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This article compares algorithms for solving portfolio optimization problems involving value-at-risk (VaR). These prob-
lems can be formulated as mixed integer programs (MIPs) or as chance-constrained mathematical programs (CCMPs).
We propose improvements to their state-of-the-art MIP formulations. We also specialize an algorithm for solving gen-
eral CCMPs, featuring practical interpretations. We present numerical experiments on practical-scale VaR problems using
various algorithms and provide practical advice for solving these problems.

Keywords: value-at-risk; portfolio optimization; mixed integer programming; mixed integer linear programming; chance-
constrained mathematical programs
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1. Introduction
Value-at-risk (VaR) and conditional value-at-risk (CVaR)
are both risk measures that describe tail risks of finan-
cial portfolios. VaR can be defined as a percentile of the
loss distribution and CVaR as the average loss for losses
exceeding the corresponding VaR. Readers are encour-
aged to refer to Rockafellar and Uryasev (2002) for
rigorous discussions on VaR and CVaR for general dis-
tributions. The study of coherent risk measures (Artzner
et al. 1999) and the development of a convex CVaR
optimization framework (see Krokhmal et al. 2002, Rock-
afellar and Uryasev 2002, and references therein) show
advantages of CVaR over VaR. In particular, scenario-
based CVaR problems can be reformulated as linear pro-
grams (LPs). Even when the number of assets and the
number of scenarios are large, there are special formula-
tions and algorithms that can solve CVaR problems more
efficiently than the originally proposed LP reformulation
(see Hong and Liu 2009, Lim et al. 2010, Ogryczak and
Śliwiński, 2011, for example). Nevertheless, since its intro-
duction as a risk measure VaR has played an important
role in both practical applications and academic research
(see Jorion 1997, Pritsker 1997, for example). In par-
ticular, VaR has been written into industry regulations
such as Basel Accord II (BCBS 2004) as a capital ade-
quacy requirement. Despite the aforementioned favorable
developments for CVaR, VaR retains a similar status in
Basel Accord III (BCBS 2010), which is scheduled to be
implemented from 2013 to 2018. In addition to its prac-
tical importance, VaR also attracts significant academic
research attention. For example, Kou and Peng (2012)
provide counterarguments against common criticisms, and
Kou et al. (2013) recommend a new risk measure for regu-
latory purpose, the tail conditional median, which is essen-
tially VaR at a higher confidence level. As a consequence,

VaR optimization both is a valuable tool in practice and an
interesting area of research.

VaR problems can be solved heuristically or optimally.
Readers are encouraged to refer to Gilli and Këllezi (2002),
Larsen et al. (2002), and Hong et al. (2014) for various
heuristics for VaR problems. In this article we explore
ways to solve VaR problems to global optimality. Since
VaR is defined as a percentile of the portfolio loss distribu-
tion, optimization problems with a VaR constraint or objec-
tive can be naturally formulated as chance-constrained
mathematical programs (CCMPs). A common approach
to solve CCMPs is to reformulate them into mixed inte-
ger programs (MIPs). Two MIP formulations for VaR
portfolio optimization problems are proposed by Benati
and Rizzi (2007) and are commented on by Lin (2009).
Moreover, there have been advances in recent years for
solving general CCMPs directly (see Qiu et al. 2012, Song
et al. 2012, Luedtke 2013, for example). We examine both
the traditional approach and the new advances and compare
their effectiveness in solving practical VaR problems.

This paper is organized as follows. Section 2 reviews
the definition of VaR and presents common MIP formula-
tions for VaR portfolio optimization problems. Section 3
proposes some improvements for the MIP formulations.
The application of a decomposition algorithm for general
CCMPs to VaR problems is shown in Section 4. Section 5
summarizes results of numerical experiments. Section 6
concludes with practical advice for solving large-scale VaR
problems.

2. VaR problems and MIP formulations
Given a universe of n assets and a set of m scenarios,
denote the loss (or the negative return) incurred in scenario
i by per unit of asset j by Lij . We denote the loss matrix by
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L = [Lij ] for i = 1, . . . , m, j = 1, . . . , n. Each row of the
loss matrix, Li·, represents the assets’ losses in scenario i,
i = 1, . . . , m. We denote the probability of realizing sce-
nario i by pi, i = 1, . . . , m and the decision variable by x ∈
X , where X is the set of all feasible portfolios. We assume
that the loss of asset j in any scenario is proportional to
xj , j = 1, . . . , n. Then the portfolio loss random variable is
represented by the vector l = l(x, L) = Lx, where li = Li·x
represents the portfolio loss in the ith scenario.

Given α ∈ [0, 1], VaR at confidence level α, or α-VaR,
of the portfolio loss random variable l is defined as its α-
percentile. Rigorous definitions of α-VaR for general dis-
tributions can be found in Rockafellar and Uryasev (2002).
In our settings the α-VaR is computed as follows.

PROPOSITION 2.1 Assume that for each portfolio x ∈ X
the distribution of the portfolio loss l(x, L) is concentrated
in finitely many points, that is, the vector l = Lx has finite
dimension. Let those losses be ordered l(1) ≥ l(2) ≥ · · · ≥
l(m) and let the corresponding probabilities be p ′i = Pr(l =
l(i)) > 0. The α-VaR of the loss is given by ζα(x) := l(mα+1)

where mα is the unique index such that
∑mα

i=1 p ′i < 1− α ≤∑mα+1
i=1 p ′i .

To simplify exposition we assume that all scenarios
are equally probable, that is, pi = 1/m for i = 1, . . . , m.
Then the unique index mα in Proposition 2.1 is given by
m∗ = �(1− α)m�. The extension to general discrete distri-
butions is straightforward. We are interested in finding a
portfolio with minimum α-VaR of portfolio losses among
all feasible portfolios, that is,

min{ζα(x)|x ∈ X }. (1)

The set of feasible portfolios X is described by a given set
of portfolio constraints. Examples of portfolio constraints
considered in practice are budget constraint (

∑n
i=1 xj =

1), no short-selling constraints xj ≥ 0, j = 1, . . . , n, etc.
One can formulate (1) into a mathematical program using
implication constraints, which requires additional binary
variables and an auxiliary variable. In particular, by intro-
ducing binary variables b ∈ {0, 1}m and an auxiliary vari-
able z ∈ R we can reformulate (1) into the following
mathematical program with implication constraints.

minimize z (2a)

s.t. bi = 0⇒ Li·x ≤ z, ∀i = 1, . . . , m, (2b)
m∑

i=1

bi ≤ m∗, and (2c)

(x, b, z) ∈ X × {0, 1}m × R. (2d)

Constraints (2b) and (2c) ensure that Pr{l(x) ≤ z} ≥ α,
so for any feasible solution (x, b, z) the value of z is an
upper bound for ζα(x). Moreover, since z ∈ R and (2) is a
minimization problem, if (x∗, b∗, z∗) is an optimal solution,
then z∗ must be the least upper bound for ζα(x∗), which is
ζα(x∗) itself. In particular, z∗ equals the (m∗ + 1)th largest
portfolio loss, that is, z = Li∗·x∗ for some scenario i∗. If the

probability of realizing each scenario is different, that is,
Pr{l(x) = Li·x} = pi, i = 1, . . . , m, the only change needed
is replacing (2c) by

∑m
i=1 pibi ≤ α.

A common way to solve (1) is to reformulate (2) into a
MIP using the so-called ‘big-M’ constraints given by

Li·x −Mibi ≤ z, ∀i = 1, . . . , m. (3)

If one replaces (2b) with (3), then the MIP formulation
for (1) is obtained, provided that the coefficient vector
M ∈ R

m is sufficiently large. It is clear that for any Mi ∈ R,
Li·x ≤ z if bi = 0. If bi = 1, then (2b) does not impose
any restriction on the variables (x, b, z). Thus if Mi ∈ R

is large enough to ensure the constraint Li·x −Mi ≤ z is
not active when bi = 1, then (3) is a valid reformulation
of (2b). However, big-Ms that are too large result in poor
continuous relaxations in branch-and-bound methods and
hence hinder computational performance. Suitable choices
of Mi, i = 1, . . . , m for constraints (3) is the main focus in
the next section.

3. Big-Ms tailored for VaR problems
In general, finding suitable big-Ms for MIP formulations
can be a challenging task. For portfolio optimization prob-
lems such as (1) there is often a natural way of bounding
the portfolio losses using bounds of individual assets’
losses, which can help calculating big-Ms. For example,
to deactivate constraint (3) it requires Mi ≥ Li·x∗ − z∗ =
Li·x∗ − Li∗·x∗ for some scenario i∗. Without knowing the
optimal solution an upper bound on the difference of sce-
nario losses is needed. Knowing the bounds of portfolio
losses l− ≤ Lx ≤ l+ for some l− ≤ l+ ∈ R

m, then Mi =
l+i − l−i , i = 1, . . . , m is valid for (3).

Due to limited liability, common stocks have a max-
imum loss of 100%. The big-Ms considered by Benati
and Rizzi (2007) are based on this bound. Similarly, one
can derive natural bounds for an insurance portfolio or
any long-only credit portfolio because individual losses
in these cases are non-negative. Prior to the develop-
ments in chance-constrained mathematical programming
in the last few years (see Qiu et al. 2012, Luedtke 2013,
among others), this natural way of calculating big-Ms was
the state-of-the-art approach for solving VaR problems
as MIPs. We present a different choice of big-Ms that is
tailored to VaR problems. This choice entails additional
computational costs but we expect it to improve the over-
all computational efficiency. The following discussions
about big-Ms not only reveal a choice of big-Ms for VaR
problems but also provide meaningful interpretations for a
specialized decomposition algorithm, which is presented in
the next section.

DEFINITION 3.1 For any two scenarios i, j , define the
relative excessive loss (REL) of i relative to j as

dj (i) = max{(Li· − Lj ·)x|x ∈ X }. (4)

Consider the following pivoting procedure: For a sce-
nario i ∈ {1, . . . , m}, called the pivot scenario, we calculate
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dj (i) for all j = 1, . . . , m, and then sort them to obtain a
permutation σ(i) of {1, . . . , m} such that

dσ1(i)(i) ≤ dσ2(i)(i) ≤ · · · ≤ dσm(i)(i). (5)

The following proposition shows how the RELs and the
pivoting procedure relate to the feasible set of (2). A valid
choice of big-Ms for constraints (3) is presented based on
these relationships.

PROPOSITION 3.2 Given any pivot scenario i ∈
{1, . . . , m}, the following constraints are valid for any
feasible solution (x, b, z) to problem (2).

Li·x − dσm∗+1(i)(i) ≤ z (6a)

bσk(i) = 0⇒ Li·x − dσk(i)(i) ≤ z, ∀k = 1, . . . , m (6b){
Li·x − dσk(i)(i) ≤ z, if bσk(i) = 0, k = 1, . . . , m∗

Li·x − dσm∗+1(i)(i) ≤ z, otherwise.
(6c)

A formal proof for Proposition 3.2 is given in Appendix
1. We present here the intuitive interpretations for con-
straints (6). By definition of α-VaR in our setting there can
be at most m∗ scenarios with positive excessive losses over
α-VaR. However, for any x ∈ X and any pivot scenario
i, by definition of RELs and the pivoting procedure there
are at least m∗ + 1 scenarios whose losses are greater than
or equal to Li·x − dσm∗+1(i)(i). Therefore α-VaR must be at
least Li·x − dσm∗+1(i)(i), which validates constraint (6a). If
bσk(i) = 0, the σk(i)th scenario loss is less than or equal to
α-VaR. Therefore the difference between the ith scenario
loss and the α-VaR cannot exceed that between the ith sce-
nario’s and the σk(i)th scenario’s loss, whose maximum
is dσk(i)(i). The above interpretations remain valid for any
upper bound of α-VaR instead of α-VaR. For any feasible
solution (x, b, z) to (1), z is an upper bound of α-VaR for
portfolio x thus constraints (6a) and (6b) are valid. Based
on Equation (6a) we propose the following big-Ms.

PROPOSITION 3.3 With the following big-Ms, Equation
(3) are valid constraints for Equation (2):

Mi = dσm∗+1(i)(i)− di(i) = dσm∗+1(i)(i), ∀i = 1, . . . , m,
(7)

where the second equality holds because di(i) = max
{(Li· − Li·)x|x ∈ X } = 0.

Proof For any scenario i, if bi = 0 then Equation (3)
requires that Li·x ≤ z. If bi = 1, then Equation (3) becomes
Equation (6a). Because Equation (6a) is valid for any
feasible solution to (2), the big-M constraint (3) is not
active. Therefore, Equation (7) is valid because this choice
of big-M makes Equation (3) a valid reformulation of
Equation (2b). �

In general, computing Equation (7) requires solving
m2 optimization problems. Efficient algorithms for solving
these problems, if available, should always be consid-
ered. For example, if X has one linear constraint and

bound constraints then Equation (4) is a continuous knap-
sack problem with one constraint, which can be solved
efficiently with an O(n log n) algorithm. Suppose X is
described by a small number of N constraints. In general,
Equation (4) has n variables and N constraints, which is
usually a small optimization problem. Qiu et al. (2012)
propose an iterative algorithm to tighten the big-Ms. In that
proposal each iteration of the algorithm requires solving
m optimization problems with m+ n variables and m+ N
constraints, which may be computationally expensive in
financial applications where n� m and N � m.

A decomposition algorithm is presented in the next
section. We will see the similarities between con-
straints (6b) and (6c) and the valid inequalities used in the
decomposition algorithm in the following discussions.

4. A branch-and-cut decomposition algorithm for
VaR problems

Note that Equation (1) can be viewed as a special case of
CCMP because it can be cast as

min{z|Pr{Lx − z ≤ 0} ≥ α, (x, z) ∈ X × R}. (8)

In this section, we apply the decomposition algorithm pro-
posed by Luedtke (2013) for general CCMPs to solve
Equation (8). Some components of the algorithm can be
simplified due to the VaR problems’ special structures.

The outer loop of decomposition algorithm proposed by
Luedtke (2013) is similar to a branch-and-bound method.
A generic branch-and-bound method for solving MIPs can
be summarized as follows. At the beginning, a continuous
relaxation of a master problem is solved where all integral-
ity constraints on variables are relaxed. This initial master
problem is commonly referred to as the root node. Two
child nodes are then created, which inherit the master prob-
lem and one of the constraints bi ≤ b̂−i or bi ≥ b̂+i where bi

is an integral variable but has a fractional optimal value b̂i
at the current node and b̂−i (respectively, b̂+i ) is the largest
(respectively, smallest) integer that is less than (respec-
tively, greater than) b̂i. Based on the optimal solution of a
child node, new child nodes are created. In general, a node
is fathomed when it is infeasible, when all discrete vari-
ables happen to have optimal integer values, or when the
optimal objective is worse than the best optimal objective
from all previously found integral solutions. A fathomed
node will not be processed any further. A node is open if it
has not been fathomed yet. The branch-and-bound method
terminates when there are no open nodes.

As stated by Luedtke (2013), the only important differ-
ence between the decomposition algorithm and a standard
branch-and-bound algorithm is how nodes are processed.
The decomposition algorithm generates valid inequalities
based on optimal solutions to current node. The current
node is solved repeatedly if a valid inequality is violated
and added to the current node. The initial master problem
for the decomposition algorithm may not be a complete
description of the original chance-constrained problem so
it is possible to generate valid inequalities even when the
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solution to the current node is integral. For ease of discus-
sion, if the solution to the current node is integral, then
the valid inequalities generated with respect to this solu-
tion are referred to as lazy constraints. Otherwise when the
solution to current node is fractional then the valid inequal-
ities generated are called user cuts. This terminology is
consistent with those in the CPLEX documentation (IBM
ILOG 2013).

Applying the decomposition algorithm proposed by
Luedtke (2013) to solve Equation (8) requires solving a
master problem of the following form:

MP(N0, N1, C) := min z (9a)

s.t.
m∑

i=1

bi ≤ m∗, b ∈ [0, 1]m (9b)

(x, b, z) ∈ C, (x, z) ∈ X × R (9c)

bi = 0, i ∈ N0, bi = 1, i ∈ N1, (9d)

where C ⊆ R
n+m+1 is a polyhedron that contains the fea-

sible region of Equation (2), and N0, N1 ⊆ {1, . . . , m} are
such that N0 ∩ N1 = ∅. Note that the description of C may
not contain all implication constraints at the beginning,
but it will be augmented when processing the branch-
and-bound tree so that correctness of the algorithm is
guaranteed.

The following components are needed to fully specify
our decomposition algorithm:

(i) Given a solution to the current node, identify pivot
scenarios from which violated valid inequalities
may be obtained.

(ii) Solve subproblems that are required to generate
valid inequalities.

(iii) Identify a good violated inequality from the set of
inequalities generated from step (ii).

Component (i) can be specified in a straightforward
manner. As shown by Luedtke (2013), given a solution
(x̂, b̂, ẑ) to the current node, any scenario whose implica-
tion constraint is violated can be considered to generate
valid inequalities. For our problem specifically, we con-
sider a scenario i as a pivot scenario if b̂i = 0andLi·x̂ > ẑ.
There may be multiple scenarios that satisfy this condition.
Luedtke (2013) shows that if the candidate solution is not
feasible for Equation (2), then for any of these scenarios at
least one valid inequality, which will be presented below,
is violated and can be added to C.

To specify component (ii), suppose scenario i is cho-
sen to be a pivot scenario. If one follows the steps of
the general decomposition algorithm in the original pro-
posal (Luedtke 2013) then the required single-scenario
subproblems for scenario i are hj (i) = min{z − Li·x|z −
Lj ·x ≥ 0, (x, z) ∈ X × R} for all j = 1, . . . , m. We suggest
the following simplifications to these subproblems:

hj (i) = min{z − Li·x|z − Lj ·x ≥ 0, (x, z) ∈ X × R}
= min{Lj ·x − Li·x|x ∈ X } = −dj (i) (10)

because z ∈ R and appears in only one constraint z −
Lj ·x ≥ 0. Our suggestion helps to reduce one variable and
one constraint in every subproblem. This reduction not
only helps to solve the subproblems more efficiently but
also lends the subproblems practical interpretations in the
context of VaR-optimization, as discussed in Section 3.

To condense notation, the dependence on pivot scenario
i for dj (i) and σ(i) is suppressed in the following discus-
sion. After pivoting on scenario i (i.e. calculating its RELs
and sorting them) the following inequalities

Lix − z − (dσm∗+1 − dσk )bσk ≤ dσk , k = 1, . . . , m∗ (11)

are valid for the feasible set of Equation (2). Inequali-
ties (11) can be viewed as an application of Lemma 1 of
Luedtke (2013) to the feasible set of Equation (2). Alterna-
tively, they can also be seen as a way to formulate both
Equations (6a) and (6b) in one inequality for scenarios
σ1, . . . , σm∗ . In particular, if bσk = 1, then Equation (11)
resembles Equation (6a). If bσk = 0, then Equation (11)
resembles Equation (6b). The following theorem presents
a family of valid inequalities by mixing Equation (11). The
valid inequalities generated in component (ii) are presented
in the following theorem.

THEOREM 4.1 For any pivot scenario i, let R =
{ρ1, . . . , ρj ∗ } ⊆ {σ1, . . . , σm∗ } be any non-empty index set
such that dρj ≤ dρj+1 for j = 1, . . . , j ∗, where dρj ∗+1 =
dσm∗+1 . Then the inequalities

Li·x − z −
j ∗∑

j=1

[dρj+1 − dρj ]bρj ≤ dρ1 (12)

are valid for the feasible set of Equation (2).

Theorem 4.1 is a special case of Theorem 3 of
Luedtke (2013) and readers are encouraged to refer to his
discussion on the strength of these inequalities. It is ben-
eficial to have ρ1 = σ1 in Equation (12) because in that
case the inequalities are facet-defining in a certain sense
(Luedtke 2013). Moreover, setting R = {σ1, σk} for some
k ∈ {2, . . . , m∗} yields the inequality

Li·x − z − (dσm∗+1 − dσk )bσk − (dσk − dσ1)bσ1 ≤ dσ1 , (13)

which dominates inequality (11) for this particular k. We
observe that by setting R = {i} inequalities (12) resem-
ble the form of big-M constraints (3) with big-Ms defined
in Equation (7). Therefore the specialized decomposi-
tion algorithm is able to generate big-M constraints when
needed.

It is shown by Luedtke (2013) that constraints (12)
are both a necessary and sufficient description for the
implication constraints (2b). The discussion on big-Ms
in Section 2 sheds some light on the interpretations of
Equation (12). They are a compact way of expressing the
necessary conditions (6c). Specifically, any (x, b, z) that
satisfies Equation (12) also satisfies Equation (6c).

Lastly, we specify component (iii). For each pivot
scenario i there are exponentially many (2m∗ − 1 to be
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precise) valid inequalities of the form (12). Separating a
‘good’ valid inequality from this exponential family is the
next task. An O(m∗ log m∗) separation algorithm is pro-
posed by Günlük and Pochet (2001) and is employed in
Luedtke (2013). We show that the complexity of the sep-
aration algorithm proposed by Günlük and Pochet (2001)
improves from O(m∗ log m∗) to O(m∗) when it is imple-
mented as a subroutine of the decomposition algorithm.
This is not only true in our VaR problem but also true in
general when implementing the decomposition algorithm
in Luedtke (2013) to solve CCMPs.

We first formulate the separation problem mathemati-
cally. Adding dσm∗+1 = dρj ∗+1 to both sides of Equation (12)
we obtain (Li·x − z − dσm∗+1)−

∑j ∗
j=1(dρj+1 − dρj )bρj ≤

(dρ1 − dρj ∗+1). Then we have (Li·x − z − dσm∗+1)−
∑j ∗

j=1

(dρj+1 − dρj )bρj ≤
∑j ∗

j=1(dρj − dρj+1) by replacing the
RHS with a telescopic sum. Finally, we group the like
terms and arrive at the following inequality:

Li·x − z − dσm∗+1 ≤
j ∗∑

j=1

(dρj − dρj+1)(1− bρj ). (14)

Although Equation (14) is algebraically equivalent to
Equation (12), its LHS is independent of the choice of
the index set R. Given a candidate solution (x̂, b̂, ẑ) to the
current node, that is, b̂ may be fractional, one can mini-
mize the RHS of Equation (14) to identify a most violated
inequality in Equation (12), if any, or determine that none
can be found. The minimization problem to be solved is as
follows.

min
ρ1,...,ρj ∗

j ∗∑
j=1

(dρj − dρj+1)(1− b̂ρj ) (15a)

s.t. {ρ1, . . . , ρj ∗ } ⊆ {σ1, . . . , σm∗ }, and (15b)

dρj ≤ dρj+1 , ∀j = 1, . . . , j ∗. (15c)

Next we examine optimal solutions for Equation (15).
Observe that the index set R′ = R ∪ {σ1} for any feasible
R is also feasible and has objective value no greater than
that of R. Therefore there is at least one optimal solution in
which σ1 is a member. Following the arguments in Günlük
and Pochet (2001) we can find an optimal index set R∗ =
{ρ1, . . . , ρj ∗ } which satisfies the conditions ρ1 = σ1 and
b̂ρ∗j < b̂ρj ∗−1 < · · · < b̂ρ1 . An O(m∗) algorithm for identify-
ing such an index set is shown in lines 6 to 9 in Algorithm 2
in Appendix 2.

We state a basic version of the specialized algorithm
for solving VaR problems in Algorithm 1 in the appendix.
The algorithm is a specialization of the one proposed
by Luedtke (2013) with a detailed separation subroutine
Algorithm 2. The general mechanism of the algorithm can
be found in its original proposal and is omitted to avoid
repetition. The user cuts added (Line 17 of Algorithm 1)
do not affect the correctness of the algorithm but may
be used to improve computational efficiency. For exam-
ple, one can include user cuts every other 50 nodes in
the branch-and-bound tree or include only user cuts that

have significant violations. In addition, this decomposi-
tion algorithm can be used in conjunction with the special
branching scheme proposed by Qiu et al. (2012). The spe-
cial branching scheme adds a cut of the form Li·x ≥ z to
nodes that have i ∈ N1 and all subsequent child nodes.
Such local cuts enforce the implication bi = 1⇒ Li·x ≥ z
which does not affect the correctness of the decomposi-
tion algorithm. Readers are encouraged to refer to Qiu
et al. (2012) for details of the special branching scheme.

5. Numerical experiments
Numerical experiments are conducted using CPLEX
12.5.1 on a desktop running Ubuntu 12.04.4 LTS, with 8
cores 3.4 GHz Intel Core i7, 32 GB RAM and 32 GB swap
space. We set the number of threads to one for fair com-
parison. Some advanced CPLEX callbacks are necessary
to implement the decomposition algorithm and the special
branching scheme described at the end of Section 4. How-
ever, some advanced CPLEX features, such as dynamic
search, are disabled when advanced callbacks are used.
Unless stated otherwise, advanced CPLEX features are
disabled for fair comparison.

We considered VaR-minimization problems of the form
min{ζα(x)|a ≤ x ≤ b, cx ≥ c∗} for reinsurance portfolios.
An anonymous reinsurance company generously provided
us with simulated reinsurance loss and premium data. The
data was hypothetically simulated to represent realistic risk
and returns of real business. The characteristics of these
loss matrices include non-negativity, sparsity (e.g. 8% to
30% non-zero entries), positive skewness, and high kur-
tosis. It is shown by Qiu et al. (2012) that sparsity is
favorable for computation efficiency. The premiums cj ,
j = 1, . . . , n are the market premiums of the risk contracts.
The decision variable xj , j = 1, . . . , n represents the frac-
tion of risk contract j that the reinsurer is willing to take.
The portfolio premium is then cx. A reward constraint cx ≥
c∗ impose a minimum level of portfolio premium. In our
experiments we set a = 0, b = 1, and c∗ = 0.1

∑n
j=1 cj .

In our first set of experiments we compare the following
algorithms:

(i) NaturalM : MIP formulation with a natural choice
of big-Ms. Since reinsurance losses L ≥ 0 and the
decision variables 0 ≤ x ≤ 1, the portfolio loss
in scenario i is bounded by 0 ≤ Li·x ≤ ‖Li·‖1,
i = 1, . . . , m. The discussion at the beginning of
Section 2 explains that Mi = ‖Li·‖1 =

∑n
j=1 |Lij |,

i = 1, . . . , m is a natural choice of big-Ms.
(ii) TightM : MIP formulation with big-Ms defined in

Equation (7). In our experiments X contains only
one linear constraint and bound constraints. There-
fore, the REL subproblems can be solved with a
O(n log n) algorithm.

(iii) Decomp: Decomposition algorithm with lazy con-
straints only. The initial master problem has an
empty description in the cut set C. This is a min-
imal form of the decomposition algorithm because
no user cut is added. When a strong valid inequal-
ity of the form (12) is violated by a integer solution
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to the current node, we add not only this inequality
but also any inequality of the form (13) that is vio-
lated. As observed by Luedtke (2013), including
inequalities (13) is a simple way to add additional
sparse valid inequalities in one round.

(iv) Decomp+ : Decomposition algorithm with lazy
constraints as well as user cuts at the root node. At
the root node we continue generating valid inequal-
ities with violation greater than 0.01 until none can
be found.

(v) TightMB: TightM with special branching scheme
implemented, as discussed at the end of Section 4.

(vi) DecompB: Decomp with special branching scheme
implemented.

We minimize the 99.5%-VaR for 10 instances of rein-
surance problems with 5000 scenarios and 25 risk con-
tracts. A time limit of 3 hours for each instance is set, which
is a realistic computational budget. We are interested in
both the CPU time if an instance is solved and the final
optimality gap if an instance is halted due to the time limit.

Table 1 summarizes the CPU time of the 10 instances
using different algorithms. We define the optimality gap as
(Objinc − Objlb)/Objinc where Objinc is the objective value
of best incumbent found up to the current node and Objlb

is the best lower bound. Table 2 summarizes the optimal-
ity gaps after 3 hours if an instance is not solved within
the time limit. NaturalM serves as a benchmark for the
comparison because it is the state-of-the-art method. We
see from tables 1 and 2 that TightM, TightMB, Decomp,
and Decomp+ all have better performance than NaturalM:
More instances are solved within the time limit, it takes less

CPU time to solve an instance, and there is a smaller opti-
mality gap when a problem is halted. It takes only about 20
seconds to solve 50002 = 2.5× 107 subproblems to calcu-
late the tight big-Ms. Recognizing the knapsack problem
structure enables us the calculate the tight big-Ms so effi-
ciently. Our experiments show that TightM and TightMB
are the fastest algorithms to solve a given instance within
time limit. On average, TightM and TightMB can solve
an instance more than 20 times faster than the NaturalM
does. However, since this observation takes into account
only problems that are solved within an arbitrary time
limit, it may be an overstatement about the improvement of
TightM and TightMB over NaturalM. For instances which
are halted, either TightM, TightMB, or Decomp+ has the
smallest optimality gap. In 1 out of 10 instances Decomp
takes less CPU time than TightM does and Decomp+ has
a smaller optimality gap than TightM does.

The addition of a special branching scheme to TightM
yields little additional improvement in either CPU time
or optimality gap, as evidenced by comparing columns
TightM and TightMB in tables 1 and 2. We also observe
a significant deterioration in CPU time and optimality
gap when the special branching scheme is implemented
in conjunction with Decomp when comparing columns
Decomp and DecompB in tables 1 and 2. Even when
DecompB manages to solve an instance, its CPU time is
much longer than that of Decomp. We currently have no
explanation why the special branching scheme deteriorates
the decomposition algorithm so significantly.

For NaturalM and TightM, it is for the sake of fair com-
parison that the advanced CPLEX features were disabled.
In practice, however, these features should be enabled

Table 1. CPU time (in seconds) for solving 99.5%-VaR minimization problems with 5000 scenarios and 25 risk contracts (including
time for calculating big-Ms).

Instance ID NaturalM TightM TightMB Decomp Decomp+ DecompB

1 (–) 1135.0 1080.6 (–) 3480.8 (–)
2 (–) (–) (–) (–) (–) (–)
3 (–) (–) (–) (–) (–) (–)
4 7035.6 29.1 29.0 168.8 97.7 2589.7
5 1699.6 45.1 45.5 150.8 175.0 (–)
6 (–) 473.5 465.0 1649.5 1439.2 (–)
7 (–) 3232.9 2775.9 2686.7 3506.8 6320.7
8 4757.7 470.7 475.7 934.2 797.3 (–)
9 (–) (–) (–) (–) (–) (–)

10 (–) (–) (–) (–) (–) (–)

Table 2. Optimality gap after 3 hours for solving 99.5%-VaR minimization problems with 5000 scenarios and 25 risk contracts.

Instance ID NaturalM TightM TightMB Decomp Decomp+ DecompB

1 23.69% (–) (–) 0.79% (–) 16.91%
2 24.16% 4.97% 5.39% 6.86% 5.33% 7.55%
3 43.40% 16.02% 13.92% 13.34% 10.78% 33.61%
4 (–) (–) (–) (–) (–) (–)
5 (–) (–) (–) (–) (–) 0.50%
6 11.56% (–) (–) (–) (–) 7.84%
7 16.45% (–) (–) (–) (–) (–)
8 (–) (–) (–) (–) (–) 5.72%
9 23.52% 7.28% 6.68% 10.90% 8.60% 24.53%

10 18.35% 0.87% 1.63% 5.72% 2.29% 25.06%
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for NaturalM and TightM. The second to fifth columns
of table 3 summarize the CPU time and final optimality
gap for the same 10 instances when CPLEX features are
enabled (CPLEX default settings). We see that enabling
CPLEX features significantly improves performance for
both NaturalM and TightM. More problems are solved
within the given time limit and problems are solved much
faster. Under the CPLEX default settings TightM can be 2–
14 times faster than NaturalM. When a problem is halted,
TightM always has a smaller optimality gap than that of
NaturalM. With TightM, 9 out 10 instances have final opti-
mality gaps less than 3%. Compared to NaturalM with
CPLEX features disabled, the computational enhancement
from calculating the tight big-Ms is more significant than
enabling the CPLEX features. Comparing the second col-
umn in table 3 and the third column (TightM) in table 1
we see that TightM with CPLEX features disabled takes
less CPU time to solve an instance than NaturalM with the
features enabled.

The algorithms can find a high-quality solution quickly
but devote most of the computation time to proving
optimality. We define the incumbent gap as (Objinc −
Obj∗)/Obj∗ where Objinc and Obj∗ are the objective of
the current best incumbent and of the optimal solution,

respectively. Table 4 shows incumbent gaps for various
algorithms after 1 minute and 10 minutes. Although solv-
ing VaR-minimization problems of the size we considered
may take hours or even days, as shown in the fourth column
of table 3, the algorithms can find a high-quality feasi-
ble solution in a few minutes. For example, using TightM
with CPLEX features enabled (the fifth column in table 4),
incumbents within 1% of optimal solutions are found in
1 minute for all 10 instances. Moreover, after 10 minutes
TightM with CPLEX features enabled found incumbents
within 0.01% of the optimal solutions for 4 instances, yet
3 of them took more than 12 hours to eventually be solved
to optimality.

In the second set of experiments we aim to provide
practical advice for solving large scale problems. All
CPLEX advanced features are enabled. We considered 10
instances of reinsurance problems with 10 000 scenarios
and 25 risk contracts. A 99.5%-VaR minimization problem
contains 50 tail scenarios, that is, m∗ = 50. The number
of scenarios and number of tail scenarios of this size are
similar to problems considered in practice. In this case we
set a time limit of 12 hours to replicate real-life situations
where an over-night computational budget is allowed. The
results are summarized in the sixth to the ninth columns

Table 3. CPU time (in seconds, including big-M calculation time) and optimality gap for solving 99.5%-VaR minimization problems
with 25 risk contracts.

5000 scenarios and 3-hours limit 10 000 scenarios and 12-hours limit

NaturalM TightM NaturalM TightM

Instance ID CPU time Opt. gap CPU time Opt. gap CPU time Opt. gap CPU time Opt. gap

1 2376.8 (–) 149.9 (–) (–) 9.75% (–) 2.10%
2 (–) 6.93% (25 071.3) 2.04% (–) 14.44% (–) 7.97%
3 (–) 10.88% (134 222.2) 6.18% 691.3 (–) 97.0 (–)
4 53.6 (–) 29.9 (–) (–) 11.21% 10 128.5 (–)
5 111.8 (–) 41.0 (–) 13 568.1 (–) 757.1 (–)
6 1162.2 (–) 119.7 (–) (–) 9.52% 34 225.9 (–)
7 3993.1 (–) 281.8 (–) (–) 10.12% (–) 1.95%
8 609.6 (–) 182.0 (–) (–) 2.77% 16 144.2 (–)
9 (–) 8.68% (17 423.2) 1.66% (1807.9) 15.95% (–) 8.10%

10 (–) 3.35% 1859.8 (–) (–) 17.63% (–) 5.95%

Notes: CPLEX features enabled. Number of scenarios and time limit are as specified in table. CPU time in a parenthesis denotes the
eventual solve time of an instance.

Table 4. Percentage gaps between best incumbent and optimal solution for solving 99.5%-VaR minimization problems with 5000
scenarios and 25 risk contracts.

Incumbent gap after 1 minute Incumbent gap after 10 minutes

Features disabled Features enabled Features disabled Features enabled

Instance ID NaturalM TightM NaturalM TightM NaturalM TightM NaturalM TightM

1 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Solved
2 1.76% 1.10% 0.70% 0.78% 0.21% 0.00% 0.02% 0.01%
3 1.67% 1.81% 0.44% 0.65% 1.67% 0.00% 0.00% 0.00%
4 0.00% Solved Solved Solved 0.00% Solved Solved Solved
5 8.65% 0.00% Solved Solved 0.00% Solved Solved Solved
6 2.61% 0.63% 0.00% 0.00% 0.38% 0.00% 0.00% Solved
7 1.07% 0.70% 0.39% 0.21% 0.00% 0.00% 0.00% Solved
8 0.94% 0.76% 0.00% 0.75% 0.00% Solved Solved Solved
9 0.37% 0.37% 0.37% 0.63% 0.37% 0.37% 0.00% 0.00%

10 0.89% 0.44% 0.79% 0.00% 0.44% 0.00% 0.44% 0.00%
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of table 3. Out of 10 large scale problems, TightM solved
5 instances within the time limit and had a final optimal-
ity gap less than 3% for 7 instances. NaturalM, however,
solved only 2 instances within the time limit and had 3
instances whose optimality gaps were less than 3%. For
these large instances TightM is 7–18 times faster than Nat-
uralM when an instance is solved within the time limit.
When an instance is halted, TightM always has a smaller
optimality gap than NaturalM.

6. Conclusion
We examined several algorithms to solve VaR-
minimization problems. Our experiments suggest that cal-
culating tight big-Ms improves overall performance. When
CPLEX’s advanced features are disabled, variations of the
specialized decomposition algorithm perform comparably
to the MIP formulation with tight big-Ms. We hope to see
significant improvements in computational performance if
we were able to enable some of the CPLEX features for the
decomposition algorithm. The efficacy of these methods
when VaR-constrained problems remains to be investi-
gated. At the current stage, we recommend TightM as a
practical method to solve VaR problems.
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Appendix 1. Proof for Proposition 3.2
Proof Let i be a pivot scenario. Inequality (6a) is backed
by (2b), (2c) and the definition of RELs. Since Equation (2b)
implies {i : Li·x > z} ⊆ {i : bi = 1} and Equation (2c) implies
|{i : bi = 1}| ≤ m∗, thus |{i : Li·x > z}| ≤ m∗. By definition of
RELs and the ordering (5) we know that {k : Lk·x ≥ Li·x −
dσm∗+1(i)(i)} ⊆ {σ1(i), . . . , σm∗+1(i)}. Thus |{k : Lk·x ≥ Li·x −
dσm∗+1(i)(i)}| ≥ m∗ + 1. Assume to the contrary that Equation
(6a) is violated by any solution (x̂, b̂, ẑ), that is, Li·x̂ −
dσm∗+1(i)(i) > ẑ. Then we have m∗ + 1 ≤ |{k : Lk·x ≥ Li·x −
dσm∗+1(i)(i)}| ≤ |{i : Li·x > z}| ≤ m∗, which is a contradiction.
Therefore Equation (6a) is valid for all feasible solution to
Equation (2).

The implication constraint (6b) results from the definition of
REL and the implication constraint (2b). By Equation (2b) we
know that bσk = 0⇒ Lσk x ≤ z for all k = 1, . . . , m. So bσk = 0
implies that Li·x − z ≤ Li·x − Lσk ·x ≤ max{(Li· − Lσk ·)x|x ∈ X },
which validates the implication constraint (6b).

Constraints (6c) is a consequence of (6a), (6b) and the
ordering (5). This completes the proof for Proposition 3.2. �
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Appendix 2. Specialized decomposition algorithm for
VaR problems

Algorithm 1: Branch-and-cut decomposition
algorithm for solving VaR problems

1 t← 0, N0(0)← ∅, N1(0)← ∅, C←
R

m+n+1, OPEN← {0}, U←∞;
2 while OPEN �= ∅ do
3 Step 1: Choose l ∈ OPEN and let

OPEN← OPEN \ {l};
4 Step 2: Process node l;
5 repeat
6 Solve (9);
7 if (9) is infeasible then
8 CUTFOUND← FALSE;
9 else

10 Let (x̂, b̂, ẑ) be an optimal solution to (9);
11 lb← MP(N0(l), N1(l), C);
12 if b̂ ∈ {0, 1}m then
13 CUTFOUND← SepCuts(x̂, b̂, ẑ, C);
14 if CUTFOUND = FALSE then

U← lb;
15 else
16 CUTFOUND← FALSE;
17 Optional: CUTFOUND←

SepCuts(x̂, b̂, ẑ, C);
18 end
19 end
20 until CUTFOUND �= TRUE or lb ≥ U ;
21 Step 3: Branch if necessary;
22 if lb < U then
23 Choose i ∈ {1, . . . , m} such that b̂i ∈ (0, 1);
24 N0(t+ 1)← N0(l)

⋃{i}, N1(t+ 1)← N1(l);
25 N0(t+ 2)← N0(l), N1(t+ 2)← N1(l)

⋃{i};
26 t← t+ 2;
27 OPEN← OPEN

⋃{t+ 1, t+ 2} ;
28 end
29 end

Algorithm 2: SepCuts(x̂, b̂, ẑ, C)

Data: x̂, b̂, ẑ, C
Result: If valid inequalities for feasible region of (9)

are found that are violated by (x̂, b̂), add
them to the description of C and return
TRUE, else return FALSE

1 CUTFOUND← FALSE;
2 for i ∈ {1, . . . , m} do
3 if b̂i < 1 and Li·x̂ > ẑ then
4 Calculate dj (i) as defined in (4) for all

j = 1, . . . , m;
5 Sort dj (i), j = 1, . . . , m according to (5) to

obtain permutation σ(i) ;
6 Set j ∗ = 1, ρj ∗ = σ1, R∗ = {ρj ∗ };
7 for k = 2, . . . , m∗ do
8 If b̂σk < b̂ρ∗j then set j ∗ = j ∗ + 1,

ρj ∗ = σk, R∗ = R∗ ∪ ρj ∗ ;
9 end

10 If inequality of form (12) based on R∗ is
violated by (x̂, b̂, ẑ), add a non-empty set of
violated inequalities to the description of C;

11 CUTFOUND← TRUE;
12 break;
13 end
14 end
15 return CUTFOUND and updated C;
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