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Abstract

In a number of application areas, it is desirable to obtain sparse solutions. Minimizing the
number of nonzeroes of the solution (its `0-norm) is a difficult nonconvex optimization problem,
and is often approximated by the convex problem of minimizing the `1-norm. In contrast, we
consider exact formulations as mathematical programs with complementarity constraints and
their reformulations as smooth nonlinear programs. We discuss properties of the various formu-
lations and their connections to the original `0-minimization problem in terms of stationarity
conditions, as well as local and global optimality. We prove that any limit point of a sequence of
local minimizers to a relaxation of the formulation satisfies certain desirable properties. Numeri-
cal experiments using randomly generated problems show that standard nonlinear programming
solvers, applied to the smooth but nonconvex equivalent reformulations, are often able to find
sparser solutions than those obtained by the convex `1-approximation.

Keywords: `0-norm minimization, complementarity constraints, nonlinear programming

1 Introduction

Denoted by ‖ • ‖0, the so-called `0-norm of a vector is the number of nonzero components of the
vector. In recent years, there has been an increased interest in solving optimization problems that
minimize or restrict the number of nonzero elements of the solution vector [2, 3, 8, 10, 11, 12, 34, 37].
A simple example of such a problem is that of finding a solution to a system of linear inequalities
with the least `0-norm:

minimize
x∈Rn

‖x ‖0
subject to Ax ≥ b and Cx = d,

(1)

where A ∈ Rm×n, C ∈ Rk×n, b ∈ Rm and d ∈ Rk are given matrices and vectors, respectively. Since
this problem is NP-hard, one popular solution approach replaces the nonconvex discontinuous `0-
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norm in (1) by the convex continuous `1-norm, leading to a linear program:

minimize
x∈Rn

‖x ‖1
subject to Ax ≥ b and Cx = d.

(2)

Theoretical results are known that provide sufficient conditions under which an optimal solution
to (2) is also optimal to (1) [7, 14, 21, 38]. Yet these results are of limited practical value as the
conditions can not easily be verified or guaranteed for specific realizations of (1); thus in general,
optimal solutions to (2) provide suboptimal solutions to (1).

It is our contention that, from a practical perspective, improved solutions to (1) can be obtained
by reformulating the `0-norm in terms of complementarity constraints [29]. This leads to a linear
program with linear complementarity constraints (LPCC) which can be solved with specialized
algorithms that do not depend on the feasibility and/or boundedness of the constraints [23, 24].
In the event that bounds are known on the solutions of the problem, the LPCC can be further
reformulated as a mixed-integer linear program (MILP). However, the solution of this MILP is
usually too time-consuming for large instances.

As an alternative to the MILP approach, the LPCC can be expressed directly as a smooth contin-
uous nonlinear program (NLP). It is the main purpose of this research to examine the quality of
solutions computed by standard NLP solvers applied to these smooth reformulations of the `0-norm.
There are two features of the NLP reformulations that make them difficult to solve. First, the NLPs
are highly nonconvex, and, consequently, the solutions returned by the NLP solvers depend strongly
on the starting point, because the NLP methods are typically only able to find local minimizers
or Karush-Kuhn-Tucker (KKT) points, instead of global minimizers. Secondly, the NLPs are not
well-posed in the sense that they do not satisfy the assumptions that are made usually for the
convergence analysis of standard NLP algorithms, such as the Mangasarian-Fromovitz constraint
qualification. Nevertheless, our numerical results show that these methods often generate high-
quality solutions for the `0-norm problem (1), thus providing a testament of the effectiveness of the
NLP solvers applied to a very challenging class of nonconvex problems.

The remainder of this paper is organized as follows. In Section 1.1 we present two basic com-
plementarity formulations for the `0-norm. One of them leads to an LPCC formulation of the
problem (1) which is reformulated as a smooth NLP using different approaches, including a new
construction based on squared complementarities. The other complementarity formulation results
in a nonlinear program with bilinear, disjunctive constraints. These formulations are generalized
to the nonlinear case in Section 2 where we introduce an NLP model whose objective comprises
a weighted combination of a smooth term and a discontinuous `0-term. This model is sufficiently
broad to encompass many optimization problems that include applications arising from compressive
sensing [8, 12], basis pursuit [3, 11], LASSO regression [34, 37], image deblurring [2], the least mis-
classification (as opposed to the well-known least-residual) support-vector machine problem with
a soft margin; the latter problem was first introduced by Mangasarian [10, 30], and a cardinality
minimization problem [27].

To give some theoretical background for the expected convergence behavior for (local) NLP solvers,
connections between the KKT points of the smooth formulations of the complementarity problems
and the original `0-problem are established in Section 3. Further insights are obtained in Section 4
by considering ε-relaxations of the smooth NLP formulations. In particular, convergence of points
satisfying second order conditions for the relaxations are discussed in Section 4.3 and this conver-
gence is related to solutions to the `1-norm approximation. The practical performance of standard
NLP codes for the solution of `0-minimization problems is assessed in Section 5. We present numer-
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ical results for an extensive set of computational experiments that show that the solutions obtained
by some NLP formulations of the `0-minimization are significantly better than those obtained from
the convex `1-formulation, often close to the globally optimal objective value. Conclusions and an
outlook for future research are given in the final section.

1.1 Equivalent formulations

We start by introducing two basic ways to formulate the `0-norm using complementarity constraints.

Full complementarity. A straightforward way of formulating the `0-norm using complementarity
constraints is to first express x = x+ − x− with x± being the non-negative and non-positive parts
of x, respectively; this is followed by the introduction of a vector ξ ∈ [0, 1]n that is complementary
to |x|, the absolute-value vector of x. This maneuver leads to the following formulation:

minimize
x, x±, ξ

1Tn ( 1n − ξ ) =
n∑
j=1

( 1− ξj )

subject to Ax ≥ b, Cx = d, and x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0, ξ ≤ 1n

and 0 ≤ x+ ⊥ x− ≥ 0

(3)

where 1n is the n-vector of all ones. It is not difficult to deduce that if x is an optimal solution of
(1), then by letting x± , max(0,±x) and

ξj ,

{
0 if xj 6= 0

1 if xj = 0

}
j = 1, · · · , n, (4)

the resulting triple (x±, ξ) is an optimal solution of (3) with objective value equal to ‖x‖0. Con-
versely, if (x±, ξ) is an optimal solution of (3), then x , x+− x− is an optimal solution of (1) with
the same objective value as the optimal objective value of (3). The definition (4) provides a central
connection between (1) and its “pieces” to be made precise in Section 3. Such pieces are smooth
programs in which some of the x-variables are fixed at zero and correspond in some way to the
enumeration of the zero versus nonzero components of x. The scalar 1 − ξi is the indicator of the
support of xi; we call 1n − ξ the support vector of x.

It is easy to see that the complementarity between the variables x± is not needed in (3); this results
in the following equivalent formulation of this problem, and thus of (1):

minimize
x, x±, ξ

1Tn ( 1n − ξ ) =

n∑
j=1

( 1− ξj )

subject to Ax ≥ b, Cx = d, and x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

x± ≥ 0 and ξ ≤ 1n,

(5)

In terms of the global resolution of (3), maintaining the complementarity between x± could po-
tentially allow sharper cutting planes to be derived in a branch-and-cut scheme for solving this
disjunctive program. This led to better numerical results in our experiments reported in Section 5.

We give below several equivalent formulations of the complementarity condition 0 ≤ y ⊥ z ≥ 0 in
(3) and (5) that lead to a smooth continuous NLP formulation:
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• (y, z) ≥ 0 and yT z ≤ 0 (inner product complementarity);

• (y, z) ≥ 0 and y ◦ z ≤ 0, where u ◦ v denotes the Hadamard, i.e., componentwise, product of two
vectors u and v (componentwise or Hadamard complementarity);

• Adding the penalty term MyT z in the objective for some large scalar M > 0 (penalized comple-
mentarity);

• (y, z) ≥ 0 and (yT z)2 ≤ 0 (squared complementarity).

Interestingly, the last formulation, which has never been used in the study of complementarity
constraints, turns out to be quite effective for solving some instances of the `0-norm minimiza-
tion problem. It can be shown that the only KKT point of this formulation, if it exists, is
(x, x+, x−, ξ) = (0, 0, 0,1n). From a theoretical perspective, this result suggests that it is not a
good idea to use an NLP algorithm to solve the `0-problems (1) or (8) transformed by the squared
reformulation. Nevertheless, our numerical experiments reported in Section 5 suggest otherwise.
Indeed, the encouraging computational results are the primary reason for us to introduce this
squared formulation.

We point out that, with the exception of the penalizing complementarity approach, none of these
reformulations of the complementarity problem give rise to a well-posed NLP model in the sense
that the Mangasarian-Fromovitz constraint qualification (MFCQ) fails to hold at any feasible point,
and the existence of KKT points is not guaranteed. Nevertheless, some NLP solvers have been found
to be able to produce good numerical solutions for these reformulations [17].

Half complementarity. There is a simpler formulation, which we call the half complementarity
formulation, that requires only the auxiliary ξ-variable:

minimize
x, ξ

1Tn ( 1n − ξ )

subject to Ax ≥ b; Cx = d

0 ≤ ξ ≤ 1n; and ξ ◦ x = 0,

(6)

The equivalence of (1) and (6) follows from the same definition (4) of ξ. Strictly speaking, the con-
straints in (6) are not of the complementarity type because there is no non-negativity requirement
on the variable x; yet the Hadamard constraint ξ ◦ x = 0 contains the disjunctions: either ξi = 0
or xi = 0 for all i.

Finally, if a scalar M > 0 is known such that M ≥ ‖x∗‖∞ for an optimal solution x∗, then the
`0-norm minimization problem (1) can be formulated as a mixed-integer linear program with the
introduction of a binary variable ζ ∈ {0, 1}n:

minimize
x, ζ

1Tn ζ =
n∑
j=1

ζj

subject to Ax ≥ b and Cx = d,

−Mζ ≤ x ≤ Mζ, ζ ∈ {0, 1}n.

(7)

2 A General `0-norm Minimization Problem

Together, the `0-norm and its complementarity formulation allow a host of minimization problems
involving the count of variables to be cast as disjunctive programs with complementarity constraints.
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A general NLP model of this kind is as follows: for two finite index sets E and I,

minimize
x

f(x) + γ‖x ‖0
subject to ci(x) = 0, i ∈ E
and ci(x) ≤ 0, i ∈ I,

(8)

where γ > 0 is a prescribed scalar and the objective function f and the constraint functions ci are
all continuously differentiable. Let S denote the feasible set of (8). A distinguished feature of the
problem (8) is that its objective function is discontinuous, in fact only lower semicontinuous; as
such, it attains its minimum over any compact set. More generally, we have the attainment result
as stated in Proposition 1. We recall that a function θ is coercive on a set X if lim θ(x) = ∞ as
‖x‖ → ∞ for x feasible to (8).

Proposition 1 Let the functions f and {ci}i∈I∪E be continuous. If (8) is feasible and f is coercive
on S, then (8) has an optimal solution.

Proof. Let x0 be a feasible vector. Since f is continuous and the `0-norm is lower semicontinuous,
the level set {x ∈ S | f(x) + γ ‖x ‖0 ≤ f(x0) + γ ‖x0 ‖0 } is nonempty and compact, by the
coercivity of f . The desired conclusion now follows readily. �

Similar to (3), we can derive an equivalent complementarity constrained formulation for (8) as
follows:

minimize
x, x±, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

0 ≤ x+ ⊥ x− ≥ 0, and ξ ≤ 1n,

(9)

where we have used an arbitrary positive vector γ instead of a scalar γ-multiple of the vector
of ones. Since both the objective and constraint functions are nonlinear, (9) is an instance of a
Mathematical Program with Complementarity Constraints (MPCC).

Similar to the half complementarity formulation (6) of (1), we may associate with (8) the following
smooth NLP with an auxiliary variable ξ:

minimize
x, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
0 ≤ ξ ≤ 1n and ξ ◦ x = 0.

(10)

Subsequently, we will relate various properties of the two programs (8) and (10). Similar results for
the full complementarity formulation can be proved if the variable x is non-negatively constrained.
To avoid repetition, we focus on the above half complementarity formulation with no (explicit) sign
restriction on x.

The misclassification minimization problem that arises from the literature in support-vector ma-
chines [10, 30] provides an example of problem (8). Cardinality constrained optimization problems
provide a large class of problems where the `0-norm appears in the constraint that restricts the
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cardinality of the nonzero elements of the decision variables. These problems are of growing impor-
tance; two recent papers study them from different perspectives. Referencing many applications,
the paper [39] proposes a piecewise linear approximation of the `0 constraint as a dc (for difference
of convex) constraint. Extending a previous work [5], the report [4] follows a related approach to
ours by reformulating the cardinality constraint using complementarity conditions.

3 A Touch of Piecewise Theory

In practice, the problem (10) provides a computational platform for solving the problem (8). Thus it
is important to understand the basic connections between these two problems. Due to the presence
of the bilinear constraints: ξ ◦x = 0, (10) is a nonconvex program even if the original NLP (8) with
γ = 0 is convex. The discussion in this section focuses on the half-complementarity formulation
(10) and omits the results for the full-complementarity formulation of the problem (8).

The discussion in the next several subsections proceeds as follows. We begin with a reformulation
of (10) as a nonlinear program with “piecewise structures” [32], which offers a global perspective
of this nonconvex program. Next, we turn to the local properties of the problem, establishing the
constant rank constraint qualification (CRCQ) [16, page 262] [25] of the problem under a constant
rank condition on the constraint functions, which naturally holds when the latter functions are
affine. With the CRCQ in place, we then present the Karush-Kuhn-Tucker (KKT) conditions of
(10) and relate them to the KKT conditions of the “pieces” of the problem. We also briefly consider
second-order optimality results for these problems. In Section 4, we undertake a similar analysis of
a relaxed formulation of (10). Incidentally, beginning with Scholtes [33], there has been an extensive
literature on regularization methods for general MPCCs; a recent reference is [27] which contains
many related references on this topic.

3.1 Piecewise formulation

While the computation of a globally optimal solution to the `0-minimization problem (8) is prac-
tically very difficult, we describe a piecewise property of this problem and identify its pieces. For
any index set J ⊆ {1, · · · , n} with complement J c, consider the nonlinear program

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

and xi = 0, i ∈ J ,

(11)

which may be thought of as a “piece” of (8) in the sense of piecewise programming. Indeed, provided
that (8) is feasible, we have

∞ > minimum of (8) = minimum
J

{ minimum of (11) + γ | J c | } ≥ −∞, (12)

where the value of −∞ is allowed in both the left- and right-hand sides. [We adopt the convention
that the minimum value of an infeasible optimization problem is taken to be ∞.] To prove (12),
we note that the left-hand minimum is always an upper bound of the right-hand minimum. Let
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N (x) be the support of the vector x, with complement N (x)c in {1, · · · , n}. It follows that, for
any feasible x of (8), we have, with J = N (x)c,

f(x) + γ ‖x ‖0 = f(x) + γ | J c | ≥ { minimum of (11) with J = N (x)c }+ γ | J c |.

This bound establishes the equality of the two minima in (12) when the left-hand minimum is
equal to −∞. A moment’s thought shows that these two minima are also equal when the right-
hand minimum is equal to −∞. Thus it remains to consider the case where both the left and right
minima are finite. Let xJ be an optimal solution of (11) that attains the right-hand minimum in
(12). We have

minimum of (8) ≤ f(xJ ) + γ ‖xJ ‖0 ≤ f(xJ ) + γ | J c |,
establishing the equality (12).

3.2 Constraint qualifications

As the constraints of (10) are nonlinear, it is important that they satisfy some constraint qualifi-
cation in order to gain some understanding of the optimality properties of the problem. Let x be
a feasible solution to (8). We wish to postulate a constraint qualification at x with respect to (8)
under which the CRCQ will hold for the constraints of (10) at (x, ξ), where ξ is defined by (4). For
this purpose, we introduce the index set

A(x) , { i ∈ I | ci(x) = 0 } .

The gradients of the active constraints in (10) at the pair (x, ξ) are of several kinds:{(
∇ci(x)

0

)
: i ∈ E ∪ A(x)

}
,

{
−
(

0
ei

)
: i ∈ N (x)

}
,

{(
0
ei

)
: i ∈ N (x)c

}
and

{
xi

(
0
ei

)
: i ∈ N (x)

}
,

{
ξi

(
ei
0

)
: i ∈ N (x)c

}
︸ ︷︷ ︸

gradients of the equality constraint ξ ◦ x = 0

where ei is the n-vector of zeros except for a 1 in the ith position. We assume that for every index
set α ⊆ A(x) the family of vectors{(

∂ci(x
′)

∂xj

)
j∈N (x)

: i ∈ E ∪ α

}
(13)

has the same rank for all vectors x ′ sufficiently close to x that are also feasible to (8). Each
vector (13) is a subvector of the gradient vector ∇ci(x ′) with the partial derivatives ∂ci(x

′)/∂xj
for j ∈ N (x)c removed. If this assumption holds at x, the CRCQ is valid for the constraints of the
problem (10) at the pair (x, ξ). To show this, it suffices to verify that for any index sets α ⊆ A(x),
β1, γ1 ⊆ N (x) and β2, γ2 ⊆ N (x)c, the family of vectors:{(

∇ci(x ′)
0

)
: i ∈ E ∪ α

}
,

{
−
(

0
ei

)
: i ∈ β1

}
,

{(
0
ei

)
: i ∈ β2

}
and

{
x ′i

(
0
ei

)
: i ∈ γ1

}
,

{
ξ ′i

(
ei
0

)
: i ∈ γ2

}
︸ ︷︷ ︸

gradients of the equality constraint ξ ◦ x = 0
evaluated at (x ′, ξ ′)

(14)
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has the same rank for all pairs (x ′, ξ ′) sufficiently close to the given pair (x, ξ) that are also feasible
to (10). Clearly, this assumption is satisfied when the constraint functions ci(x) are affine. Consider
such a pair (x ′, ξ ′). We must have N (x) ⊆ N (x ′); moreover, if i ∈ N (x)c, then ξi = 1; hence
ξ ′ > 0. By complementarity, it follows that i ∈ N (x ′)c. Consequently, N (x) = N (x ′). This is
sufficient to establish the rank invariance of the vectors (14) when the pair (x ′, ξ ′) varies near (x, ξ).

An immediate corollary of the above derivation is that if the constraints of (8) are all affine, then
the CRCQ holds at (x, ξ) for any x feasible to (8) and ξ defined by (4).

3.3 KKT conditions and local optimality

With the CRCQ in place, it follows that the KKT conditions are necessary for a pair (x, ξ) to be
optimal to (10), provided that ξ is defined by (4). Letting λ, η, and µ be the multipliers to the
constraints of (10), the KKT conditions of this problem are:

0 = ∇f(x) +
∑

i∈E ∪I
λi∇ci(x) + µ ◦ ξ

0 ≤ ξ ⊥ −γ + µ ◦ x+ η ≥ 0, 0 = ξ ◦ x
0 ≤ η ⊥ 1n − ξ ≥ 0

0 = ci(x), i ∈ E
0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I

(15)

We wish to compare the above KKT conditions with those of the pieces of (8) exemplified by (11)
for an index subset J of {1, · · · , n}. Letting λ denote the multipliers of the functional constraints
in (11), we can write the KKT conditions of (11) as

0 =
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
, j ∈ J c

0 = ci(x), i ∈ E
0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I
0 = xj , j ∈ J .

(16)

We have the following result connecting the KKT systems (15) and (16), which can be contrasted
with the equality (12) that deals with the global minima of these two problems.

Proposition 2 Let x be a feasible solution of (8) and let ξ be defined by (4). The following three
statements hold for any positive vector γ:

(a) If (x, ξ) is a KKT point of (10) with multipliers λ, µ, and η, then x is a KKT point of (11) for
any J satisfying N (x) ⊆ J c ⊆ N (x) ∪ {j | µj = 0}.

(b) Conversely, if x is a KKT point of (11) for some J , then (x, ξ) is a KKT point of (10).

(c) If x is a local minimum of (11) for some J , then (x, ξ) is a local minimum of (10).

Proof. To prove (a), it suffices to note that for such an index set J , we must have J ⊆ N (x)c;
moreover, if j ∈ J c, then either µj = 0 or ξj = 0. To prove part (b), it suffices to define the
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multipliers µ and η. An index set J for which (16) holds must be a subset of N (x)c so that
N (x) ⊆ J c. Let

µj ,



γj
xj

if j ∈ N (x)

−

[
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj

]
if j ∈ J

0 if j ∈ J c ∩ N (x)c

ηj ,



0 if j ∈ N (x)

γj if j ∈ J

γj if j ∈ J c ∩ N (x)c.

It is not difficult to verify that the KKT conditions (15) hold at the triple (x, ξ, λ, µ, η).

Finally, to prove (c), let (x ′, ξ ′) be a feasible pair of (10) sufficiently close to (x, ξ). Since xj = 0
for all j ∈ J , it follows that ξj = 1 for all such j. Since ξ ′j is sufficiently close to ξj , we deduce
ξ ′j > 0; hence x ′j = 0 by complementarity. Thus x ′ is feasible to (11). Moreover, if xj 6= 0, then
x ′j 6= 0; hence ξ ′j = 0.

f(x ′) + γ T ( 1n − ξ ′ )

≥ f(x) +
∑

j :xj=0

γj
(

1− ξ ′j
)

+
∑

j :xj 6=0

γj
(

1− ξ ′j
)

≥ f(x) +
∑

j :xj=0

γj ( 1− ξj ) +
∑

j :xj 6=0

γj ( 1− ξj ) = f(x) + γ T ( 1n − ξ ) ,

establishing the desired conclusion. �

The next proposition states a result for the inner-product reformulations of the full-complementarity
formulation (9). Similar statements hold for the componentwise formulation, which are omitted.

Proposition 3 Let x be a feasible solution of (8), let ξ be defined by (4), and x± , max{0,±x}.
Then the following three statements hold for any positive vector γ:

(a) If (x, x±, ξ) is a KKT point of

minimize
x, x±, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−, ξT (x+ + x−) ≤ 0, (x+)T (x−) ≤ 0

0 ≤ ξ ≤ 1n and x± ≥ 0,

(17)

then x is a KKT point of (11) for any J satisfying N (x) ⊆ J c ⊆ N (x) ∪ {j | µj = 0}.

(b) Conversely, if x is a KKT point of (11) for some J , then (x, x±, ξ) is a KKT point of (17).

(c) If x is a local minimum of (11) for some J , then (x, x±, ξ) is a local minimum of (17). �

We now look at the second-order optimality conditions. In the proposition below, we examine the
sufficient conditions; an analogous result can be derived for the second-order necessary conditions
in a similar manner. Results similar to the following Proposition 4 and Corollary 1 hold for the
full-complementarity and half-complementarity formulations.
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Proposition 4 Let (x, ξ) be a point so that (x, ξ) is a KKT point of (10) with multipliers λ, µ,
and η, and so that x is a KKT point of (11) for any J satisfying N (x) ⊆ J c ⊆ N (x) ∪{j | µj = 0}.
If the second-order sufficient condition holds at (x, ξ) of (11), then it holds at x of (10). In addition,
if J c = N (x), the converse holds.

Proof. The second-order conditions examine directions d in the critical cone, i.e., those directions
that satisfy the linearization of each equality constraint and active inequality constraints, and that
keep active the linearization of any inequality constraint with a positive multiplier. From the KKT
conditions (15) of (10), if xj = 0 for some j ∈ {1, . . . , n} then ξj = 1 and the corresponding
multiplier ηj > 0. If xj 6= 0 then the linearization of the complementarity constraint restricts the
direction. Thus, all directions d = (dx, dξ) in the critical cone satisfy

dξ = 0.

Therefore, we only need to consider the x part of the Hessian,

H = ∇2f(x) +
∑

i∈E ∪I
λi∇2ci(x),

for both (10) and (11). Let D1⊆ Rn be the set of directions dx that satisfy

∇ci(x)Tdx = 0, i ∈ E
∇ci(x)Tdx = 0, i ∈ I with λi > 0

∇ci(x)Tdx ≤ 0, i ∈ I with λi = 0 and ci(x) = 0

(18)

together with dx ◦ ξ = 0. The second-order sufficient condition for (10) holds at x if and only if
dTHd > 0 for all d ∈ D1 with d 6= 0. Similarly, let D2⊆ Rn be the set of directions that satisfy (18)
together with (dx)j = 0 for all j ∈ J . Then the second-order sufficient condition for (11) holds at
x if and only if dTHd > 0 for all d ∈ D2 with d 6= 0.

To prove the first part of the claim, we need to show that D1 ⊆ D2. Let d1 ∈ D1. Since
J ⊆ N (x)c, we have ξj = 1 for all j ∈ J . Because the direction satisfies the linearization of
the half-complementarity constraint, it follows that d1j = 0, which implies d1 ∈ D2. To prove the

second part, let d2 ∈ D2. Since N (x)c = J , we have xj = 0 and hence ξj = 1 for all j ∈ J .
Further, xj 6= 0 and ξj = 0 for all j ∈ J c. Thus d2 ∈ D1. �

Let us consider what these results imply for the simple model problem (1). It is easy to see that
any feasible point x with Ax ≥ b and Cx = d is a KKT point for (11) with J = {j : xj = 0}
and f(x) = 0. Propositions 2(b) and 4 then imply that x corresponds to a KKT point of (10) that
satisfies the second-order necessary optimality conditions. In other words, finding a second-order
necessary KKT point for (10) merely implies that we found a feasible point for (1), but this says
nothing about its `0-norm. We summarize this observation in the following corollary.

Corollary 1 A vector x̂ is feasible to the system Ax ≥ b and Cx = d if and only if (x̂, ξ), where
1n−ξ is the support vector of x̂, is a KKT pair of the nonlinear program (10) with J = {j : x̂j = 0}
that satisfies the second-order necessary optimality conditions. �

A principal goal in this study is assessing the adequacy of (local) NLP solvers for solving `0-
minimization problems, such as (1) and (8), using the equivalent full- or half-complementarity
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reformulations. The results in this section cast a negative shadow on this approach. NLP solvers
typically aim to find KKT points, ideally those that satisfy second-order optimality conditions.
Propositions 2–4 establish that the reformulations for (8) may have an exponential number of
points (one for each set J ⊆ {1, . . . , n} in (11)), to which the NLP solvers might be attracted
to. [This conclusion is not too surprising in light of the piecewise structure of these problems as
seen from Subsection 3.1.] In the particular case of the model problem (1), Corollary 1 paints an
even more gloomy picture because any feasible point for (1) has the characteristics that an NLP
solver looks for, and most of those points have sub-optimal objective function values. Interestingly,
these theoretical reservations do not seem to materialize in practice. Our computational results
attest that usually points of rather good objective values are returned by the NLP solvers. The
discussions related to the relaxed formulations in Section 4 shed some light on this observation.
In particular, convergent sequences of points satisfying the second order necessary conditions for
a relaxed problem are shown to converge to locally optimal solutions on a piece, under certain
assumptions; in the linear case (1) they converge to nondominated solutions, and the set of limit
points is a subset of the set of possible solutions to a weighted `1-norm approach.

4 Relaxed Formulations

As mentioned at the end of the Introduction, in general, the exact reformulations of an MPCC result
in NLPs that are not well-posed in the sense that the MFCQ does not hold at any feasible point. To
overcome this shortcoming, relaxation schemes for MPCCs have been proposed [33, 13, 26], where
the complementarity constraints are relaxed. The resulting NLPs have better properties, and the
solution of the original MPCC is obtained by solving a sequence of relaxed problems, for which the
relaxation parameter is driven to zero. In this section, we investigate the stationarity properties of
relaxed reformulations for the `0 problem.

We introduce the following relaxation of the new half-complementarity formulation (10), which we
denote by NLP(ε), for a given relaxation scalar ε > 0:

minimize
x, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E (λE)

ci(x) ≤ 0, i ∈ I (λI)

ξ ≤ 1n (η)

ξ ◦ x ≤ ε1n (µ+)

−ξ ◦ x ≤ ε1n (µ−)

and ξ ≥ 0,

(19)

where λ, η, and µ± are the associated multipliers for the respective constraints. The problem
NLP(0) is the original half-complementary formulation (10). In essence, we wish to examine the
limiting properties of the NLP(ε) as ε ↓ 0. Observations analogous to those in the following
subsections are valid for relaxations of the full complementarity formulations (17).

Similar to Subsection 3.2, we give a sufficient condition for the Abadie constraint qualification
(ACQ) to hold for (19) at a feasible pair (x̄, ξ̄), i.e., for the linearization cone of the constraints of
(19) at this pair to equal the tangent cone. Explicitly stated, this CQ stipulates that if (dx, dξ) is
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a pair of vectors such that

∇ci(x)Tdx = 0 ∀ i ∈ E
∇ci(x)Tdx ≤ 0 ∀ i ∈ I such that ci(x̄) = 0

dξi ≤ 0 ∀ i such that ξ̄i = 1

dξi ≥ 0 ∀ i such that ξ̄i = 0

x̄i dξi + ξ̄i dxi

{
≤ 0 if x̄i ξ̄i = ε

≥ 0 if x̄i ξ̄i = −ε,

(20)

then there exist a sequence of pairs {(xk, ξk)} such that each (xk, ξk) is feasible to (19) and a
sequence of positive scalars {τk} tending to zero such that

dx = lim
k→∞

xk − x̄
τk

and dξ = lim
k→∞

ξk − ξ̄
τk

.

The sufficient condition that we postulate is on the functional constraints

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I

(21)

at the given x̄. Namely, the linearization cone of the constraints (21) at x̄ is equal to the tangent
cone; i.e., for every dx satisfying the first two conditions in (20), there exists a sequence {xk} of
vectors converging to x̄ and a sequence of positive scalars {τk} converging to zero such that

dx = lim
k→∞

xk − x̄
τk

;

equivalently, for some sequence {ek} of vectors satisfying lim
k→∞

ek

τk
= 0, we have xk , x̄+ τk dx+ ek

satisfies (21) for all k. This by itself is a CQ on these functional constraints that is naturally
satisfied if such constraints are affine.

Theorem 1 The Abadie constraint qualification holds for NLP(ε) at the feasible pair (x̄, ξ̄) if the
linearization cone of the constraints (21) at x̄ is equal to the tangent cone.

Proof. Let dξ satisfy the remaining three conditions in (20). We claim that the pair (dx, dξ) is
in the tangent cone of the constraints in the relaxed formulation (19) at (x̄, ξ̄). It suffices to show

that there exists a sequence {ηk} such that lim
k→∞

ηk

τk
= 0 and ξ̂ k , ξ̄ + τk dξ + ηk satisfies

0 ≤ ξ̂ ki ≤ 1 and | ( x̄i + τk dxi + eki ) ( ξ̄i + τk dξi + ηki ) | ≤ ε, ∀ i.

For a component i such that |x̄iξ̄i| < ε, it suffices to choose ηki = 0. Consider a component i for
which ε = |x̄iξ̄i|. We consider only the case where x̄iξ̄i = ε and leave the other case to the reader.
Thus, both x̄i and ξ̄i must be positive; hence so are both xki , x̄i+τk dxi+e

k
i and ξ̂ ki , ξ̄i+τk dξi+η

k
i

for all k sufficiently large. It remains to show that we can choose ηki so that ξ̂ ki ≤ 1 and xki ξ
k
i ≤ ε

for all k sufficiently large.
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We first derive an inequality on some of the terms in the product xki ξ
k
i . We show

( x̄i + τk dxi ) ( ξ̄i + τk dξi ) = ε+ τk
[

( x̄i dξi + ξ̄i dxi ) + τk dxi dξi
]
≤ ε.

In particular, since x̄idξi + ξ̄idxi ≤ 0, there are two cases to consider. If x̄idξi + ξ̄idxi = 0, then
dxidξi ≤ 0 and the claim holds for all τk ≥ 0. If x̄idξi + ξ̄idxi < 0, then x̄idξi + ξ̄idxi + τkdxidξi < 0
for all τk > 0 sufficiently small.

We can now choose ηki , −α|eki |, where α > 0 will be determined from the following derivation.

With this choice, we easily have ξ̂ ki ≤ 1 for all k sufficiently large. Furthermore,

xki ξ
k
i = ( x̄i + τk dxi + eki ) ( ξ̄i + τk dξi + ηki )

= ε+ τk
[

( x̄i dξi + ξ̄i dxi ) + τk dxi dξi
]︸ ︷︷ ︸

≤ 0 as above

+eki

 ξ̄i + τk dξi︸ ︷︷ ︸
positive

− α | eki |
 x̄i + τk dxi︸ ︷︷ ︸

positive

− α eki | eki |.
It is now clear that we may choose α > 0 so that xki ξ

k
i ≤ ε for all k sufficiently large. �

4.1 Convergence of KKT points for NLP(ε)

In this subsection we examine the limiting behavior of KKT points x(ε) for NLP(ε) as ε converges
to zero. This is of interest because algorithms based on the sequential solution of the relaxation
NLP(ε) aim to compute limit points of x(ε) [13, 26, 33]. However, our analysis also gives insight
into the behavior of standard NLP solvers that are applied directly to one of the unrelaxed NLP-
reformulations of the MPCC, such as (10) and (17). For instance, some implementations of NLP
solvers, such as the IPOPT solver [35] used for the numerical experiments in Section 5, relax all
inequality and bound constraints by a small amount that is related to the convergence tolerance
before solving the problem at hand. This modification is done in order to make the problem
somewhat “nicer”; for example, a feasible problem is then guaranteed to have a nonempty relative
interior of the feasible region. However, because this alteration is on the order of the user-specified
convergence tolerance, it usually does not lead to solutions that are far away from solutions of the
original unperturbed problem. In the current context this means that such an NLP code solves the
relaxation NLP(ε) even if the relaxation is not explicitly introduced by the user.

With a CQ in place, we may write down the KKT conditions for NLP(ε):

0 = ∇f(x) +
∑

i∈E ∪I
λi∇ci(x) + (µ+ − µ−) ◦ ξ (22a)

0 ≤ ξ ⊥ −γ + (µ+ − µ−) ◦ x+ η ≥ 0 (22b)

0 ≤ η ⊥ 1n − ξ ≥ 0 (22c)

0 = ci(x), i ∈ E (22d)

0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I (22e)

0 ≤ µ+ ⊥ ε1n − ξ ◦ x ≥ 0 (22f)

0 ≤ µ− ⊥ ε1n + ξ ◦ x ≥ 0. (22g)

We may draw the following observations from the above conditions:
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• For j ∈ {1, . . . , n} with xj > ε > 0, by (22g) we have µ−j = 0, and by (22f) we have ξj < 1. It
follows from (22c) that ηj = 0 and then (22b) and (22a) give the relationships:

ξj =
ε

xj
< 1, ηj = 0, µ+j =

γj
xj
, µ−j = 0,

∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
= −εγj

x2j
< 0. (23)

• For j ∈ {1, . . . , n} with xj < −ε < 0, by (22f) we have µ+j = 0, and by (22g) we have ξj < 1. It
follows from (22c) that ηj = 0 and then (22b) and (22a) give the relationships:

ξj =
ε

−xj
< 1, ηj = 0, µ+j = 0, µ−j =

γj
−xj

,
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
=

εγj
x2j

> 0. (24)

• For j ∈ {1, . . . , n} with −ε < xj < ε, (22f) and (22g) give µ+j = µ−j = 0. Then (22b) implies
ηj > 0, giving ξj = 1 by (22c) and so ηj = γj by (22b). Together with (22a), this overall implies

ξj = 1, ηj = γj , µ+j = 0, µ−j = 0,
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
= 0. (25)

• For j ∈ {1, . . . , n} with xj = ε we have µ−j = 0 from (22g). Also, we must have ξj = 1 since

otherwise ηj = 0 from (22c) and µ+j = 0 from (22f), which would then violate (22b). Thus from
(22b) and (22a) we have

ξj = 1, ηj = γj−εµ+j , 0 ≤ µ+j ≤
γj
ε
, µ−j = 0,

∂f(x)

∂xj
+
∑

i∈E ∪I
λi
∂ci(x)

∂xj
+µ+j = 0. (26)

• For j ∈ {1, . . . , n} with xj = −ε we have µ+j = 0 from (22f). Also, we must have ξj = 1 since

otherwise ηj = 0 from (22c) and µ−j = 0 from (22g), which would then violate (22b). Thus from
(22b) and (22a) we have

ξj = 1, ηj = γj−εµ−j , µ+j = 0, 0 ≤ µ−j ≤
γj
ε
,

∂f(x)

∂xj
+
∑

i∈E ∪I
λi
∂ci(x)

∂xj
−µ−j = 0. (27)

We show that any limit of a subsequence of KKT points to (8) is a KKT point to the problem (11)
for a particular J , under certain assumptions.

Theorem 2 Let (x(ε), ξ(ε)) be a KKT point for for NLP(ε) with multipliers (λ(ε), η(ε), µ(ε)). Let
(x∗, λ∗) be a limit of a subsequence of (x(ε), λ(ε)) as ε ↓ 0. Assume f(x) and each ci(x), i ∈ E ∪ I,
is Lipschitz continuous. Let J = N (x∗)c. Then (x∗, λ∗) is a KKT point for (11).

Proof. From observations (23) and (24), we have for components j with x∗j 6= 0 that

∂f(x(ε))

∂xj
+

∑
i∈E ∪I

λi
∂ci(x(ε))

∂xj
= − εγj

x(ε)2j
→ 0.

For the remaining components, we can choose the multiplier for the constraint xj = 0 to be equal
to lim

ε→0
µ+j (ε)− µ−j (ε), which exists from the Lipschitz continuity assumption and observations (26)

and (27). Thus, the KKT gradient condition holds for (11). The remaining KKT conditions hold
from continuity of the functions. �
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4.2 Second-order conditions

We analyze the second-order necessary (sufficient) conditions of the relaxed NLP(ε). Such a nec-
essary (sufficient) condition stipulates that the Hessian of the Lagrangian function with respect to
the primary variables (i.e., (x, ξ)) is (strictly) copositive on the critical cone of the feasible set; that
is to say, at a feasible pair (x̄, ξ̄), if (dx, dξ) is a pair satisfying (20) and ∇f(x̄)Tdx − γ Tdξ = 0,
then for all (some) multipliers (λ, η, µ±) satisfying the KKT conditions (22),(

dx

dξ

)T  ∇2f(x̄) +
∑
i∈E∪I

λi∇ci(x̄)2 Diag(µ+ − µ−)

Diag(µ+ − µ−) 0

 ( dx

dξ

)
≥ (> ) 0,

or equivalently, (focusing only on the necessary conditions),

dxT

[
∇2f(x̄) +

∑
i∈E∪I

λi∇2ci(x̄)

]
dx+

n∑
i=1

(
µ+i − µ

−
i

)
dxi dξi ≥ 0. (28)

Taking into account the KKT conditions (22), the pair (dx, dξ) satisfies the following conditions
(see [16, Lemma 3.3.2]):

∇ci(x̄)Tdx = 0 ∀ i ∈ E
∇ci(x̄)Tdx ≤ 0 ∀ i ∈ I such that ci(x̄) = 0

∇ci(x̄)Tdx = 0 ∀ i ∈ I such that ci(x̄) = 0 < λi

dξi ≤ 0 ∀ i such that ξ̄i = 1

dξi = 0 ∀ i such that 1− ξ̄i = 0 < ηi

dξi ≥ 0 ∀ i such that ξ̄i = 0

dξi = 0 ∀ i such that ξ̄i = 0 < −γi + (µ+i − µ
−
i )x̄i

x̄i dξi + ξ̄i dxi


≤ 0 if x̄i ξ̄i = ε

= 0 if ε− x̄i ξ̄i = 0 < µ+i

= 0 if ε+ x̄i ξ̄i = 0 < µ−i

= 0 if x̄i ξ̄i = −ε

(29)

Note from (22f) that µ+i > 0 only if x̄i ≥ ε and x̄iξ̄i = ε, in which case dxi and dξi cannot have the
same sign. Similarly from (22g), µ−i > 0 only if x̄i ≤ −ε and x̄iξ̄i = −ε, in which case dxi and dξi
cannot have opposite signs. Then (28) becomes:

dxT

[
∇2f(x̄) +

∑
i∈E∪I

λi∇2ci(x̄)

]
dx+

∑
i:µ+

i >0

µ+i dxi dξi︸ ︷︷ ︸
≤ 0

−
∑

i:µ−i >0

µ−i dxi dξi︸ ︷︷ ︸
≥ 0

≥ 0. (30)

It follows that if dxidξi 6= 0 for some i such that µ+i > 0 or µ−i > 0, then the above inequality,
and thus the second-order necessary condition (SONC) for the NLP(ε) (which is a minimization
problem) cannot hold, by simply scaling up dξi and fixing dxi. Therefore, if this SONC holds, then
we must have dxidξi = 0 for all i for which (µ+i + µ−i ) > 0.

Summarizing the above discussion, we have proved the following result.
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Proposition 5 Let (x̄, ξ̄) be a feasible pair to the NLP(ε). Suppose that for all KKT multipliers
(λ, η, µ±) satisfying (22),

dxT

∇2f(x̄) +
∑
i∈E

λi∇2ci(x̄) +
∑

i∈I with λi > 0

λi∇2ci(x̄)

 dx ≥ 0

for all vectors dx satisfying the first three conditions of (29). The SONC holds for the NLP(ε) if
and only if for all critical pairs (dx, dξ) satisfying (29), dxidξi = 0 for all i for which (µ+i +µ−i ) > 0.

4.3 Convergence of points satisfying SONC for NLP(ε)

For most of this subsection, we restrict our attention to problems of the form (1), which we write
in the following form in order to simplify the notation:

minimize
x∈Rn

‖x ‖0
subject to x ∈ X := {x : Ax ≥ b}.

(31)

The corresponding version of NLP(ε) can be written

minimize
x, ξ

γ T ( 1n − ξ )

subject to b − Ax ≤ 0 (λ)

ξ ≤ 1n (η)

ξ ◦ x ≤ ε1n (µ+)

−ξ ◦ x ≤ ε1n (µ−)

and ξ ≥ 0,

(32)

It follows from Theorem 1 that the Abadie CQ holds for (32). Further, the same argument as in
Section 3.2 can be used to show that the constant rank constraint qualification holds for (32). It
is proved in [1] that if the CRCQ holds then any local minimizer must satisfy the second order
necessary conditions. Hence, any local minimizer to (32) must satisfy the second-order necessary
conditions. In this subsection, we investigate limits of local minimizers to (32) as ε ↓ 0.

Theorem 3 Any limit x∗ of a subsequence of locally optimal solutions x(ε) to (32) must be an
extreme point of the piece defined by x∗, namely

P(x∗) := {x : Ax ≥ b} ∩ {x : xi = 0 if x∗i = 0}.

Proof. Assume x∗ is not an extreme point of P(x∗), so x∗ 6= 0 and there exists a feasible direction
dx 6= 0 with x∗ ± αdx ∈ P(x∗) for sufficiently small positive α. For sufficiently small ε, we have
(b − Ax(ε))i = 0 only if (b − Ax∗)i = 0, so dx satisfies the first three conditions of (29). We now
construct dξ(ε) to satisfy the remaining conditions of (29).

Let ξ(ε) be the ξ part of the solution to (32) and let (λ(ε), η(ε), µ±(ε))) be the corresponding
KKT multipliers. For sufficiently small ε, xj(ε) > ε if x∗j > 0 and xj(ε) < −ε if x∗j < 0. It

follows from the observations (23) and (24) that ξj(ε) =
ε

xj(ε)
< 1 and µ+j (ε) > 0 if x∗j > 0, and

ξj(ε) = − ε

xj(ε)
< 1 and µ−j (ε) > 0 if x∗j < 0 for sufficiently small ε.
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The direction dξ(ε) is defined as

dξj(ε) =


− ξj(ε)
xj(ε)

dxj if x∗j 6= 0

0 otherwise.

(33)

With this choice, (29) is satisfied while the left hand side of (28) evaluates to be negative. Hence,
the point (x(ε), ξ(ε)) is not a local optimum to (32). �

The following corollary is immediate.

Corollary 2 If the feasible region is contained within the nonnegative orthant then any limit x∗

of a subsequence of locally optimal solutions to (32) must be an extreme point of {x : Ax ≥ b}.
�

In order to relate the solutions obtained as limits of solutions to NLP(ε) to solutions of weighted
`1-norm problems, we make the following definition.

Definition 1 A point y ∈ S ⊆ Rn is nondominated in S if there does not exist a vector ỹ ∈ S
with ỹ 6= y and |ỹi| ≤ |yi| for i = 1, . . . , n. Otherwise it is dominated in S. �

A point x̄ is nondominated in X if and only if the optimal value of the following linear program is
zero:

maximize
x, t∈Rn

1Tn t

subject to Ax ≥ b, t ≥ 0

x + t ≤ |x̄| and x − t ≥ −|x̄|
(34)

The following proposition relates the limiting points of subsequences of solutions to (32) to non-
dominated points.

Theorem 4 Any limit x∗ of a subsequence of the x-part of locally optimal solutions (x(ε), ξ(ε))
to (32) must be nondominated.

Proof. We prove that if x∗ is dominated then (x(ε), ξ(ε)) is not a local optimum for sufficiently
small ε. Suppose there exists a feasible point (x̃, ξ̃) such that |x̃| ≤ |x∗|, x̃ 6= x∗. Set

dx = x∗ − x̃ 6= 0,

a feasible direction from x(ε) in (32) since A(x(ε)) ⊆ A(x∗) for sufficiently small ε. Note that
dxi = 0 if x∗i = 0. For small positive α, a lower objective value can be achieved by setting

x = x(ε) + αdx and updating the value of ξ(ε)j to be min

{
1,

ε

|x(ε)j + αdxj |

}
, so (x(ε), ξ(ε)) is

not a locally optimal point to (32). �

This theorem allows us to relate the set of solutions obtained as limits of sequences of locally
optimal solutions to (32) to the solutions obtained using an `1-norm approach. A weighted `1-norm

17



approach for finding a solution to (1) is to solve a problem of the form

minimize
x∈Rn

n∑
j=1

wj |xj |

subject to Ax ≥ b

(35)

for a positive weight vector w ∈ Rn. Iterative reweighted `1 schemes [9] seek choices of weights w
that lead to sparse solutions.

Proposition 6 Any nondominated point satisfying Ax ≥ b is a solution to a weighted `1-norm
minimization problem.

Proof. Let x̄ be a nondominated point in X. The dual of the linear program (34) is

minimize
y λπ

|x̄|T (λ + π) − bT y

subject to AT y − λ + π = 0n,
λ + π ≥ 1n,
y, λ, π ≥ 0

(36)

The nondominance of x̄ indicates that the optimal objective of (34) is 0. Let (λ∗, π∗, y∗) be an
optimal solution to (36). Set w = λ∗+ π∗ > 0. Expressing (35) as a linear program and examining
its dual shows that x̄ is then optimal for (35), because the optimal value of (36) is zero. �

Note that minimizing a weighted `1-norm minimization problem may give a solution that cannot
be obtained as a limit of a subsequence of solutions to NLP(ε), so the latter set of solutions can be
a proper subset of the set of solutions that can be obtained by solving (35). This is illustrated by
the following example:

minimize
x∈R2

‖x ‖0
subject to l x1 + x2 ≥ l p + 1

x1 + p x2 ≥ 2 p

(37)

where l and p are positive parameters with l p > 1 and p > 1. This problem is solved by points
of the form (r, 0) and (0, s) with r ≥ 2p and s ≥ lp + 1. The point (p, 1) is a nondominated
extreme point which does not solve (37). For any feasible x̂ = (x̂1, x̂2) sufficiently close to (p, 1)

with ξ̂ =

(
ε

x̂1
,
ε

x̂2

)
, the direction dx = (p,−1) and dξ = ε

(
− p

x̂21
,

1

x̂22

)
is a feasible improving

direction for (32), provided γ1 < γ2(p− δ) for some positive parameter δ which determines the size
of the neighborhood. Thus, such an x̂ and ξ̂ cannot be optimal to (32), and x = (p, 1) cannot be a
limit of solutions to (32). Nonetheless, x = (p, 1) is optimal to a weighted `1-norm formulation

minimize
x∈R2

w1|x1| + w2|x2|

subject to l x1 + x2 ≥ l p + 1
x1 + p x2 ≥ 2 p

(38)

provided

l >
w1

w2
>

1

p
, with w1, w2 ≥ 0.
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As p and l increase, the point (p, 1) becomes the optimal solution to (38) for more choices of w,
and it is optimal in (32) for fewer choices of γ.

Returning to the general problem (8) and its relaxation NLP(ε), we prove a result regarding the
limit of a sequence of points satisfying the second order necessary KKT conditions. This result is
analogous to Theorem 4, although the earlier theorem is not implied by the result for the general
problem.

Theorem 5 Assume that f(x) and each ci(x), i ∈ E ∪ I, have continuous second derivatives. Let
(x(ε), ξ(ε)) be a local minimizer for NLP(ε) that satisfies the second order necessary conditions
with multipliers (λ(ε), η(ε), µ(ε)). Let (x∗, λ∗) be a limit of a subsequence of (x(ε), λ(ε)) as ε ↓ 0.
Let J = N (x∗)c. If the gradients of the constraints in E ∪ A(x∗) are linearly independent and if
λ∗i 6= 0 for all i ∈ E ∪A(x∗) then x∗ satisfies the second order necessary conditions for the problem
(11).

Proof. Assume the conclusion is false, so there is a direction d̂x in the critical cone of (11) at

x∗ satisfying d̂x
T
∇2
xxL(x∗, λ∗) d̂x < 0. We construct a direction that shows that the second order

necessary conditions are violated at x(ε) for sufficiently small positive ε.

For ε sufficiently small, any constraint with λ∗i 6= 0 must have λi(ε) 6= 0 so it must be active at
x(ε). In addition, no constraint in I \ A(x∗) is active at x(ε), for sufficiently small ε. For such ε,
the gradients of the constraints in E ∪ A(x∗) are linearly independent at x(ε) and close to their
values at x∗, and the same set of constraints is active. Let the rows of the matrix B̂ comprise
the gradients of the active constraints at x∗ and let B(ε) be the analogous matrix at x(ε), and let

M(ε) = B̂ −B(ε). Let dx(ε) denote the projection of d̂x onto the nullspace of B(ε), so

dx(ε) = d̂x − (B̂ +M(ε))T
(

(B̂ +M(ε))(B̂ +M(ε))T
)−1

(B̂ +M(ε))d̂x

= d̂x − (B̂ +M(ε))T
(

(B̂ +M(ε))(B̂ +M(ε))T
)−1

M(ε)d̂x,

which is well defined for sufficiently small ε since BBT is positive definite. By continuity of the
gradients, ||M(ε)|| → 0 as ε ↓ 0, so dx(ε)→ d̂x as ε ↓ 0. Further, by continuity of the Hessians, we
then have for sufficiently small ε that

dx(ε)T ∇2
xxL(x(ε), λ(ε)) dx(ε) < 0.

For sufficiently small ε, we have |xi(ε)| > ε if x∗i 6= 0, so 0 < ξi(ε) < 1 for these components. A
direction dξ(ε) can be constructed from (33) (taking dx = dx(ε)) so that the direction (dx(ε), dξ(ε))
is in the critical cone at (x(ε), ξ(ε)) for the problem NLP(ε) and satisfies (29). Therefore, from
(30), this point violates the second order necessary conditions. �

We now use these observations to characterize the limit points of KKT points x(ε) for NLP(ε) in
a particular case. Consider the problem

minimize ||x ||0 subject to x1 + x2 + x3 ≥ 1 and x ≥ 0.
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The relaxation of the corresponding half-complementarity formulation is

minimize
x, ξ

1T3 ( 13 − ξ )

subject to 1− x1 − x2 − x3 ≤ 0, (λ0)

−xi ≤ 0, (λi) for i = 1, 2, 3

ξ ≤ 13 (η)

ξ ◦ x ≤ ε13 (µ+)

and ξ ≥ 0,

(39)

which is a special case of (19) where f(x) = 0, γ = 13, c0(x) = 1− x1 − x2 − x3, and ci(x) = −xi
for i = 1, 2, 3. Because here ξ, x ≥ 0 for any feasible point, the constraint corresponding to µ−

in (19) can never be active, and we may ignore this constraint without loss of generality. The
following proposition shows that there are exactly seven limit points of x(ε) as ε converges to zero,
and that the KKT points converging to non-global solutions of the unrelaxed half–complementarity
formulation (10) are not local minimizers of (39).

Proposition 7 The following statements are true.

(a) The set of limit points of KKT points for (39) as ε ↓ 0 is exactly{(
1
3 ,

1
3 ,

1
3

)
,
(
0, 12 ,

1
2

)
,
(
1
2 , 0,

1
2

)
,
(
1
2 ,

1
2 , 0
)
,
(
0, 0, 1

)
,
(
0, 1, 0

)
,
(
1, 0, 0

)}
.

(b) The KKT points x(ε) of (39) that converge to

x̂ ∈
{(

1
3 ,

1
3 ,

1
3

)
,
(
0, 12 ,

1
2

)
,
(
1
2 , 0,

1
2

)
,
(
1
2 ,

1
2 , 0
)}

as ε ↓ 0 are not local minimizers.

Proof. Part (b) follows easily from Theorem 3. Part (a) can be proven by specializing the
conclusions (23)–(27) to (39). Let x(ε) be a sequence of KKT points for (39) that converges to
some limit point x̂ as ε ↓ 0, and let ξ(ε), η(ε), µ+(ε), λ(ε) satisfy the KKT conditions (22). Due to
the first constraint in (39), x(ε) has at least one component xj(ε) ≥ 1

3 > ε if ε is sufficiently small.
For such j we know that λj(ε) = 0 due to xj(ε) > 0. Moreover, based on (23) we have

∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
= −λ0(ε)− λi(ε) = − ε

xj(ε)2

so that λ0(ε) = ε
xj(ε)2

> 0 for such j. Hence the constraint corresponding to λ0(ε) is active and

x1(ε) + x2(ε) + x3(ε) = 1. (40)

The problem can be broken into three cases depending on the nonzero structure of x̂. We prove
one case and leave the other cases to the reader.

Case 1: Suppose x̂j > 0 for all j = 1, 2, 3. For sufficiently small ε we have xj(ε) > ε and therefore
λj(ε) = 0 for all j = 1, 2, 3. Then, based on (23), we know that λ0(ε) = ε

xj(ε)2
holds for all
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j = 1, 2, 3, so that x1(ε) = x2(ε) = x3(ε). Using (40) and (23) we see that the KKT quantities
must satisfy

x(ε) =
(
1
3 ,

1
3 ,

1
3

)
, ξ(ε) =

(
3ε, 3ε, 3ε

)
, λ(ε) =

(
9ε, 0, 0, 0

)
µ+(ε) =

(
3, 3, 3

)
, η(ε) =

(
0, 0, 0

)
.

(41)

This shows that lim
ε↓0

x(ε) =
(1

3
,
1

3
,
1

3

)
is the only potential limit point with the nonzero structure

considered in this case. Conversely, it is easy to verify that the quantities in (41) satisfy the KKT

conditions (22), so that x̂ =
(1

3
,
1

3
,
1

3

)
is indeed a limit point. �

For this particular example, this result is as strong as we could hope for. There are only a few
KKT points for each sufficiently small ε with an equal number of limit points as ε ↓ 0. This is in
stark contrast to Corollary 1, which does not differentiate between any feasible point. In addition,
if the relaxation NLP(ε) is solved by an NLP solver that is able to escape local maximizers, the
point returned by the solver for small ε is close to a global minimizer of the original `0-problem (1).

5 Computational Results

After having discussed theoretical properties of the NLP reformulations, we now examine the prac-
tical performance of NLP solvers as solution methods of `0-norm problems. One premise for our
experiments is that black-box NLP codes are used with default settings. Those are applied directly
to the NLP reformulations described in the previous sections, without modifications, despite the
fact that some of these optimization models are not well-posed (i.e., the MFCQ does not hold at
any feasible point for (17).

The goal of these brute-force experiments is to assess the potential of NLP algorithms as solution
approaches for hard `0-norm optimization problems. If these initial experiments give encourag-
ing results, it motivates further research that aims at a deeper understanding of the underlying
mechanisms and the development of specialized methods.

The experiments were conducted using the NLP solvers CONOPT 3.15C [15], IPOPT 3.10.4 [35],
KNITRO 8.0.0 [6], MINOS 5.51 [31], and SNOPT 7.2-8 [20]. We did not alter the solvers’ default
options, except that KNITRO was run with the option “hessopt=5”, which avoids the (potentially
time-consuming) computation of the full Hessian matrix. In addition, any arising linear program
(LP), mixed-integer linear programs (MILP), quadratic program (QP), and mixed-integer quadratic
programs (MIQP) was solved with CPLEX 12.5.1.0. Matlab R2012b and the AMPL modeling
software [18] were used as scripting languages and to generate the random problem instances.
All numerical experiments reported in this paper were obtained on a 8-core 3.4GHz Intel Core i7
computer with 32GB of memory, running Ubuntu Linux.

5.1 Sparse solutions of linear inequalities

We first consider random instances of the model problem (1) of the form

minimize
x∈Rn

‖x ‖0
subject to Ax ≥ b and −M1n ≤ x ≤ M1n,

(42)
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where A ∈ Rm×n, b ∈ Rm, and M > 0. The test instances were generated using AMPL’s internal
random number generator, where the elements of A and b are independent uniform random variables
between -1 and 1.

Our numerical experiments compare the performance of different NLP optimization codes when
they are applied to the different NLP reformulations. Because these problems are nonconvex, we
also explore the effect of different starting points.

The NLP reformulations considered are (the first five were discussed in previous sections):

• “Half”: The half-complementarity formulation (6);

• “Aggregate”: The full complementarity formulation where the complementarity constraints are
reformulated by the inner product (17);

• “Individual”: The full complementarity formulation where the complementarity constraints are
reformulated by the Hadamard product;

• “Agg-Relaxed” and “Ind-Relaxed” are variants of “Aggregate” and “Individual” formulations,
respectively, where the “≤ 0” complementarity constraints are relaxed to “≤ 10−8”;

• “Squared”: The full complementarity formulation where the complementarity constraints are
reformulated using the square of the inner product.

• “AMPL”: This formulation uses the keyword complements in order to pose (3) directly as an
LPCC in AMPL. It is then up to the particular chosen optimization code to handle the comple-
mentarity constraints appropriately. Among the solvers considered here, only KNITRO is able
to handle the complements keyword. KNITRO then internally reformulates the complementarity
constraints using a penalty term that is added to the objective function; see [28] for details.

• “MILP”: The MILP formulation (7). Our test problems (42) explicitly include a bound on the
optimal value x∗, so that the same M can be used in (42) and (7). The solution for this formulation
is the global solution for (1).

• “LP”: The linear programming formulation (2).

Because the nonlinear optimization methods aim at finding only local (and not global) optimal
solutions of the nonconvex NLP reformulations, the choice of the starting point is crucial. In the
experiments, we considered the following options:

• Start1: Set x+ = x− = 0 and ξ = 0;

• Start2: Set x+ = x− = 0 and ξ = 1n;

• Start3: Let xLP be the optimal solution of the LP formulation (2). Then set x+ , max{0, xLP},
x− , max{0,−xLP}, and ξ = 0;

• Start4: Let xLP be the optimal solution of the LP formulation (2). Then set x+ , max{0, xLP},
x− , max{0,−xLP}, and ξ = 1n;

• Start5: Let xLP be the optimal solution of the LP formulation (2). Then set x+ , max{0, xLP},
x− , max{0,−xLP}, and ξ according to (4).

5.1.1 Pilot study on small problems

As a pilot study, we considered small problems with 30 constraints and 50 variables (i.e., m = 30,
n = 50), andM was chosen to be 100. To make statements with statistical significance, we generated
50 different random instances. Each of these instances is solved by 140 combinations of NLP solver,
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Start1 Start2 Start3 Start4 Start5
Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

CONOPT Aggregate 22.94 5.14 N/A all failed 14.32 2.97 9.16 2.24 14.32 2.97
Agg-Relaxed 8.86 2.36 N/A all failed 7.60 2.03 7.64 2.08 7.88 2.26
Individual 22.12 4.80 N/A all failed 14.32 2.97 8.96 1.99 14.32 2.97

Ind-Relaxed 9.02 2.39 N/A all failed 8.10 2.22 7.68 1.71 7.90 1.91
Squared 10.54 3.86 8.22 1.78 9.10 2.73 7.98 2.07 8.96 2.82

IPOPT Half 6.36 1.45 7.10 1.82 6.36 1.52 6.62 1.60 6.58 1.65
Aggregate 6.30 1.40 6.98 1.81 6.36 1.51 6.62 1.60 6.54 1.64

Agg-Relaxed 19.74 4.53 8.40 2.19 10.76 3.03 7.62 1.78 10.78 2.92
Individual 6.62 1.40 7.02 1.76 6.52 1.34 6.88 1.72 6.86 1.69

Ind-Relaxed 6.50 1.40 7.08 1.66 6.46 1.43 6.76 1.74 6.82 1.56
Squared 5.94 1.20 6.76 1.68 6.08 1.40 6.30 1.56 6.56 1.54

KNITRO AMPL 8.48 1.34 8.42 1.40 10.28 1.81 10.34 1.67 10.14 1.67
Half 8.44 1.36 8.40 1.26 10.12 1.67 10.34 1.67 10.04 1.62

Aggregate 7.54 1.99 7.60 1.95 7.52 1.84 7.60 2.01 7.64 1.91
Agg-Relaxed 8.40 1.96 8.06 1.78 7.46 1.80 7.48 1.72 7.46 1.90
Individual 7.98 1.36 7.46 1.51 8.42 1.47 8.30 1.47 8.26 1.59

Ind-Relaxed 7.98 1.36 7.42 1.47 8.50 1.52 8.30 1.49 8.26 1.52
Squared 8.10 1.84 8.30 1.59 8.34 1.65 8.12 1.77 8.08 1.76

MINOS Aggregate 17.76 3.42 16.24 3.98 14.32 2.97 14.32 2.97 14.32 2.97
Agg-Relaxed 17.76 3.42 16.04 4.09 14.32 2.97 14.16 2.84 14.32 2.97
Individual 17.76 3.42 17.74 3.42 14.32 2.97 14.36 3.02 14.32 2.97

Ind-Relaxed 17.76 3.42 17.72 3.40 14.28 2.92 14.36 2.91 14.32 2.97
Squared 11.18 2.78 11.90 3.26 8.28 2.62 8.20 2.33 7.76 1.94

SNOPT Aggregate 12.80 3.04 9.86 2.47 14.50 2.89 14.08 3.04 14.26 3.10
Agg-Relaxed 12.80 3.04 9.76 2.47 14.50 2.89 14.08 3.04 14.28 3.05
Individual 13.40 3.11 13.40 3.11 15.04 3.46 14.26 3.32 14.30 2.96

Ind-Relaxed 13.40 3.11 13.40 3.11 15.08 3.66 14.32 3.41 14.22 2.99
Squared 8.04 2.03 7.92 1.87 7.88 2.02 7.70 1.79 7.84 2.01

Table 1: Solution quality statistics for pilot study, grouped by solvers.

problem reformulation, and starting point, in addition to the LP and MILP formulations.

For each individual run, the point x∗ returned by the solver is accepted as solution if it satisfies
Ax∗ ≥ b, independent of the solvers’ exit status. In particular, we accept a solution as feasible if
‖Ax∗ − b‖1 ≥ 1e− 8. The number of nonzeros (i.e., ‖x∗‖0) is computed by counting the number of
elements with |x∗j | > 10−6. Table 1 lists the mean and standard deviation of ‖x∗‖0 for the different
combinations. We note that all 50 problems were solved (i.e., the returned point satisfied the linear
inequalities) for each combination, except for one CONOPT combination. As a reference, for the
LP option, the mean was 14.32 with standard deviation 2.97, and for the MILP option, the mean
was 4.88 with standard deviation 0.82.

To present the results in more detail, Figures 1(a)–1(e) depict, for each of the 50 instances, the
best `0-norm obtained by the different NLP solvers, in comparison to the LP approximation and
the (globally optimal) MILP solution. For each solver, the “Best-” line is the smallest ‖x∗‖0 value
obtained over all configurations for the same solver. In addition, the figures show the results ob-
tained with the formulation/starting-point combination giving the smallest mean by the respective
NLP solver. For example, in Figure 1(a), the line “CONOPT-Relaxed-3” shows the outcome for the
relaxed aggregate formulation and the 3-th starting point (Start3) with the CONOPT solver. As we
can see, all of the NLP solvers are able to find solutions that are sparser than those obtained by the
common `1-approximation. Indeed, the optimal solutions of some NLP solvers, particularly IPOPT
and KNITRO, are able to find points with sparsity very close to the sparsest solution possible, as
computed by the MILP formulation. Finally, Figure 1(f) shows the sparsest solution obtained by
any of the solver, formulation, and starting point combinations. We see that, for each instance, at
least one combination resulted in a solution that is equal or at most two nonzero elements worse
than the global solution.

These results indicate that the application of (standard) NLP solvers to complementarity formula-
tions of the `0-problem results in high-quality solutions, considerably better than what is obtained
by the common `1-approximation. This promising observation is noteworthy, given that the prob-
lems are highly nonconvex. From a theoretical standpoint, the NLP solvers are only guarateed to
converge to a KKT point (at least when a constraint qualification holds), and as shown in Corol-
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(a) CONOPT
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(b) IPOPT
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(c) KNITRO
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(d) MINOS
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(e) SNOPT
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(f) Best of all solvers

Figure 1: Sparsest solutions for 50 random problems using different NLP solvers, ordered by MILP solutions.

lary 1, there are exponentially many (undesirable) KKT points to which the NLP solver might
potentially converge. In practice, however, the line-search or trust-region globalization mechanisms
usually guide the NLP solvers to local minimizers. As discussed in Section 4.3, for the relaxed
formulations these correspond to non-dominated points from which there is no obvious direction to
improve the objective.

It is also somewhat surprising that, in this preliminary experiment, the squared formulation resulted
in the lowest sparsity in some cases, even though no KKT point exists for any instance. The fact
that the solvers terminate nevertheless can be explained by looking at the optimality conditions for
the squared formulation. These conditions can only be satisfied in exact arithmetic if the product
of some Lagrangian multipliers with the (partial) Jacobian matrix Jξφ(x+, x−, ξ) of the squared
reformulation φ(x+, x−, ξ) = (ξT (x+ + x−) + (x+)T (x−))2 is nonzero. Note that Jξφ(x+, x−, ξ) is
zero at every complementary point. However, as the iterates of the NLP solver converge to such
a point, the product of Jξφ(x+, x−, ξ) with the multipliers can converge to a nonzero value when
the multipliers become arbitrarily large. So, even though there is no finite KKT point, the NLP
solvers’ termination tests can be satisfied by diverging multipliers.
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We also note that the CONOPT, MINOS, and SNOPT solvers usually do not converge to good
solutions for the Aggregate and Individual formulations when started from a point obtained by
the LP formulation (Start3, Start4, and Start5). Indeed, in many cases the solvers terminate
immediately at such a starting point. This can be explained by the fact that any feasible point is
a KKT point for these formulations, and the active set solvers simply compute the corresponding
multipliers at the starting point, so that the termination test is immediately satisfied. This is
in contrast to the interior point solvers IPOPT and KNITRO, which are required to move the
starting point away from bound constraints. This modification results in violations of the respective
reformulation of the complementarity constraints and forces the algorithm to take steps.

5.1.2 Large-scale problems

Based on the results in the pilot study, we pursued further numerical studies on larger problems,
using the NLP solvers CONOPT, IPOPT and KNITRO. For this set of experiments we generated
30 random instances of (42) with 300 constraints and 1,000 variables.

With this problem size, obtaining the true global optimum with the MILP formulation (7) is not
possible with reasonable computational effort, even though we chose a reasonable big-M constant
(M = 100) in (42). In order to get an idea of what the sparsest solution for an instance might
be, we ran CPLEX in multi-threaded mode for 10 minutes, which is roughly equivalent to more
than an hour of CPU time (this option is labeled MILP-600sec), and we report the sparsity of the
best incumbent. Similarly, we also explored the quality of a heuristic solution that an MILP solver
is able to find in a time that is comparable to that taken by the NLP solvers. For this purpose,
the MILP60 option reports the best incumbent obtained in one minute, equivalent to about 2.5
minutes of CPU time. In these experiments, CPLEX was run with the mipemphasis=1 option, to
focus on finding good heuristic solutions quickly.

As we observed in the small-case study, the `1-approximation (2) did not lead to good solutions.
However, it is common to enhance the LP solution by some improvement heuristic. One such
approach is the iterative re-weighted `1-minimization scheme proposed in [9]. Starting with the
optimal solution x∗,0 of (2), this procedure optimizes a sequence of LPs for k = 0, 1, 2, . . . to generate
iterates from

x∗,k+1 = argmin
x∈Rn

{∑
i=1

wk,i|xi|, subject to Ax ≥ b and −M1n ≤ x ≤ M1n

}
,

with weights wk,i = 1/|x∗,ki |. Here, we understand wk,i = 1/0 = ∞ as xi being fixed to zero. We
ran this procedure for 30 iterations (after which the iterates had settled), and report the outcome
of this procedure under the label “LPReweight”.

The results of the experiments are depicted in Figure 2. First, we see in Figure 2(a) that the
iterative re-weighting procedure indeed improves the standard `1-approximation considerably; it
more than halves the objective function. However, there is still a significant gap (17% – 66%)
between LP-Reweight and the best solution found by the MILP solver within an hour of CPU
time. We note that the MILP solver is not able to find any good solution within about 2.5 minutes
of CPU time.

Figures 2(b) show the solution quality obtained with different reformulations of the `0-problem
when solved with CONOPT. To limit the amount of data in the graphs, we plot only selected
representative combinations, including the best ones. In this experiment, the relaxed aggregate
formulation obtains solutions of similar quality to those obtained by the LP-Reweight option.
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(c) KNITRO
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Figure 2: Solution sparsities for 30 large-scale random problems using different NLP solvers, ordered by
MILP solutions.

‖x∗‖0 CPU time
Mean StdDev Mean StdDev

LP 149.33 9.93 4.87 0.59
LP-Reweight 66.00 6.22 5.26 0.60
MILP-60sec 169.83 20.42 373.65 12.89
MILP-600sec 48.03 3.20 4116.37 142.83

CONOPT-Agg-Relaxed-4 61.23 4.90 14.33 2.49
CONOPT-Agg-Relaxed-5 64.23 5.69 32.30 3.84

IPOPT-Aggregate-1 46.47 3.88 544.27 354.91
IPOPT-Individual-1 49.00 3.73 44.99 45.50

KNITRO-AMPL-2 58.13 4.90 46.46 8.95
KNITRO-Ind-Relaxed-2 54.57 4.72 121.52 93.42

Table 2: Summary statistics for large-scale study.

The KNITRO results are reported in Figure 2(c) for the relaxed individual formulation and AMPL
keyword option which both give better solutions than the LP-Reweight option. IPOPT results are
reported in Figure 2(d) for the aggregate and individual formulations. We see that the solution
quality is comparable with that obtained by the MILP solver, and for the Aggregate formulation
often even better.

For practical purposes it is also important to consider the computation time required to solve the
NLP formulations. Table 2 lists the average solution quality and required CPU time for represen-
tative combinations of formulations and starting points. We note that, on average, solutions within
4% of the MILP-600sec objective can be computed in less than one minute (“IPOPT-Individual-1”).
Solutions comparable and better than the MILP-600sec objective can be computed in 10 minutes
on average (“IPOPT-Aggregate-1”), but with significant variation in the computation time.
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5.2 Traffic network problems with fixed costs

The final set of numerical experiments considers traffic planning problems, formulated as the fol-
lowing network flow problem with nodes (i ∈ N ) and arcs ((i, j) ∈ A ⊆ N ×N ):

minimize
x

∑
(i,j)∈A

fij‖xij‖0 +
∑
i∈N

vi

( ∑
(i,j)∈A

xij

)
+
∑
i∈N

qi

( ∑
(i,j)∈A

xij

)2
subject to Ax = b, x ≤ c, and x ≥ 0.

(43)

Here, b ∈ R|N | are the external traffic volumes (inflows/outflows) at each node, and A ∈ R|N |×|N |
represents the connectivity (or adjacancy) matrix of the network. The vector c ∈ R|A| denotes the
capacity of each arc. With each arc (i, j), we associate some fixed costs fij that has to be paid if
the arc is used (has non-zero flow). In addition, we consider node-based congestion costs that grow
quadratically in the total inflow into a node.

To investigate the performance of the NLP formulations for a problem of realistic size, we obtained
the incidence matrices A of the Austin network (7,388 nodes and 18,691 arcs) from the trans-
portation network problem collection provided at http://www.bgu.ac.il/~bargera/tntp/. The
other parameters in (43) were chosen as fij = 5 and cij = 10 for each arc, and the variable and
quadratic costs vi and qi were both independently chosen from uniform random variables between
1 and 5. Based on the rationale that the nodes in the instances are ordered according to their geo-
graphic positions, we chose the first five nodes as sources with inflow uniformly chosen at random
between (2, 10), and the last five as sinks with equal amounts of outflow. In this way, long paths
are generated in the optimal solution.

We compare the “Aggregate” and “Individual” NLP formulations of the complementarity reformu-
lation (9) of (43) with the standard MIQP formulation of the fixed-cost term in (43) (similar to
the MILP reformulation (7) of the complemenarity reformulation (9)).

We point out that it has been demonstrated that the solution time for the MIQP formulation of
problems of a similar kind can be dramatically reduced using perspective formulations [19, 22].
That approach, however, can only be applied when the objective function is separable, which is not
the case here. Therefore, we are comparing the NLP reformulation proposed in this paper with the
time required to solve the straight-forward MIQP formulation.

We performed experiments for random 20 instances, where the NLP formulations are solved with
IPOPT. As starting points we chose

• all-zero: xij = 0 and ξij = 0 for all (i, j) ∈ A.

• all-off: xij = 0 and ξij = 1 for all (i, j) ∈ A.

• all-on: xij = cij and ξij = 0 for all (i, j) ∈ A.

• all-max: xij = cij and ξij = 1 for all (i, j) ∈ A.

In Table 3 and Figure 3 we present some of the NLP runs that consistently achieved better objec-
tive values than the incumbent found by CPLEX after 10 minutes wall clock time for the MIQP
formulation. In analogy to the “LP” formulation in Section 5.1, we also include results in which
the `0-norm in (43) was replaced by the `1-norm, leading to a QP. However, the objective values
reported for this option are those with the original `0-norm.

Clearly, the NLP solvers are able to achieve significantly better objective values than the global
MILP solver, in a very small fraction of the time (around 13 CPU secs vs. 1 CPU hour). In
particular, we observe that the solutions obtained by the NLP solver are much sparser than those
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Opt. Obj. CPU time Sparsity ‖x∗‖0
Mean StdDev Mean StdDev Mean StdDev

L1-QP 24885.58 4804.71 0.99 0.07 2724.90 418.42
MIQP-600sec 27324.94 8796.15 3643.73 108.77 2253.55 2065.14

IPOPT-Ind-all-max 16636.52 4093.09 12.79 1.97 893.75 264.41
IPOPT-Ind-all-off 16983.78 4219.95 44.62 70.10 466.30 105.41
IPOPT-Agg-all-max 17061.89 4444.53 40.82 19.65 1010.15 379.71

Table 3: Summary statistics for Austin traffic network.
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Figure 3: Optimal objective values for different formulations of the traffic problem, ordered by NLP objec-
tives.

found for the discrete formulation. This indicates that NLP solvers applied to complementarity
formulations of `0-norm structures such as startup costs might be a promising alternative to mixed-
integer formulations and deserve further investigation.

6 Conclusions and Outlook

We presented several nonlinear programming reformulations of the `0-norm minimization problem.
Our numerical study suggests that standard NLP codes are able to generate solutions that can be
significantly better than those obtained by convex approximations of the NP-hard problem. This is
somewhat remarkable because the NLP formulations are highly nonconvex and the usual constraint
qualifications, such as MFCQ, do not hold.

Typically, NLP algorithms are designed to find a KKT point, ideally one that satisfies the second-
order necessary optimality conditions. Our analysis pertaining to the optimality conditions of the
NLP formulations finds that, for the simple problem with linear constraints in the introduction,
any feasible point for the `0-norm minimization problem is such a KKT point. Consequently, from
this perspective, any feasible point seems equally attractive to the NLP solver, and therefore these
considerations do not explain the observed high quality of the solutions.

We also discussed the properties of solutions for relaxations of the NLP formulations as the relax-
ation parameter is driven to zero. We established that global minimizers of the relaxed problem
converge to a global minimizer of original problem. This result justifies the choice of the relaxation.
Furthermore, for a small example problem with linear constraints we showed that there are only
a few KKT points for the relaxed problem, and that those converge to a small number of limit
points as the relaxation parameter goes to zero. This is in contrast to the earlier result that does
not distinguish between any two feasible points. In addition, we established that a KKT point for
the relaxed NLP that is not close to a global minimizer of the original problem is a local maximizer
for the relaxation. As a consequence, an NLP solver, when applied to the relaxation with a small
relaxation parameter, will most likely converge to a point that is close to a global minimizer of the
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original `0-norm problem.

These observations might help to explain why the NLP solvers compute points with objective values
close to the globally optimal value in our experiments. Some solvers relax any given NLP by a small
amount by default, and therefore explicitly solve a relaxation of the complementarity reformulation.
For other solvers, numerical inaccuracies or the linearization of the nonlinear reformulations of the
complementarity constraints at infeasible points might have an effect that is similar to that of a
relaxation. The details of such an analogy, as well as the generalization of the results beyond the
particular small example, are subject to future research.

Our numerical experiments did not identify a clear winner among the different reformulations of the
`0-norm minimization problems. Similarly, while some NLP codes tended to produce better results
than others, it is not clear which specific features of the algorithms or their implementations are
responsible for finding good solutions. We point out that each software implementation includes
enhancements, such as tricks to handle numerical problems due to round-off error or heuristics
that are often not included in the mathematical description in scientific papers. Because the NLP
reformulations of the `0-problems are somewhat ill-posed, these enhancement are likely to be crucial
for the solver’s performance. Once the relevant ingredients of the reformulation and optimization
method have been identified, it might be possible to design specialized NLP-based algorithms that
are tailored to the task of finding sparse solutions efficiently.

Finally, the numerical study in this paper has been performed using randomly generated model
problems. Future efforts will explore the suitability of the proposed approach for `0-norm optimiza-
tion problems arising in particular applications areas including compressive sensing [8, 12], basis
pursuit [3, 11], machine learning [10, 30], and genome-wide association studies [37].
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