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Kernels and Ensembles: Perspectives on Statistical Learning

Mu ZHU

1998), AdaBoost (Freund and Schapire 1996), and random for-
est (Breiman 2001). | then illustrate the influence of these ideas
Since their emergence in the 1990s, the support vector raamy own research (Section 4) by highlighting two recent algo-
chine and the AdaBoost algorithm have spawned a waverighms that | invented with my collaborators: LAGO (Zhu et al.
research in statistical machine learning. Much of this new 2006), a fast kernel machine for rare target detection; and Dar-
search falls into one of two broad categories: kernel methodigian evolution in parallel universes (Zhu and Chipman 2006),
and ensemble methods. In this expository article, | discuss @feensemble method for variable selection.
main ideas behind these two types of methods, namely how tdo better focus on the main ideas and not be distracted by the
transform linear algorithms into nonlinear ones by using kerriethnicalities, | shall limit myself mostly to the two-class clas-
functions, and how to make predictions with an ensemble osification problem, although the SVM, AdaBoost, and random
collection of models rather than a single model. | also share fayest can all deal with multiclass classification and regression
personal perspectives on how these ideas have influencedpnbllems as well. Technical details that do not affect the under-
shaped my own research. In particular, | present two recentsi&nding of the main ideas are also omitted.
gorithms that | have invented with my collaborators: LAGO, a

fast kernel algorithm for unbalanced classification and rare tar- 2 KERNELS
get detection; and Darwinian evolution in parallel universes, an
ensemble method for variable selection. | begin with kernel methods. Even though the idea of kernels

is fairly old, it is the support vector machine (SVM) that ignited
KEY WORDS: AdaBoost; Kernel PCA; LAGO; Parallel evoa new wave of research in this area over the past 10 to 15 years.

lution; Random forestSVM.
2.1 SVM

In a two-class classification problem, we have predictor vec-
1. INTRODUCTION torsx; € RY and class labelg; € {—1,+1},i =1,2,...,n.
SVM seeks an optimal hyperplane to separate the two classes.
The 1990s saw two major advances in machine learning: thé hyperplane inRY consists of alx € RY that satisfy the
support vector machine (SVM) and the AdaBoost algorithhinear equation
Two fundamental ideas behind these algorithms are especially
far-reaching. The first is that we can transform many classical f0) =B"x+pBo=0.
linear algorithms into highly flexible nonlinear algorithms b
using kernel functions. The second is that we can make accu
predictions by building an ensemble of models without mucht
fine-tuning for each, rather than carefully fine-tuning a single
model.
In this expository article, | first present the main ideas bgjearly, a hyperplane can be reparameterized by scaling, for ex-
hind kernel methods (Section 2) and ensemble methods (Secfigipje,
3) by reviewing four prototypical algorithms: the support vec-
tor machine (SVM, e.g., Cristianini and Shawe-Taylor 2000), BTx + By =0 is equivalentto s(8"x + o) =0
kernel principal component analysis (kPCA, Si{opf et al.

éieéen xi € RYandy, € {—1,+1}, a hyperplane is called a
parating hyperplane if there exists 0 such that

ViBTXi +fo)>c Yi=12...,n. 1)

for any scalas. In particular, we can scale the hyperplane so
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l l The extra variableg; are introduced to relax the separability
\\ | | o condition (2) because, in general, we cannot assume the two
N ! classes are always perfectly separable. The tebm¢; acts as
N N @ a penalty to control the degree of such relaxation, and a
O, N | ® tuning parameter.
N . w o The main message from the brief introduction above is this:
O \l\\ AN l SVM tries to find the best CSHP; it is therefore a linear classi-
O O RN \\\ | P fier. The usual immediate response to this message is: So what?
w AN . AN o o How does this make the SVM much different from and superior
o O R N to classical logistic regression?
| AN @ Equivalently, the constrained optimization problem above
O w \\‘ N can be written as (e.g., Hastie et al. 2001, Exercise 12.1)
O : AN o n
| | N
; BN /;argm (Worse) min Z; [1-% B+ o)) +2IBI (6)
<
Margin (Better) where
Figure 1. Two separating hyperplanes, one with a larger margin than [z if z>0
the other. 7 = _ >
0 if z<oO

that is, scaled so that = 1. A separating hyperplane satisfyfor statisticians, the objective function in (6) has the familiar
ing condition (2) is called @anonicalseparating hyperplaneform of a loss function plus a penalty term. For the SVM, the
(CSHP). loss function is [£ y(B" x+ fo)]+, and itis indeed very similar

If two classes are perfectly separable, then there exist antinthe binomial log-likelihood used by logistic regression (e.g.,
finite number of separating hyperplanes. Figure 1 shows tWastie et al. 2001, Fig. 12.4). But the usual logistic regression
competing hyperplanes in such a situation. The SVM is basaddel does not include the penalty tefmB| /2. This is the fa-
on the notion that the “best” canonical separating hyperplanenliar ridge penalty and often stabilizes the solution, especially
separate two classes is the one that is the farthest away fronihisigh-dimensional problems. Indeed, this gives the SVM an
training points. This notion is formalized mathematically by thedvantage.
margin of a hyperplane—hyperplanes with larger margins areHowever, one cannot possibly expect a linear classifier to suc-
better. In particular, the margin of a hyperplane is equal to ceed in general situations, no matter how optimal the hyper-

] ) ) plane is. So, why is the SVM such a sensational success?
margin= 2 x min{y;di,i =1,2,...,n},

whered; is the signed distance between observatioand the 2-2 The “Kemel Trick”

hyperplane; see Figure 1 for an illustration. Figure 1 also showg:ristianini and Shawe-Taylor (2000, Chaps. 5 and 6) pro-

to a certain extent why large margins are good on an intuitiygied detailed derivations to show that the optiridboks like
level; there is also an elaborate set of theories to justify this (Sggs:

e.g., Vapnik 1995). B = Z aiyixi,
It can be shown (e.g., Hastie et al. 2001, Sect. 4.5)dhat =y’
equal to where “SV” denotes the set of “support vectors” with > 0
1 T strictly positive; the coefficienta;,i = 1,2,...,n, are solu-
d = m(ﬂ Xi + fo)- (3) tions to the (dual) problem:
n n n
Then, Equations (2) and (3) together imply that the margin of a _ _} vy Ty
CSHP is equal to max ;a' 2 ; jz_la.a, Yy 0
. . 2
margin= 2 x min{y;di} = m N
st. > aiyi=0 and ¢ >0 Vi. (8)
To find the “best” CSHP with the largest margin, we are inter- =

ested in solving the following optimization problem: ) ) )
This means the resulting hyperplane can be written as

1 n
min - SIBI+7 D& “) 00 =BTx+po= D aiyix x+po=0. (9)
i=1

ieSV

The key point here is the following: In order to obtain one
subjectto yi(B'xi +80)>1—¢& and & >0 Vi. (5) solves (7)—(8), a problem that depends on the predisjonsly
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through their inner-producunxj; once thes;’s are obtained, Itis easy to see that
the ultimate decision function (9) is also just a function of inner- T
products in the predictor space. X1

Therefore, one can make SVM a lot more general simply by xxT — x; X1 X Xn)
defining a “different kind of inner-product,” saynh(u; v), in B vz A
place ofu'v. The functionKy(u; v) is a called a kernel func- x.T
tion, whereh is a hyperparameter, which is often determined 2 T T
empirically by cross-validation. Then, (7) becomes X1 X1 X3 X2 ... X Xn

xIx1 xIxz ... xJ%n
n l n n - . .
max éai_ézzaia]’)ﬁyj}(h(xi;xj) (10)

T T T
i=1j=1 anl anz ...ann

is ann x n matrix of pairwise inner-products. Therefore, if a

and the decision function (9) becomes linear algorithm can be shown to depend on the data mxtrix
only through
fO0 = D" aiyiKn( %)+ fo=0. (12) T
— K =xxT, (12)

then it can be easily “kernelized™—we simply replace each
inner-product entry oK with Kjj = Kn(Xi, Xj), whereKn(, -)
is a desired kernel function.

The boundary is linear in the spacedfx) where¢(-) is such
that

Kh(u; v) = (u) T $(v),
2.4 Kernel PCA

but genera}lly it is' nonlinear in the Qriginal predictor space (“n'KerneI principal component analysis (kPCA; Sthopf et al.
less one picks a linear kernel function). Mercer’s theorem (Mqrg%) is a successful example of “kernelizing” a well-known

cer 1909) guarantees the existence of spithas long an is - (|5ssic jinear algorithm. To focus on the main idea, let us as-

a nonnegative definite kernel function. The beauty here is tgaf‘ne that the data matriX is already centered so that each
we do not even need to define the mapping explicitly; all column has mean zero. Let

we have to do is to pick a kernel functidty, (u; v). This makes

the SVM very general. S=XTX. (13)
Then, the (ordered) eigenvectors ®fsayus, Uy, ..., Uq, are
the principal components. Being eigenvectors, they satisfy the

2.3 Kernelization of Linear Algorithms .
equations
That we can apply a linear method in a different space is,
of course, not a new idea to statisticians at all. For example,
we all know how to fit a high-order polynomial using lineagquations (13) and (14) together lead to
regression—simply add the term$, x2, . . ., x9 to the regres-
sion equation! XTXuj = Ajuj, j=12....d. (15)

Suj = Ajuj, j=1,2,...,d (14)

The idea that we do not need to explicitly create these hi Sis shows thati: can be represented in the formyf o —b
order terms is perhaps somewhat less familiar. Actually, it is e linga; = Xu 'J//l' to be gpecific We will pluglj = i(TaY
= AU A : = j

really a new idea, either; it is less familiar only in the sense tr}ﬁ 0 (15) and reparameterize the eigenvalue problem in terms of

students usually do not learn about it in “Regression Analyséls

” IE
101. o Forj=1,2,...,d,thisleads to
However, the SVM does deserve some credit in this regard.
Even though the basic idea of kernels is fairly old, it is the SVM XTXXTaj=2;X"aj. (16)
that has revived it and brought it back into the spotlight for ap- _ _
plied statisticians. The basic idea is as follows. If we left-multiply both sides byX, we get
A typical data mgtrix we encounter in gtatistiag,is nx d, XXTXXTaj -y XXTaJ_’
stackingn observationxy, X2, . .., X, € RY asd-dimensional
row vectors. That is, or simply
Xl K?aj = 1jKaj, (17)
X = X2 _ which shows thai; can be obtained by solving a problem that
: depends on the data matrix only through the inner-product ma-
X} trix K.
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(a) Original Data (b) kPCA Projection
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Figure 2. Kernel PCA, toy example. (a) Original data. (b) Projection onto the first two kernel principal components.

Scholkopf et al. (1998) explained why, in the context of Of course, to be effective in practice, we must use the right
KPCA, it is sufficient to reduce (17) tdaj = 1jaj; | do not kernel function. What's more, we must choose the right hyper-
go into this detail here. Once we obtain thg's, suppose we parameteh as well, and the performance of the method can be
would like to project new datX ey Onto a few leading prin- quite sensitive to these choices in practice. These are no trivial
cipal components, for examplXnenttj. We immediately find tasks and often require a considerable amount of data analytic
that experience as well as knowledge of the specific application area.

Xnewldj = XneWXTaj, . In this regard, these kernel-based algorithms are very much

like professional cameras. They are capable of producing great
and it is easily seen thatnewX ' is just a matrix of pairwise pictures even under very difficult conditions, but you need to
inner products between each new and old observations.  give them to a professional photographer. If you give them to

Hence, it becomes clear that both finding and projecting orzie amateur or novice, you cannot expect great pictures. The
principal components depend on just the inner-products and,@tostographer must know how to select the right lens, set the
cording to Section 2.3, PCA can be “kernelized” easily. Figuraight shutter speed, and use the right aperture for any given con-
shows a toy example. There are some spherical da&.ithe dition. If any of these parameters is not set appropriately, the
data being spherical, all directions have equal variance and thegilt could be a disaster. But that does not mean the camera
are no meaningful principal components in the traditional sengself is a poor piece of equipment; it simply means one must
But by using a Gaussian kernel—Equation (18) wite: 1—in be adequately trained to operate it. Much of the power of these
place of all the inner-products, the first kernel principal direprofessional cameras lies precisely in the fact that they allow
tion obtained gives a meaningful order of how far each obsergaknowledgeable and experienced user to control exactly how
tion is away from the origin. In this case, kernel PCA has sugach single picture should be taken.
cessfully discovered the (only) underlying pattern in the da

one that is impossible to detect with classical PCA. ?5'1 Example: Spam Data

As a very simple illustration, let us try to see how well

the SVM can predict on the spam dataset, availablettat//

2.5 Discussion: Kernel Methods are Like Professional www-stat.stanford.edotibs/ElemStatLearn/index.htnfThere
Cameras are a total oln = 4,601 observations, each with a binary re-

. sponse and = 57 predictors. For more details about this data
Any acute reader must have noticed that, so far, | have neg@

{ refer to the aforementioned web site. | use an R package
really discussed the kernel functidfy, (u; v) explicitly. This ’ P g

: X X : calledel071 to fit SVMs and use the kernel function
is not an accident. It is often claimed (e.g., Shawe-Taylor an

Cristianini 2004) that one important advantage of these kernel Kh(u; v) = exp{—h||u — v||2} ) (18)
methods lies in their modularity: to solve a different problem,

just use a different kernel function. Any discussion about ker-A random sample of 536 observations are used as training
nel functions, therefore, is best carried out in the context oflata and the remaining@5 observations are used as test data.
specific problem. Using different values of andh, a series of SVMs are fitted
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(a) Mistakes on Test Set: SVM (b) Mistakes on Test Set: Random Forest
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Figure 3. Spam data example. (a) SVM: Number of misclassification errors on test data as a function of two tuning payaametbree
Section 2.5.1). (b) Random forest: Number of misclassification errors on test data as a function of two tuning pararaetHB3see Section
3.5.1).

on the training data and then applied to the test data. The tol weights, build the next classifier. In the end, each classifier
number of misclassification errors on the test data are recordgéh the ensemble will cast a vote; its vote is to be weighted by
and plotted for each pair dfy, h); see Figure 3(a). Here, is the logarithm of its right-to-wrong ratio, I¢&y).
the penalty parameter in Equation (4). For people hearing about this algorithm for the very first time,

Figure 3(a) shows that the performance of SVM using thiglaBoost certainly has a very strong mystical flavor to it. Intu-
particular kernel function is very sensitive to the paraméteritively, we can perhaps appreciate to some extent that the right-
but not as sensitive to the parameterGivenh, the prediction to-wrong ratio must be important for any classifier, but it is not
performance of SVM is often quite stable for a wide range af all clear why we should reweight incorrectly classified ob-
y’s, but bad choices df can lead tseriousdeteriorations in the servations by this ratio each time, nor is it immediately clear
prediction performance. Therefore, if one uses the SVM withauby the final vote from each individual member of the ensem-
carefully tuning the parametér, the result can be disastrous. ble should be weighted by the logarithm of this ratio.

This is no easy mystery to untangle. Friedman et al. (2000)
gave a very nice argument and revealed that the AdaBoost al-
gorithm actually minimizes an exponential loss function using

: . a forward stage-wise approach. In particular, AdaBoost chooses
I now turn to ensemble methods. Again, | shall mainly focyg, besty, and fi, one step at a time to minimize

on the two-class classification problem with predictor vectors
xi € RY and class labelg € {—1, +1},i =1,2,....n. n B
> exp(—yi > a fb(xi)),
i=1 b=1

3. ENSEMBLES

3.1 AdaBoost
. » which they showed to be very similar to maximizing the bino-
_AdaBoost constructs a collection of classifiers rather than ggy| |og-likelihood. This particular interpretation has not only
single classifier. The entire collection makes up an ensemblgyangled the AdaBoost mystery (at least to some extent), but

and it is the ensemble—not any single classifier alone—thaly, |ed to many new (and sometimes better) versions of boost-
makes the final classification. ing algorithms.

Table 1 contains an exact description of the AdaBoost algo-
rithm. Here isa descrlptlon_ of the algorithm |n_pla|r_1 Engllsrg_2 Random Forest
Start by assigning equal weights to all observations in the train-
ing data. Sequentially build a series of classifiers. At each stepProfessor Leo Breiman came up with the same basic idea of
fit a classifier, sayfp, to the training data using the currentising a collection or an ensemble of models to make predic-
weights. Calculate the (properly weighted) right-to-wrong rattmns, except he constructed his ensemble in a slightly different
of this classifier; call itR,. For those observations incorrectlymanner. Breiman called his ensembtaadom forestsdetails
classified byfp, inflate their weights by a factor &®,. With the are given in Table 2.
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Table 1. The AdaBoostlgorithm.

1. Initial weights:wj = 1/n,Vi.
2. Forb=1toB:

(a) Using weightsvj,i =1,2,...,n, fita classifierfy(x) € {—1, +1}.

(b) Set ]
- Zi:lwiz'n(yi # fb(xi))’ Ro — 1—€b, a = l0g(Ry).
=1 Wi €p

(c) Update weightsw; < wj x Ry if yj # fp(Xj).

End For.
3. Output an ensemble classifier

B
F(x) = sign(z ap fb(x)> )

b=1

The history behind Breiman’s random forest is very interestom the empirical distributiori=, (the bootstrap step), and (ii)
ing. In 1996, he first proposed an ensemble algorithm calligdisampling from the seftl, 2, .. ., d} (the random subset step).
Bagging (Breiman 1996), which is essentially the random for-Breiman then proved that the prediction error of a random
est algorithm with just the bootstrap step (Table 2, Step 1a) fémest,err, satisfies the inequality

2001, he added the random subset step (Table 2, Step 1b) and )

created random forest (Breiman 2001). €RE< 1-s ’ (19)
Why did he add the extra random subset step? B s?

3.3 Breiman’s Theorem wherep is the mean correlation between any two members of

) . _the forest (ensemble) asdthe mean strength of a typical mem-
Breiman (2001) proved a remarkable theor_et|cal result. Firgkr of the forest (ensemble). This result—including the exact
he gave a formal definition of random forests: The set definitions ofp ands—is fairly technical; details can be found
) . o lid _ in Breiman (2001). Moreover, the actual bound itself is often
(06 0b) -0~ Py, b=1,2,... B] useless. For example,sf= 0.4 andp = 0.5, then one gets

is called a random forest. ) 5
This definition requires some explanation. Heféx; ) is €RE < /3(1 —S ) _ 0_5(1 — 0.4 ) _ 2625
a classifier completely parameterized @y For example, if - s? 0.42

f(-; Op) is a classification tree, then the paramekgspecifies

all the splits and the estimates in the terminal nodes. Next, més

statement&y, g Py” means that eacli(-; 6p) is generated inde-
pendently and identically from some underlying random mec§1'—4 The Secret of Ensembles
anism,Py.

To be specific, in Breiman’s implementation, iid sampling The fundamental idea of using an ensemble classifier rather
from the random mechanisfy consists of: (i) iid sampling than a single classifier is nothing short of being revolutionary.

of course the error rate is less than 100%.
0, why is this result significant?

Table 2. Breiman’s random forealgorithm.

1. For eachb = 1 to B, fit a maximal-depth treef,(x), as follows:

(a) (Bootstrap Step) Draw a bootstrap sample of the training data; eitPituse D*P to fit fb.

(b) (Random Subset Step) When buildirig, randomly select a subset of < d predictors before
making each split — call i§, and make the best split over the &tather than over all possible
predictors.

End For.

2. Output an ensemble classifier, i.e., to classifgw, simply take majority vote ovef f(Xnew),b =
1,2,...,B}.
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It also is remarkable that building these ensembles is oéien 3.5 Discussion: Ensemble Methods are Like Foolproof
atively mindless. Take Breiman’s random forest, for example. Cameras
There is no need to prune the individual trees. .
P Compared with kernel methods, ensemble methods are very

Clearly, there are many different ways to build an ensembrIﬁUCh like foolproof cameras. They are relatively easy for the

AdaBoost and Breiman’s random forest being two primary Tess experienced users to operate. This does not mean they do

amples. What is the most effective way? . ) .
Recall the formal definition of random forests. The randonOt have any tuning parameters; they do. Even when using a
mechanisiP, that aenerates the individual m mBers of the fopaolproof camera, one must still make a few decisions, for ex-
ec sy thatg es thein emboe rpple, whether or not to turn on the flash, and so on. But rel-
estis unspecified. You are free to pick any mechanism you weE

Surelv some mechanisms are bound to be more effective t rh\‘/ely speaking, the number of decisions one has to make is
y , i . ch more limited and these decisions are also relatively easy
others. What's the most effective mechanism? to make

Breiman’s result is significant because it tells us what makes- . example, in Breiman's random forest, the size of the sub-

a good random forest. Breiman’s thgorem (19) tells us thagé'a[,m (Table 2, Step 1b), is an important tuning parameten If
good random forest should have a smiadind a larges. That is, is too large, it will cause to be too large. In the extreme case

we should try to reduce the correlation between individual claovsf—m — d, all the trees in the forest will be searching over the

sifiers W'trt"n the ensglrnble and make each individual Class'fé‘?{tire set of variables in order to make splits, and they would be
as accurate as possiole. identical if not for the bootstrap step—since the tree-growing

This explains why Breiman added the random subset step 'Qﬁﬁ)orithm is deterministic conditional on the data. On the other

his original Bagging algorithm: extra randomness is neede%@nd, ifm is too small. it will causes to be too small. In the

reduce the correlation between individual trees; the bootst@p.eme case ah = 1. all the trees will essentially be making
step alone is not enough! random splits, and they will not be very good classifiers. There
Interestingly, we can see that AdaBoost actually operate§diyjenty of empirical evidence to suggest, however, that the pa-
a similar way. Going back to Step (2b) in Table 1, we have  rametemis still relatively easy to choose in practice. Moreover,
the parametem is not as sensitive as the complexity parame-

now ,
€p = o1 Wi 'rgyl 7 To(xi )). ter h of a kernel function (also see Section 3.5.1). Translation:

21 Wi Even if you are a bit off, the consequences will not be quite so

F thi it disastrous.
rom this, we can write | have had many occasions working with graduate students
o _ o _ trying to make predictions using the SVM and Breiman’s ran-
sz i = Wrzor:] wi - and (1 ep) Z i = Z Wis dom forest. Theyalmost alwaygproduce much better predic-
al 9 all right tions with the random forest, even on problems that are well-
where “all’ means = 1,2, ...,n: “wrong” denotes the Sets;uned for the SVM! Sometimes, their SVMs actually perform

li i # fo(xi)} and “right,” the sefi : yi = fu(xi)}. Step (2¢) worse than linear logistic regression. Certainly, there are many

in Table 1 gives the explicit update rule; the new weights arefases In practice where one would not expect the SVM to be

much superior to linear logistic regression, for example, when

o X (1 — Eb) fori e wrong the true decision boundary is in fact linear. I_3ut ?f used cqrrgctly,

wh® = [ ! € ) o the SVM should at least be comparable with linear logistic re-
wi, fori e right. gression; there is no reason why it ever would be much worse.
These experiences remind me over and over again just how dif-

Therefore, we can see that ficult it can be for a novice to use the SVM.

But, as | stated in Section 2.5, you can't blame the profes-

Z whew — (1 - eb) Z wi sional camera if you don’t know how to use it properly. There

wrong €/ wrong is always a tradeoff. With limited flexibility, even a fully expe-

rienced professional photographer will not be able to produce

= (1-ep) Z wi = Z wi = Z wf' ™, images gf the highestpprofegssi(p))nal quality with just a fo%lproof
all right right camera, especially under nonstandard and difficult conditions.

That's why professional cameras are still on the market. But we
have to admitmostconsumers are amateur photographers and,
more often than not, they are taking pictures under fairly stan-
Qard conditions. That's why the demand for foolproof cameras
ei% exceeds that for professional cameras. | think the demand
6+ statistical tools follows a similar pattern.

which means the misclassification error f§f under the new
weightsw**"is exactly 50%—the worst possible error.
The next classifierfpt1, is built using these new weights, s

classifier, fp, cannot classify. This is sometimes referred to
“decoupling” in the boosting literature—the classifigy;; is
decoupled fromfy,. 3.5.1 Example: Spam Data (continued)

In Breiman’s language, we can say that the adaptive and hithAs a simple illustration, let us take a look at how well the
erto mysterious reweighting mechanism in AdaBoost is actualyndom forest can predict on the spam dataset. | use exactly the
aiming to reduce the correlation between consecutive memtsase set-up as in Section 2.5.1 andrdredomForest  pack-
of the ensemble. age in R. Using different values af and B, a series of random
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forests are fitted on the training data and then applied to the tgpes of data or data with special characteristics; and the mass
data. The total number of misclassification errors on the t&&D division develops better off-the-shelf learning algorithms.
data are recorded and plotted; see Figure 3(b). Here, we can s&¥ith this particular point of view in mind, | end this article by
that the performance of random forests is more sensitive to befly describing two personal learning products: a new kernel
parametem than to the parametds. Givenm, the prediction method from my high-end R&D division, and a new ensemble
performance of random forests is fairly stable as lon@dds method from my mass R&D division.

sufficiently large, for exampleB > 100 in this case. But it is

important to use am fchat lis neither too small nor too big, for4'2 A High-End R&D Product: LAGO

example, 3< m < 10 in this case.

However, if we compare panels (a) and (b) in Figure 3, weConsider a two-class problem in which the class of interest
can see that choosing the rightor SVM is much more critical (C,) is very rare; most observations belong to a majority, back-
than choosing the righth for random forest; performance deteground class@g). Given a set of unlabeled observations, the
rioration is much more serious for bad choicesidfian for bad goal is to rank those belonging @ ahead of the rest.
choices ofm. Of course, one can use any classifier to do this as long as

It is also clear from Figure 3 that, for this particular datasehe classifier is capable of producing not only a class label but
an SVM with kernel function (18) is not competitive against also an estimated posterior probabil(y € C1|x) or a clas-
random forest, even if well tuned. In order to be competitive dification score. For example, the SVM does not estimate pos-
is necessary to use a different kernel function. | do not purse€ior probabilities, but the final decision function (11) gives a
this possibility here because getting the SVM to work for thidassification score which can be used (at least operationally) to
dataset is far from the main point of our discussion, but this esnk unlabeled observations—whether this is effective or not is
ample does demonstrate that choosing the right kernel functioseparate issue.

Ky and picking the right hyperparameteiare very important,
and that an ensemble method such as the random forest cahdd RBFnets

somewhat easier to use in this regard. The final decision function produced by SVM (11) is of the
form
4. PERSPECTIVES
FO)=Bo+ D B i, Ri), (20)
uies

I now share a few personal perspectives on statistical learning

research. Here, | am working with a particular definition of tnﬁhereqﬁ(x- 4, R) is a kernel function. For example, we can take
word “perspective” from the American Heritage Dictionary:f to be di:agénal and let be the GaLjssian kernel ’
subjectiveevaluation of relative significance [emphasis added].

1 (x =) "R (x = p)
4.1 Statistical Learning Research P 1, R) = WGXP[— > ,(21)

My discussions in Sections 2.5 and 3.5 have led me to ask the

following question: If | were the president of a big camera ma#here|R| is the determinant oR. _ .
ufacturing company, how would | run such a business? Othed he function (20) is sometimes called a (single-layer) radial

than standard business divisions such as accounting and huf@s#s function network (RBFnet). Generally speaking, to con-
resources, | see three main lines of operation: struct an RBFnet one must compute and specify three ingredi-

ents:
1. (Consulting and Consumer Outreach) Advise and teach _ _
photographers how to use various products and how to u4e the location parameter of each kernel function—together,
the right equipment to produce great pictures under various they make up the se&;

difficult conditions. This is my consulting and consumelrQ_ he sh f hk If ion: and
outreach division. i, the shape parameter of each kernel function; an

2. (High-end R&D) Understand the need of professional phd’ - the coefficient in front of each kernel function.

to_graphgrs and manufacture new, speC|aI|ze_d_e_qum.?yr}sica”y’ one first specifie; and R; and then estimates
st '?C"'”g on the market. This is my R&D division forthe pi’s by least-squares or maximum likelihood. Often, one
my high-end consumers. setsR; = rl and treats the parameteras a global tuning
3. (Mass R&D) Build the next-generation foolproof camer@arameter—this is what SVM does. Determining thés or the
This is my R&D division for my mass consumers. be;t seSfrgm 'Fralnlng dataj however, is an NP-hard combina-
torial optimization problem in general.
| see a great deal of parallelism in statistical learning researchThe SVM can be viewed as an algorithm for determining the
For statistical learning research, the consulting and consursetr'S and thep;’s simultaneously (Sdhlkopf et al. 1997); the
outreach division applies different learning methods to solgetS = SV is simply the set of all support vectors. In order to
various difficult real-world problems; the high-end R&D dido so, SVM solves a quadratic programming instead of a com-
vision develops new, specialized algorithms for analyzing néwnatorial optimization problem.
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4.2.2 LAGO

The product from my R&D division is an algorithm callec .
LAGO (Zhu et al. 2006). The decision function constructed t i
LAGO for ranking unlabeled observations is as follows: ‘ _ o

g
t00 = D IRilg(x: Xi, aRy). (22) Y&
X €Cy ‘ #
The parametew is a global tuning parameter. In the simples o ]
case, we take e o
Ri =rl, (23) W
wherer; is the average distance between the kernel cexter,
C1, and itsK -nearest neighbors frofy, that is, *
1 b i ¢
M= > dxi,w). (24) J“'+“‘ 7 B A
weNp(Xi,K) 1 é B
The notation No(x;, K)” denotes theK -nearest neighbors of --'6‘“ . ol ‘ 1+
xi from Cp; andd(u, v) is a distance function, for example 1/ 11

du,v) = |lu—v|.

By comparing (22)—(23) with (20), we can easily see that
LAGO can also be viewed as an algorithm for constructing jgure 4. The boar_d game of GO. In this illustration, the black stone
RBFnet, just like the SVM. In particular, the three ingredien sContrOIS more territories than the black stone A.
of the RBFnet are specified as follows:

will tell you that B controls more territories on the board than
ui: Every u; is a training observatior; from the rare class, A. Why? Because, when compared with B, A is closer to more

Ca. enemy (white) stones. Therefore, imagine two classes fighting

for control over a common space. Given an observation from
C,, if we want to use a kernel function to describe its effective
control over the entire space, we should use a large kernel ra-
dius if its nearby neighbors froi@g are a long distance away
Bi: Simply setfo = 0 andp; = [Ri| Vi > 0. and a small kernel radius if its nearby neighbors frGgiare a

short distance away. Equation (24) captures this basic principle.
Here we see that the only computation needed is the calculaﬂ%s eLAGO versus sLAGO
of r;; all other ingredients are completely determined a priori.
The calculation ofrj, of course, is considerably simpler thalao
guadratic programming, making LAG@any timedaster and

R;: Each kernel functiorp is spherical with radius propor-
tional to the average distance between its ceatee Cq
and its theK -nearest neighbors froQp.

Instead of (23)—(24), the original LAGO paper (Zhu et al.
06) used

simpler than the SVM. Instead of solving an optimization prob- Ri = diagri,rio, ..., rid},

lem to find support vectors, LAGO fully exploits the special na- 1

ture of these rare-class detection problems and simply uses all rj = — Z IXij — wjl. (25)
training observations from the rare class as its “support vectors,” weNo(xi,K)

a significant shortcut. Our empirical experiences show that tg, s the kernel functior was chosen to be elliptical rather

shortcut is highly worthwhile. We find that LAGO almost alf an spherical. To distinguish the two, we call (25) eLAGO

ways performs as well as and sometimes even better than § (23), SLAGO. For many real-world rare-class problems, the

SVM for these rare-class classification and detection prome'gﬁtaset often contains a limited amount of information because
1

Zhu etal. (2006) gave a few theoretical arguments for why is very rare. As such, the extra flexibility afforded by eLAGO
these shortcuts are justified. Suppgs€x) and po(x) are den- is seldom needed in practice

sity functions ofC; andCy. The main argument is that (22) can
be viewed as a kernel density estimatep@hdjusted |Oca||y by 4.2.4 Discussion: LAGOis a SpECialized Kernel Method
a factor that is approximately inversely proportionalgg that ~ LAGO is a kernel method, much like the SVM. There are
is, |Ri|. The resulting ranking functiorf (x) is thus approxi- two tuning parameter¥ anda. Experiments similar to those
mately a monotonic transformation of the posterior probabilitiescribed in Section 2.5.1 and Figure 3 have shown that the
that itemx belongs to the rare class. performance of LAGO is not very sensitivekoand much more

The only nontrivial calculation performed by the algorithngensitive tax. In practice, it often suffices to fiKk = 5.
Equation (24), is somewhat special and nonstandard. The origik AGO is not a general-purpose method; it is a specialized al-
nal idea came from a Chinese board game called GO. Consigtaithm for a special learning problem, namely rare-class clas-
the two black stones labeled A and B in Figure 4. A GO playsification and detection. Its main advantages are its speed and
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simplicity. Discussions in Section 2.5 have made it clear thahere|w| is the size ofw, or the number of variables included.
these kernel methods must be carefully tuned, for example, Tise AIC useg = 2 whereas the BIC uses= log(n), n being
ing empirical procedures such as cross-validation. This meé#ms sample size. Therefore, it appears that 2 is too small
that, in practice, one almost always has to run these algoritremsl y = log(n) is too big. But if this is the case, surely there
repeatedly many times. One may be tempted to think that, if anest be a magig somewhere in between? So why not find out
algorithm takes 10 minutes to run and another takes 1 minwtbat it is? Although this logic is certainly quite natural, it by no
the difference is still “negligible” for all practical purposes, buheans implies that the task is easy.

such ten-fold differences are often significantly magnmed if O0€3 5 Darwinian Evolution in Parallel Universes
has to run these two algorithms repeatedly many times.

Apart from practical matters such as time savings, the more! N€ Product from my R&D division is a very simple yet sur-

important lesson from this research lies in the basic principRisSingly effective method for variable selection by using Dar-

behind the construction of LAGO (22). Here, we see that it d/!N1an e_volutlon in paraI_IeI universes (Zhu and Chipman 2006).
ways pays to exploit the special nature of an underlying Iorob_Here is how the algorithm works in a nutshell. Create a num-
lem. For these rare-class problems, there is only limited amofifif Of parallel universes. In each universe, run an evolution-
of useful information in the training data. LAGO fully exploit¥ @lgorithm using the (apparently incorrect) AIC as the ob-

this fact by immediately zooming into the useful informatiolfctivé function forjust a few generatiorsthe evolutionary
&lgorithm is a heuristic stochastic search algorithm that mim-

(i.e.,x; € C1) and making a few quick local adjustments basé¢ L2 e - ) ot
onri—Equation (24). ics Dfarwm s “natural selection” to optimize any given objecF|ve
function (see, e.g., Goldberg 1989). Whatever it is, there will be
a current best solution in each universe when we stop. For ex-
ample, the current best subset in universe 1 mgyfiexs, X10};
in universe 2, it may béx1, X3, Xg, X15}; in universe 3, perhaps
Let us now consider a different problem, the variable seld&s, Xs, Xg, X11}; and so on. These form an ensemble. Now take
tion problem. Giverd potential predictors, which combinatiors majority vote and select those variables that show up in sig-
is the best for predicting? Let Q be the space of all possi-hificantly more universes than the rest. In the example here, this
ble subsets o€ = {x1, X2, ..., Xq}. The typical approach is aswould be{xs, xg}—and that is the answer.
follows: First, define a proper evaluation criterion,

4.3 A Mass R&D Product: Darwinian Evolution in Paral-
lel Universes

4.3.3 Explanation With a Toy Example

F(): Q- R. Why does this simple strategy work? A small toy example is

. htoill he gist of the idea.
Preferably F should be afair measure ofw € Q. Com- enough to illustrate the gist of the idea. Generate

mon examples of include the Akaike information criterion
(AIC, Akaike 1973), the Bayesian information criterion (BIC, id .
Schwarz 1978), and generalized cross-validation (GCV, Golub Xi,1, ..., %10, €6 ~ N(0,1), i=12...,50
et al. 1979), to name a few. Then, use a search algorithm to find

the bestw which optimizesF ().

Yi = Xi,2+ X5+ Xi,g8 + €i,

_ o In other words, there are ten potential predictors but the true

4.3.1 Two Challenges: Computation and Criterion model contains only three of themy, x5, andxg. With just ten

There are two main challenges. The first one is computatigariables, there are altogethéf2= 1, 024 subsets, and we can
With d potential predictors, the size 6fis |Q| = 29. This gets still afford to exhaustively compute the AIC for each one of
large very quickly. For example, take= 100 and suppose wethem.
can evaluate a billion () subsets per second. How long will Figure 5 plots the AIC versus the size for all®Qossible
it take us to evaluate all of them? The answer is about 40,&hsets. A number of characteristic observations can be made:
billion years:

1. The subset that has the smallest AIC is wrong; it includes
2100 10° + 3600+ 24+ 365~ 40,000 x 10°. a few variables too many.

This may seem serious, but it actually is not the problem we. On the AIC scale, many subsets are very close to each
shall be concerned about here. Everyone must face this prob- other and it is hard to tell them apart.

lem; there is no way out—just yet. For moderately ladgex-

haustive search is impossible; stepwise or heuristic search alg X ) )
rithms must be used. consists of those that include all the true variables—they

The second challenge is more substantial, especially for are labeled with circleso] in the plot. Group Il consists of

statisticians, and that is the question of what makes a good eval- those that miss oqt on at least one of the true yarlables—
uation criterion,F . It is well known that both the AIC and the ~ theY are labeled with crossesy, pluses {), and triangles

BIC are problematic in practice. Roughly speaking, with finite  (£)- Then, on the AIC scale, a significant gap exists be-
data, the AIC tends to favor subsets that are too large, while the tween these two groups.
BIC tends to favor ones that are too small. For classic I'nei%ving made these observations, we are now ready to explain
models, both the AIC and the BIC have the form: .
why parallel evolution works. The large gap between group |
F (w) = goodness-of-fiw) + v |w|, and group Il (observation 3) means that members from group |

3. Let us separate thé“2subsets into two groups. Group |
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AIC of All 2'° Models 4.3.4 Discussion: Parallel Evolution is an Easy-to-Use En-
semble Method

Parallel evolution for variable selection is a successful ex-
ample of using ensembles in a very different context. By using
i § 4 x 0 an ensemble, we can significantly “boost up” the performance
of an apparently wrong variable selection criterion such as the
AIC. The procedure is very easy to use. Most importantly, it is
trivial to adapt this principle to general variable selection prob-
lems regardless of whether the underlying model is a classic
a2 linear model, a generalized linear model, a generalized additive
model, a Cox proportional hazard model, or any other model
for which the question of variable selection is meaningful. As
such, it is not unfair to call parallel evolution a first-generation,
foolproof, off-the-shelf variable selector.
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True Moce! ° 3 A number of smart statisticians have questioned whether it

3 \ is necessary to use the evolutionary algorithm. For example,
"""""""" one can apply Breiman’s Bagging principle and create an en-

T T T T T T T T T semble as follows: Draw a bootstrap sample of the data. Using

6123 456 7 8 910 the bootstrap sample, run a stepwise algorithm to optimize the

Model Size AIC and choose a subset. Do this many times, and we get an

Figure 5. Why does parallel evolution work? For what this figure teff1Semble of subsets. Take majority vote. Clearly, this would
us, see Section 4.3.3. also work. | have experimented with this idea and found that

it is not as effective; the probability of selecting the right subset
of variables decreases significantly in simulation experiments.
are significantly superior and hence easily favored by evolutigghy? Breiman’s theorem (Section 3.3) points us to an answer.
Therefore, after evolving for just a few generations, the curreBécause bootstrapping alone does not create enough diversity
best subset in each universe is likely a member from groupvithin the ensemble. These subsets share too many things in
They are the ones that make up our ensemble. What do thesnmon with the minimum AIC solution.
have in common? They all include the three true variables.
But in order for majority vote to be effective in selecting thé-4 Section Summary

right variables, it is necessary that the true variables are the onl}/n this section, | have discussed a new kernel-based algorithm

thing that these ensemble members have in common. ThagiSrare target detection, LAGO, and a new ensemble method
why we cannot run the evolution for too long in each universgy variable selection based on parallel evolution. In doing so,
With a short evolution, since members of group | are hard to dismore general formulation of LAGO is presented (Section 4.2)
tinguish from each other on the AIC scale (observation 2), thsing much better mathematical notation, for example, Equa-
random nature of evolution will cause each universe to settletsm (22). A simpler version, SLAGO, is given for the first time.
different members from this group. If, on the other hand, we r&tter explanations are also given for why parallel evolution
the evolution for too long, the current best subsets from differd@€ction 4.3) works, for example, Figure 5. Many people have
universes will start to develop something else in common—tht&‘? incorrect understanding that parallel evolution is merely a

will all start to converge to the minimum AIC solution, Whidpetter search algonthm .fo_r vanable.selecuon.. This is simply
. . ] . not true. In Section 4.3, it is emphasized that, instead of a bet-
includes spurious variables (observation 1).

ter searchalgorithm, parallel evolution is actually an ensemble

Figure 6 illustrates how parallel evolution works on this tQ¥,etho that boosts up the performance of an apparently incor-
example. After running the evolutionary algorithm for just Sixact searcleriterion such as the AIC.
generations in each universe, we measure the importance of a
variable by how often it shows up across the parallel universes.
The correct solution for this example{i3, 5, 8}. When a single 5. CONCLUSION
universe is usedR = 1), we get the wrong solution—a spu- s hat h | 4% First of all | d that. b
rious variable, namely variable 6, also shows up. But as more 0, what have we learned+ FIrst ot afl, we learned that, by

US{ng kernel functions, we can use many linear algorithms such

a”“_' more pargllel ur_nverses are used_, on!y the truly |mport%g separating hyperplanes and principal component analysis to
variables, that is, variables 2, 5, and 8 in this case, can y

es, _ "SUVIYRY nonlinear patterns (Section 2). This easily can be done as
the majority vote. We can see from Figure 6 that when as fewigsg as the underlying linear algorithm can be shown to depend

B = 10 universes are used, the correct solution is already eagfithe data only through pairwise inner-products, thatiTisz,j .
discernible: out of the 10 universes, variables 2, 5, and 8 emn, we S|mp|y can rep|ace the inner-prockl-'éxj with a ker-
showed up at least 9 times; variable 6 showed up four times; ardl function Kp (x; ; Xj). However, even though such a frame-
all other variables showed up at most twice. work is straightforward, we also learned that it is important in
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Figure 6. Parallel evolution on the toy example (Section 4.3.3). The correct solution for this exarffhlg, 8. When B = 10 parallel
universes are used, the correct solution is already easily discernible.
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