simulation budget allocation fR1, :::,RKg is given by

R�
j ¼

rjPK
i¼1ri

R: (9)

The minimized portfolio variance is

r2opt ¼
1
R

�XK
j¼1

rj

�2

: (10)

Proof. The Lagrangian function for (8) is LðR1, :::,RK , kÞ ¼
PK

j¼1
r2j
Rj
þ kðPK

j¼1 Rj�RÞ: The first-order optimality condition
@L
@Rj

¼ � r2j
R2
j
þ k ¼ 0 indicates that R�

j ¼ rj=
ffiffiffi
k

p
is proportional to rj. In addition, the first-order optimality condition @L=@k ¼PK

j¼1 Rj�R ¼ 0 indicates that
PK

j¼1 rj=
ffiffiffi
k

p ¼ R and so
ffiffiffi
k

p ¼ PK
j¼1 rj=R: Therefore, the optimal simulation budget allocation

is given by (9). Substituting (9) into (7) gives the minimized portfolio variance in (10). w

The optimal budget allocation (9) indicates that more computing power should be allocated to more complicated contracts.
This is intuitive because the contracts with large variances have more adverse impacts on the accuracy of the portfolio value
estimator. Therefore, shifting some computations from contracts with low variances to those with high variances can reduce
the overall portfolio variance. We provide a more quantitative analysis of the optimal allocation scheme and the minimized
portfolio variance below.

Consider a random variable rI that takes the value rj with probability 1=K for all j ¼ 1, :::,K: This is the standard deviation

of a randomly selected contract in the representative portfolio. Its first and second moments are E½rI � ¼
PK

j¼1 rj=K and

E½r2I � ¼
PK

j¼1 r
2
j =K: To appreciate the minimized variance (10), we compare it to the portfolio variance resulting from the

equal allocation of simulation budget; that is, each contract value is estimated with R/K i.i.d. replications. The portfolio

variance under such equal allocation is r2eq ¼
PK

i¼1
r2i
R=K , which is larger than the minimized variance by

r2eq�r2opt ¼
K2

R

PK
i¼1r

2
i

K
�
PK

i¼1ri
K

PK
i¼1ri
K

� 	
¼ K2

R

�
E r2I

 �

� ðE rI½ �Þ2
	
¼ K2

R
Var rI½ �:

Because the representative contracts are the centers of distinct clusters in the compressor, they are likely to be significantly dif-
ferent from each other, resulting in vastly different variances. Consequently, the variance of rI, Var½rI �, is likely to be large.
As shown in our numerical experiments, the variance reduction achieved by optimally allocating the given simulation budget
is significant.

In practice, the per sample standard deviations rj are unknown, so (9) could not be implemented. In such cases, we suggest
a two-stage approach to allocate the given simulation budget:

� Stage I: Run a pilot simulation using a fraction (e.g., 10%) of the simulation budget to estimate the standard deviationsbrj: The pilot simulation budget is equally allocated among the contracts, say R0 replications for each contract.
� Stage II: Let bR�

j be the optimal allocation (9) with rj replaced by the estimated brj: Run additional simulations; that is,
maxf0, bR�

j�R0g replications for the jth contract.

The additional simulations in Stage II aims to allocate the remaining simulation budget in a way that the overall allocation to

the jth contract is maxfR0, bR�
j g; the pilot budget should be small, so it is rare for R0 to be the maximum. The specific simula-

tion model for VA contracts in our numerical experiment is identical to that in Gan (2013) and thus restatement is omitted.
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As a final remark, our proposed optimal simulation budget allocation scheme (8) minimizes the variance of the representa-
tive portfolio value so it could be suboptimal for estimating the original portfolio value. Nevertheless, our numerical experi-
ments show that our simulator achieves far higher accuracy than those with equal allocations. We envision to developing
further improvements to the simulator in the future.

5. PREDICTOR: ALL METAMODELS ARE WRONG, SOME ARE USEFUL
With the outputs of the compressor and the simulator—that is, the representative VA contracts �x1, :::, �xK and their estimated

values bY 1, :::, bYK—the goal of the predictor is to use the resulting dataset D :¼ fð�x1, bY 1Þ, :::, ð�xK , bYKÞg to predict the values of
the original VA contracts and/or that of the original portfolio. Specifically, the predictor has two main tasks:

1. Calibration of a predictive model. Use the dataset D to calibrate the model

YðxÞ ¼ f ðx; bÞ, (11)

where the weight vector b denotes the model parameters to be calibrated. Denote the calibrated parameters and predictive
model by ~b and ~Y ðxÞ, respectively.

2. Prediction using the calibrated model: Use the calibrated predictive model to predict market values ~Y ðx1Þ, :::, ~Y ðxNÞ for
the original contracts and/or the original portfolio value ~Y ðXÞ ¼ PN

i¼1
~Y ðxiÞ:

These two steps are known as metamodeling (see Barton and Meckesheimer [2006] for a review) in the design and analysis of
computer experiments; metamodels are models of the simulation model of interest.

In this section we propose, but do not advocate, a simple benchmark metamodel, called the cluster size multiple (CSM)
metamodel, which requires minimal computational requirements but has reasonable accuracy. The CSM metamodel is too sim-
plistic for practical applications but can serve as a worst-case benchmark for the development of new predictors within the
three-component valuation framework.

The main idea of the CSM metamodel is straightforward: Because the K representative contracts are the cluster prototypes,
one should use the simulated value of each prototype to represent the values of all contracts in the associated cluster.
Mathematically, the CSM prediction for any contract x is given by

~Y
CSMðxÞ ¼ bY j� , where j� ¼ arg min

j
fdðx, xjÞ : j ¼ 1, :::,Kg: (12)

Therefore, the CSM prediction contract value for any given contract x is the simulated value for the representative contract xj�
that is closest to x. Prediction for all original contracts and thus for the original portfolio requires about N � K pairwise dis-
tance calculations. This computational cost is considerably smaller than almost any other metamodeling approach1, which
often requires matrix inversions (e.g., regression, kriging), solving a linear system of equations (e.g., radial basis functions), or
iterative calibration algorithms (e.g., neural networks, random forest).

Despite simplicity, the CSMmetamodel (12) is fairly intuitive and takes advantage of a well-designed compressor. Specifically,
with a well-designed compressor, all contracts within the same clusters have similar attributes and so are likely to have similar val-
ues. Such constant prediction within a cluster is admittedly simplistic and could result in large estimation error for individual con-
tracts. Nevertheless, because every representative contract is a cluster prototype that lies in the “center” of the cluster, the
estimation errors within a cluster are likely to have cancellation effect, resulting in a reasonable estimation for the portfolio value.

For illustration we compare the CSM model to kriging (Oliver and Webster 1990; Kleijnen 2009), which is a state-of-the-
art metamodel in the relevant literature (Gan 2013; Gan and Lin 2015). Kriging models the simulated value of any given VA
contract x as

YðxÞ ¼ fðxÞbþ MðxÞ, (13)

where fðxÞ is a vector of known functions of x, b is a parameter vector of compatible dimension, and MðxÞ is a realization of a
zero mean random field (Staum 2009). Specifically, M is regarded as a random sample from a space of functions that exhibit

1The inverse distance weighting (Hejazi, Jackson, and Gan 2017) method has similar computational costs. However, we found that its prediction
accuracy is very low, which is consistent with findings in Hejazi, Jackson, and Gan (2017). Therefore, we do not consider this method any further.
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spatial correlation. Such spatial correlation is often model by a covariance function xðx, x0; hÞ for any two VA contracts x, x0;
x is known up to the parameter h: The functional form of x is selected by the user and in general both b and h are to be cali-
brated. In general, the kriging prediction for VA contract x is

~Y ðxÞ ¼ fðxÞ~b þ xðxÞR�1ðbY�FbÞ, (14)

where xðxÞ is a row vector whose ith element is xðx, �xiÞ,Rij ¼ xð�xi, �xjÞ, bY ¼ ½bY 1, :::, bYK �>, and F is a matrix whose ith row is
Fi� ¼ fðxiÞ: Gan (2013) and Gan and Lin (2015) used a particular spherical covariance function that has straightforward cali-
bration, which is a special case of the general kriging methodology.

6. NUMERICAL EXPERIMENTS
In this section, we present some test results to demonstrate the efficiency of the proposed three-component valuation frame-

work. We will illustrate the efficiency of the compressor, simulator, and predictor in isolation as well as in combination. The
accuracy and speed of our proposals are compared to those in other state-of-the-art methodologies. All numerical experiments
presented in this section were run using Intel Xeon CPU E5-2650 v2 @ 2.60GHz.

6.1. Synthetic VA Portfolio
We generate synthetic VA portfolios whose attributes are summarized in Table 1. This specification is identical to those in

Gan (2013) and Gan and Lin (2015); this was the state-of-the-art literature at the time of our research. Depending on the
specific purposes of illustration, portfolios of different sizes are generated in different experiments.

6.2. Experiment 1: Efficient Compressor
In this section we show that our SRSC compressor is a reliable method to select representative contracts in a given VA port-

folio. In particular, the SRSC compressor takes a similar amount of CPU time as the SC heuristic but achieves accuracy similar
to that of the k-prototypes algorithm being applied to the entire VA portfolio.

In this experiment we generate N¼ 10, 000 synthetic VA contracts according to Table 1 and aim to identify K¼ 50 repre-
sentative contracts. Both N and K are set smaller than their practical values so that the k-prototypes algorithm can be applied to
the entire portfolio with reasonable computations. We will examine examples with larger VA portfolios later.

For the each synthetic VA portfolio, three compressors are examined:

� Apply the k-prototypes algorithm directly to the entire portfolio. Though this compressor is infeasible for large VA port-
folios in practice, it merely serves as a benchmark in this small illustrative example.

� Apply our SRSC method with sample size n� ¼ 1,000: The sample size is chosen for ease of comparison: It coincides
with the size of each subset in the SC heuristic. The computations for the SC and SRSC compressors should be similar
in this case, as discussed in Section 3.3. Duplicates are removed, so only distinct representative VA contracts
are selected.

� Apply the SC heuristic with s¼ 10 subsets. In this case, five prototypes are identified in each subset of size 1,000. The
number of prototypes in each subset is similar to the value suggested by Gan (2013). The prototypes in all 10 subsets

TABLE 1
VA Contract Specification

Attributes Values Distribution

Guarantee type {GMDB only, GMDBþGMWB} 50%, 50%
Gender {Male, Female} 50%, 50%
Age f20, 21, :::, 60g Discrete uniform
Premium ½10, 000, 50, 000� Continuous uniform
GMWB withdrawal rate f4%, 5%, 6%, 7%, 8%g Discrete uniform
Maturity f10, 11, :::, 25g Discrete uniform
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are then mapped to the nearest neighbor in the original portfolio. Duplicates are removed, so only distinct representative
VA contracts are selected.

To assess the performance of the above compressors, we repeated the above experiment 1,000 times, each of which used a syn-
thetic VA portfolio that was independent of all other experiments.

Figure 4 depicts the density plots of the WCSS of different compressors in the 1,000 independent repeated experiments.
Table 2 provides a more quantitative summary of the same experiments. We see from the leftmost density plot in Figure 4 that
the k-prototypes compressor achieves the smallest WCSS; this is the ideal case benchmark. The density plot of WCSS of the
SRSC compressor is close to that of the k-prototypes compressor; the density plot of WCSS of the SC compressor is far from
the other two. More over, we see from the density plot that the value and the variability of WCSS for the SC compressor are
both larger than those of the SRSC compressor. The first row of Table 2 shows that the SRSC and SC compressors have simi-
lar runtime, which is consistent with discussions in Section 3.3. The runtime of the SRSC and SC compressors is approxi-
mately one tenth of the k-prototypes compressor, as expected, because the original portfolio is divided into 10 subsets. We see
from the second row of Table 2 that, compared to the WSCC of the k-prototype compressor, the SRSC compressor increases
the WCSS only by less than 10%. In contrast, compared to the WSCC of the k-prototype compressor, the SC compressor’s
WCSS is more than twice as much. The last row in Table 2 illustrates the redundancy of the SC compressor as discussed at the
end of Section 3.1. Though the SC compressor wants to identify 50 clusters, it only identifies 35 distinct prototypes on aver-
age. This redundancy reduces the number of distinct representative contracts and increases the WCSS.

6.3. Experiment 2: Efficient Simulator
In this section we demonstrate the ease and effectiveness of implementing the optimal allocation scheme (8). In particular,

we continue with the small illustrative example: We aim to optimally allocate a fixed budget among 50 representative contracts
such that the variance of the estimated representative portfolio value is minimized.

In this experiment, we assume that the total simulation budget is 50,000 replications. This means that each VA contract is
simulated 1,000 replications in an equal allocation scheme. To optimally allocate the simulation budget, we first equally

FIGURE 4. Density Plots of 1,000 Within-Cluster Sum of Squares of Different Compressors. Note: The goal is to identify 50 clusters in a VA portfolio of
10,000 contracts.

TABLE 2
Summary Statistics of Three Compressors in 1,000 Repeated Experiments

k-Prototypes SRSC SC

Average runtime (in seconds) 7.39 0.79 0.81
Average WCSS 676 740 1,546
Average distinct representative contracts 50 50 35
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allocate 10% of the simulation budget—that is, R0 ¼ 100 replications per contract—to estimate the per sample standard devia-
tions brj: Then the remaining 90% of the budget is allocated to the contracts. Specifically, the jth contract will run an additional

maxf0, bR�
j�R0g, replications, where bR�

j is the optimal allocation scheme (8) with rj replaced by the estimated brj:

Figure 5 depicts the relationship between the two-stage allocation scheme bR�
j and an accurately estimated per sample stand-

ard deviation rj. The number of replications bR�
j on the y-axis is calculated based on estimated brj using 10% of the simulation

budget. The per sample standard deviation rj on the x-axis is estimated using the entire simulation budget. Each point in the
figure represents one VA contract; different budget allocations schemes are labeled by different shapes and colors. The dots
form a horizontal line if the budget is equally allocated among all contracts. According the Proposition 1, if the true standard
deviations rj were available, then R�

j would be proportional to rj. With some variability, the triangles form a straight line in
Figure 5. This shows that the desired proportionality is approximately achieved using only 10% of the simulation budget to
estimate brj: In our experiments, the two-stage allocation scheme achieved a 65% variance reduction compared to equal alloca-
tion with the same simulation.

6.4. Experiment 3: Putting It All Together
In this experiment we consider a more realistic example with a larger VA portfolio and more clusters. Specifically, we con-

sider J¼ 100 independent synthetic VA portfolios, each having size N¼ 100,000, and then estimate their fair market values by
different simulation procedures. For each synthetic VA portfolio, we first run a benchmark Monte Carlo simulation with 1,
000 independent replications to estimate the value of each contract; these estimates are then summed to produce the estimated
portfolio value. The results of this benchmark experiment are then used to assess the performances of other simulation proce-
dures in the same three-component valuation framework. In the compressor, we will consider two different numbers of repre-
sentative contracts; for example, K¼ 100 and K¼ 500. In the simulator, the simulation budget is R ¼ 1, 000� K replications.
Therefore, in an equal allocation scheme each contract in the representative portfolio is estimated by averaging 1,000 inde-
pendent sample paths. These settings are similar to those in Gan (2013) for ease of comparisons.

6.4.1. Assessing Accuracies
In the literature, it is customary to consider the percentage difference between the portfolio value estimated by the proposed

procedure and that by a benchmark procedure, which is usually a time-consuming Monte Carlo simulation. For example,
table 5 in Gan (2013) and table 3 in Hejazi, Jackson, and Gan (2017) depict such performance measures. In addition, to the
best of our knowledge, such comparison is done for only one large synthetic VA portfolio (e.g., 200,000 contracts in Gan
[2013] and 100,00 contracts in Hejazi, Jackson, and Gan [2017]).

There are two shortcomings when accuracy is assessed in this manner:

(i) Portfolio value estimate as a sum of the individual contract value estimates, especially in a large portfolio, could have
a so-called netting effect. This means that the estimation error in contract value may be canceled out when aggregated
into a portfolio value estimate. Though the main objective of this article and the aforementioned studies is to accurate

FIGURE 5. Two-Stage Allocation Scheme bR�
j vs. per Sample Standard Deviation rj.
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estimate the value of large VA portfolios, it is an additional merit if the proposed simulation procedure can provide
accurate estimates for the individual contracts too.

(ii) Numerical conclusions based on one large VA portfolio can have limited generality. In addition, the robustness of the
proposed algorithm cannot be assessed unless the same procedure is applied to different independent portfolios.

We assess both the portfolio- and contract-level accuracies of different simulation procedures that are applied to multiple inde-
pendent large VA portfolios. In particular, the portfolio-level accuracy is assessed by the portfolio mean relative error (PMRE):

PMRE ¼ 1
J

XJ
j¼1

jblðjÞ
p � lðjÞp j
lðjÞp

, (15)

where lðjÞp is the j-th synthetic portfolio value estimated by the benchmark Monte Carlo experiment and blðjÞ
p is the correspond-

ing portfolio value estimated by one other simulation procedure of interest. Similarly, the contract-level accuracy is assessed
by the contract mean relative error (CMRE):

CMRE ¼ 1
J

XJ
j¼1

PN
i¼1jblðjÞ

i �lðjÞi j
lðjÞp

" #
, (16)

where lðjÞi is the i-th contract value in the jth synthetic portfolio estimated by the benchmark Monte Carlo experiment and blðjÞ
i

is the corresponding contract value estimated by one other simulation procedure of interest.

6.4.2. Main Results
To examine the performance of our new designs, we compare and contrast three simulation procedures:

� Gan (2013) uses the SC heuristic as the compressor, equal allocation in the simulator, and kriging as its predictor. This
identical to the simulation procedure in Gan (2013); hence the name.

� OptDesign & Kriging uses the SRSC method as the compressor, two-stage allocation in the simulator, and kriging
as its predictor. Comparing OptDesign & Kriging to Gan2013 showcases the advantages of our new compressor
and two-stage simulation budget allocation.

� OptDesign & CSM uses the same compressor and simulator as OptDesign & Kriging but CSM as the predictor.
Comparing OptDesign & CSM to OptDesign & Kriging reveals some interesting future research questions.

Note that the kriging predictor can be implemented in two different ways: The portfolio value can be estimated efficiently by
solving one K�K system of linear equations, without any knowledge of the individual contract value. Estimating individual
contract values requires solving similar K�K systems of linear equations N times and thus is more time consuming. We ran

TABLE 3
Summary of Performance Measures of the Three Simulation Procedures in Experiment 3

Gan2013 OptDesign & Kriging OptDesign & CSM
Compressor SC SRSC SRSC
Simulator Equal allocation TWo-stage allocation Two-stage allocation
Predictor Kriging Kriging CSM

K¼ 100 CMRE (SE) 48% (0.16%) 25% (0.12%) 36% (0.12%)
PMRE (SE) 6.4% (0.29%) 1.7% (0.11%) 2.7% (0.16%)
Runtime (in seconds) 16/0.6/20 16/0.8/20 16/0.8/1.6

K¼ 500 CMRE (SE) 21% (0.08%) 13% (0.04%) 25% (0.03%)
PMRE (SE) 1.8% (0.1%) 1.1% (0.07%) 0.8% (0.06%)
Runtime (in seconds) 83/3/27 41/4/28 41/4/6

Note: Runtime for the benchmark Morte Carlo simulation is about 730 s.
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both implementations to access both the portfolio- and contract-level accuracies. The runtime for the efficient portfolio value
estimation is reported.

Table 3 summarizes the main results of this experiment. The average CMREs and PMREs over J¼ 100 independent syn-
thetic VA portfolios are shown along with their standard errors. The runtimes for the three components in each simulation pro-
cedures are shown separately. We first make some general observations that are not specific to the simulation procedures.
Comparing the accuracy measures between the bottom two panels—for example, K¼ 100 vs. K¼ 500—we see that the accura-
cies improve while runtime increases as the compressor identifies more clusters. This is because the original portfolio can be
better represented by more contracts but more computations are required; this is consistent with the observations in Gan
(2013) and Liu and Tan (2017). Comparing the contract mean relative errors (CMREs) with the corresponding portfolio mean
relative errors (PMREs), we see that in general portfolio value estimations are more accurate than contract value estimations;
this asserts the “netting” effect in portfolio estimation.

Comparing OptDesign & Kriging to Gan2013 we see that our new compressor (SRSC) and simulator (two-stage allo-
cation) significantly improves the accuracy of estimation. Specifically, the CMRE (PMRE) is reduced by 48% (38%, respect-
ively) when K¼ 100 and by 73% (39%) when K¼ 500. Then runtime for OptDesign & Kriging is no longer, and
sometimes much shorter, than that for Gan2013. This means that the error reductions are achieved by better designs, not by
additional computations.

Comparing OptDesign & CSM to OptDesign & Kriging and Gan2013 we see that, despite its simplicity, the CSM

metamodel can be a reasonable predictor in some cases. When K¼ 100, OptDesign & CSM is not as accurate as
OptDesign & Kriging but more accurate than Gan2013. The first comparison shows that interpolation methods can
improve prediction quality, whereas the second comparison shows that a well-designed compressor and simulator is no less
important than a good predictor. When K¼ 500, we see that OptDesign & Kriging has accurate estimations at both the
contract level and the portfolio level. It is surprising to observe that OptDesign & CSM has the worst contract level accuracy
but the best portfolio-level accuracy. This suggest a significant “netting” effect in this method.

As discussed in Section 5, we do not advocate the CSM metamodel in practical applications. Nevertheless, it should serve
as a worst-case benchmark for new metamodel proposals: For a new predictor proposal to be valuable, it should at least be
more accurate than the CSM metamodel. Examination of a suitable or even provably optimal metamodel for valuating large
VA portfolios remains a subject for future research.

7. CONCLUDING REMARKS AND FUTURE RESEARCH
In this article we propose a new method for valuation of large VA portfolios. The three components of the general valuation

framework are analyzed:

1. The SRSC compressor identifies a small set of representative contracts and has a provable performance guarantee as
shown in Proposition 1.

2. The two-stage simulation budget allocation is based on the optimal allocation scheme (8) and is shown to have satisfac-
tory performance.

3. The CSM metamodel may be too simplistic for practical applications but can serve as a worst-case benchmark for the
development of new predictors within the three-component valuation framework.

With similar or fewer computations, our numerical results show that the proposed method has significant higher accuracy than
state-of-the-art alternatives.

We identify two specific venues for further developments of the proposed method. Firstly, we will further explore the syner-
gies among different components when designing efficient experiments. For example, the representative contracts are often
distinct as a result of a clustering-based compressor and such a distinction results in great variance in the optimal allocation
scheme (8). As another example, the CSM metamodel only has intuitive justifications because, after clustering, all VA con-
tracts within the same cluster are expected to be similar. In the future, we hope to take advantage of such synergy when design-
ing an efficient predictor. For example, the simulator may use the membership information from the compressor to enhance
estimation. In addition, one can consider metamodels such as stochastic kriging (Ankenman, Nelson, and Staum 2010), which
uses more information from the simulator than just the sample mean. Secondly, as discussed in Section 4, the optimal alloca-
tion in the simulator minimizes the variance for estimating the representative portfolio value, not the original portfolio value.
In the future we will consider addressing such inconsistency by formulating and solving a new budget allocation problem.
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There are several limitations and weaknesses to the proposed simulation procedure and the valuation framework in practical
applications. Firstly, the three-component valuation framework aims to provide accurate portfolio value estimations but is not
suitable for estimating individual contract values and sometimes is not even feasible for the latter purpose. Secondly, further
searches for a suitable predictor are required. The CSM predictor should only be used a worst-case benchmark; one should
search for other predictors with superior performances.
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