An Introduction to Functional Analysis

LAURENT W. MARCOUX

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario Canada N2L 3G1

MAY 24, 2013

This set of notes is now undergoing its third iteration. The mathematical content outside of the appendices is mostly stabilized, and now begins the long and lonely hunt for typos, poor grammar, and awkward sentence constructions.

Please feel free to contact me if you find any mistakes – mathematical or otherwise – in these notes.

Preface to the Second Edition - December 1, 2010

This set of notes has now undergone its second incarnation. I have corrected as many typos as I have found so far, and in future instalments I will continue to add comments and to modify the appendices where appropriate. The course number for the Functional Analysis course at Waterloo has now changed to PMath 753, in case anyone is checking.

The comment in the preface to the “first edition” regarding caution and buzz saws is still à propos. Nevertheless, I maintain that this set of notes is worth at least twice the price\(^1\) that I’m charging for them.

For the sake of reference: excluding the material in the appendices, and allowing for the students to study the last section on topology themselves, one should be able to cover the material in these notes in one term, which at Waterloo consists of 36 fifty-minute lectures.

My thanks to Xiao Jiang and Ian Hincks for catching a number of typos that I missed in the second revision.

\(^1\)If you were charged a single penny for the electronic version of these notes, you were robbed. You can get them for free from my website.
Preface to the First Edition - December 1, 2008

The following is a set of class notes for the PMath 453/653 course I taught at the University of Waterloo in 2008. As mentioned on the front page, they are a work in progress, and - this being the “first edition” - they are replete with typos. A student should approach these notes with the same caution he or she would approach buzz saws; they can be very useful, but you should be thinking the whole time you have them in your hands. Enjoy.

I would like to thank Paul Skoufranis for having pointed out to me an embarrassing number of typos. I am glad to report that he still has both hands and all of his fingers.
The reviews are in!

From the moment I picked your book up until I laid it down I was convulsed with laughter. Someday I intend reading it.

Groucho Marx

This is not a novel to be tossed aside lightly. It should be thrown with great force.

Dorothy Parker

The covers of this book are too far apart.

Ambrose Bierce

I read part of it all the way through.

Samuel Goldwyn

Reading this book is like waiting for the first shoe to drop.

Ralph Novak

Thank you for sending me a copy of your book. I’ll waste no time reading it.

Moses Hadas

Sometimes you just have to stop writing. Even before you begin.

Stanislaw J. Lec
Contents

1. Normed Linear Spaces 1
2. An introduction to operators 18
3. Hilbert space 32
4. Topological Vector Spaces 45
5. Seminorms and locally convex spaces 56
6. The Hahn-Banach theorem 71
7. Weak topologies and dual spaces 90
8. Local compactness and extremal points 105
9. The chapter of named theorems 112
10. Appendix – topological background 117

Bibliography 123

Index 125
1. Normed Linear Spaces

I don’t like country music, but I don’t mean to denigrate those who do. And for the people who like country music, denigrate means ‘put down’.

Bob Newhart

1.1. It is expected that the student of this course will have already seen the notions of a normed linear space and of a Banach space. We shall review the definitions of these spaces, as well as some of their fundamental properties. In both cases, the underlying structure is that of a vector space. For our purposes, these vector spaces will be over the field K, where $K = \mathbb{R}$ or $K = \mathbb{C}$.

1.2. Definition. Let \mathcal{X} be a vector space over K. A seminorm on \mathcal{X} is a map $\nu : \mathcal{X} \to \mathbb{R}$ satisfying

(i) $\nu(x) \geq 0$ for all $x \in \mathcal{X}$;
(ii) $\nu(\lambda x) = |\lambda| \nu(x)$ for all $x \in \mathcal{X}$, $\lambda \in K$; and
(iii) $\nu(x + y) \leq \nu(x) + \nu(y)$ for all $x, y \in \mathcal{X}$.

If ν satisfies the extra condition:

(iv) $\nu(x) = 0$ if and only if $x = 0$,
then we say that ν is a norm, and we usually denote $\nu(\cdot)$ by $\| \cdot \|$. In this case, we say that $(\mathcal{X}, \| \cdot \|)$ (or, with a mild abuse of nomenclature, \mathcal{X}) is a normed linear space.

1.3. A norm on \mathcal{X} is a generalisation of the absolute value function on K. Of course, equipped with the absolute value function on K, one immediately defines a metric $d : \mathbb{K} \times \mathbb{K} \to \mathbb{R}$ by setting $d(x, y) = |x - y|$.

In exactly the same way, the norm $\| \cdot \|$ on a normed linear space \mathcal{X} induces a metric

$$d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

$$(x, y) \mapsto \|x - y\|.$$

The norm topology on $(\mathcal{X}, \| \cdot \|)$ is the topology induced by this metric. For each $x \in \mathcal{X}$, a neighbourhood base for this topology is given by

$$\mathcal{B}_x = \{D_\varepsilon(x) : \varepsilon > 0\},$$

where $D_\varepsilon(x) = \{y \in \mathcal{X} : d(y, x) < \varepsilon\}$. We say that the normed linear space $(\mathcal{X}, \| \cdot \|)$ (or informally \mathcal{X}) is complete if the corresponding metric space (\mathcal{X}, d) is complete.
1.4. Example. Define $$c_0^K(N) = \{(x_n)_{n=1}^\infty : x_n \in K, n \geq 1, x_n = 0 \text{ for all but finitely many } n \geq 1\}.$$ For $$x = (x_n)_n \in c_0^K(N),$$ set $$\|x\|_\infty = \sup_{n \geq 1} |x_n|.$$ Then $$(c_0^K(N), \| \cdot \|_\infty)$$ is a normed linear space. It is not, however, complete. The space $$c_0^K(N) = \{(x_n)_{n=1}^\infty : x_n \in K, n \geq 1, \lim_{n \to \infty} x_n = 0\},$$ equipped with the same norm $$\|x\|_\infty = \sup_{n \geq 1} |x_n|$$ does define a complete normed linear space.

1.5. Remark. We pause to make a comment about the terminology which we shall be using in these notes. A vector subspace of a vector space $$V$$ over $$K$$ is a non-empty subset $$W$$ for which $$x, y \in W$$ and $$k \in K$$ implies that $$kx + y \in W.$$ When the vector space $$V$$ does not carry a topology, there is no confusion in this terminology. When dealing with normed linear spaces ($$X, \| \cdot \|)$$, and more generally with the topological vector spaces ($$\mathcal{V}, T$$) we shall deal with later in the text, and of which normed linear spaces are an example, one needs to distinguish between those vector subspaces which are definitely closed sets in the underlying topology from those which may or may not be closed. For this reason, we shall refer to vector subspaces of a topological vector space ($$\mathcal{V}, T$$) which may or may not be closed as linear manifolds in $$\mathcal{V},$$ whereas subspaces will be used to denote closed linear manifolds. As a pedagogical tool, we shall also refer to these as closed subspaces, although strictly speaking, in our language, this is redundant.

Thus $$c_0^K(N)$$ is a linear manifold in $$c_0^K(N)$$ under the norm $$\| \cdot \|_\infty,$$ but it is not a subspace of $$c_0^K(N),$$ because it is not closed. In fact, it is dense in $$c_0^K(N).$$

1.6. Example. Consider

$$\mathcal{P}_K([0, 1]) = \{p = p_0 + p_1z + p_2z^2 + \cdots + p_nz^n : n \geq 1, p_i \in K, 0 \leq i \leq n\}.$$ Then

$$\|p\|_\infty = \sup\{|p(z)| : z \in [0, 1]\}$$

defines a norm on $$\mathcal{P}_K([0, 1]).$$ The Stone-Weierstraß Theorem states that $$\mathcal{P}_K([0, 1])$$ is a dense linear manifold in the normed linear space $$C([0, 1], K)$$ of continuous, $$K$$-valued functions on $$[0, 1]$$ with the supremum norm.

If we select $$x_0 \in [0, 1]$$ arbitrarily, then it is straightforward to check that $$\nu(f) := |f(x_0)|$$ defines a seminorm on $$\mathcal{P}_K([0, 1])$$ which is not a norm.

1.7. Example. Let $$n \geq 1$$ be an integer. If $$1 \leq p < \infty$$ is a real number, then

$$\|(x_1, x_2, \ldots, x_n)\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

defines a norm on $$K^n,$$ called the $$p$$-norm. We often write $$\ell_p^n$$ for $$(K^n, \| \cdot \|_p),$$ when the underlying field $$K$$ is understood. We may also define

$$\|(x_1, x_2, \ldots, x_n)\|_\infty = \max(|x_1|, |x_2|, \ldots, |x_n|).$$
Observe that \((\mathbb{K}^n, \| \cdot \|_\infty)\) is a normed linear space. We abbreviate this to \(\ell_n^\infty\) when \(\mathbb{K}\) is understood.

1.8. Example. For \(1 \leq p < \infty\), we define

\[
\ell_p^\mathbb{K}(\mathbb{N}) = \{(x_n)_{n=1}^\infty : x_n \in \mathbb{K}, n \geq 1 \text{ and } \sum_{n=1}^\infty |x_n|^p < \infty\}.
\]

For \((x_n)_{n=1}^\infty \in \ell_p^\mathbb{K}(\mathbb{N})\), we set

\[
\|(x_n)_{n=1}^\infty\|_p = \left(\sum_{n=1}^\infty |x_n|^p\right)^{1/p}.
\]

Then \(\| \cdot \|_p\) defines a norm, again called the \(p\)-norm. on \(\ell_p^\mathbb{K}(\mathbb{N})\).

As above, we may also define

\[
\ell_\infty^\mathbb{K}(\mathbb{N}) = \{(x_n)_{n=1}^\infty : x_n \in \mathbb{K}, n \geq 1, \sup_n |x_n| < \infty\}.
\]

The \(\infty\)-norm on \(\ell_\infty^\mathbb{K}(\mathbb{N})\) is given by

\[
\|(x_n)_{n=1}^\infty\|_\infty = \sup_n |x_n|.
\]

In most contexts, the underlying field \(\mathbb{K}\) is understood, and we shall write only \(\ell_p(\mathbb{N})\), or even \(\ell_p\), \(1 \leq p \leq \infty\).

The last two examples have one especially nice property not shared by \(c_0^\mathbb{K}(\mathbb{N})\) and \(P_\mathbb{K}([0,1])\), namely: they are complete.

1.9. Definition. A Banach space is a complete normed linear space.

1.10. Example. Let \(\mathcal{C}([0,1], \mathbb{K}) = \{f : [0,1] \to \mathbb{K} : f \text{ is continuous}\}\), equipped with the uniform norm

\[
\|f\|_\infty = \max\{|f(z)| : z \in [0,1]\}.
\]

Then \((\mathcal{C}([0,1], \mathbb{K}), \| \cdot \|_\infty)\) is a Banach space.

1.11. Definition. Let \(\mathcal{H}\) be an inner product space over \(\mathbb{K}\); that is, there exists a map

\[
\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{K}
\]

which, for all \(x, x_1, x_2, y \in \mathcal{H}\) and \(\lambda \in \mathbb{K}\), satisfies:

(i) \(\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle\);
(ii) \(\langle x, y \rangle = \overline{\langle y, x \rangle}\);
(iii) \(\langle \lambda x, y \rangle = \lambda \langle x, y \rangle\);
(iv) \(\langle x, x \rangle \geq 0\), with equality holding if and only if \(x = 0\).
(Of course, when \(K = \mathbb{R} \), the complex conjugation in (ii) is superfluous.) Recall that the canonical norm on \(H \) induced by the inner product is given by
\[
\|x\| = \langle x, x \rangle^{1/2}.
\]
If \(H \) is complete with respect to the corresponding metric, then we say that \(H \) is a **Hilbert space**. Thus every Hilbert space is a Banach space.

1.12. Example. Recall that \(\ell_2^K(\mathbb{N}) \) is a Hilbert space with inner product
\[
\langle (x_n)_n, (y_n)_n \rangle = \sum_{n=1}^{\infty} x_n y_n.
\]

More generally, let \((X, \mu)\) be a measure space. Then \(H = L^2(X, \mu) \) is a Hilbert space with
\[
\langle f, g \rangle = \int_X f \overline{g} d\mu.
\]

1.13. It is easy to see that if \(X \) is a normed linear space, then the vector space operations
\[
\sigma : X \times X \to X \quad \text{and} \quad \mu : K \times X \to X \quad \text{defined by} \quad (x, y) \mapsto x + y \quad \text{and} \quad (\lambda, x) \mapsto \lambda x
\]
of addition and scalar multiplication are continuous (from the respective product topologies on \(X \times X \) and on \(K \times X \) to the norm topology on \(X \)). The proof is left as an exercise for the reader. In particular, therefore, if \(0 \neq \lambda \in K \), \(y \in X \), then \(\sigma_y : X \to X \) defined by \(\sigma_y(x) = x + y \) and \(\mu_\lambda : X \to X \) defined by \(\mu_\lambda(x) = \lambda x \) are homeomorphisms.

As a simple corollary to this fact, a set \(G \subseteq X \) is open (resp. closed) if and only if \(G + y \) is open (resp. closed) for all \(y \in X \), and \(\lambda G \) is open (resp. closed) for all \(0 \neq \lambda \in K \). We shall return to this in a later section.

1.14. **New Banach spaces from old.** We now exhibit a few constructions which allow us to produce new Banach spaces from simpler building blocks.

Let \((X_n, \| \cdot \|_n)_{n=1}^{\infty}\) denote a countable family of Banach spaces. Let \(X = \prod_n X_n \).

(a) For each \(1 \leq p < \infty \), define
\[
\sum_{n=1}^{\infty} \oplus_p X_n = \{(x_n)_n \in X : \| (x_n)_n \|_p = \left(\sum_{n=1}^{\infty} \| x_n \|_n^p \right)^{1/p} < \infty \}.
\]

Then \(\sum_{n=1}^{\infty} \oplus_p X_n \) is a Banach space, referred to as the \(\ell^p \)-**direct sum** of the \((X_n)_n\).

(b) With \(p = \infty \),
\[
\sum_{n=1}^{\infty} \oplus_\infty X_n = \{(x_n)_n \in X : \| (x_n)_n \|_\infty = \sup_{n \geq 1} \| x_n \|_n < \infty \}.
\]

Again, \(\sum_{n=1}^{\infty} \oplus_\infty X_n \) is a Banach space - namely the \(\ell^\infty \)-**direct sum** of the \((X_n)_n\).
(c) We also define

\[c_0(\mathcal{X}) = \{(x_n)_n \in \mathcal{X} : x_n \in \mathcal{X}_n, n \geq 1 \text{ and } \lim_{n \to \infty} \|x_n\|_n = 0\}. \]

The norm on \(c_0(\mathcal{X}) \) is \(\|(x_n)_n\|_\infty = \sup_{n \geq 1} \|x_n\|_n \), and equipped with this norm, \(c_0(\mathcal{X}) \) is easily seen to be a closed subspace of \(\sum_{n=1}^{\infty} \oplus_{n} \mathcal{X}_n \).

1.15. Definition. Let \(\mathcal{X} \) be a vector space equipped with two norms \(\| \cdot \| \) and \(||| \cdot ||| \). We say that these norms are equivalent if there exist constants \(\kappa_1, \kappa_2 > 0 \) so that

\[\kappa_1 \|x\| \leq |||x||| \leq \kappa_2 \|x\| \text{ for all } x \in \mathcal{X}. \]

We remark that when this is the case,

\[\frac{1}{\kappa_2}|||x||| \leq \|x\| \leq \frac{1}{\kappa_1}|||x|||, \]

resolving the apparent lack of symmetry in the definition of equivalence of norms.

1.16. Example. Fix \(n \geq 1 \) an integer, and let \(\mathcal{X} = \mathbb{C}^n \). For \(x = (x_1, x_2, ..., x_n) \in \mathcal{X} \),

\[\|x\|_1 = \sum_{k=1}^{n} |x_k| \leq \sum_{k=1}^{n} \left(\max_j |x_j| \right) = \sum_{k=1}^{n} \|x\|_\infty = n\|x\|_\infty. \]

Moreover,

\[\|x\|_\infty = \max_j |x_j| \leq \sum_{k=1}^{n} |x_k| = \|x\|_1, \]

so that

\[\|x\|_\infty \leq \|x\|_1 \leq n\|x\|_\infty. \]

This proves that \(\| \cdot \|_1 \) and \(||| \cdot ||| \) are inequivalent norms on \(\mathcal{X} \). As we shall later see, all norms on a finite dimensional vector space are equivalent.

1.17. Example. Let \(\mathcal{X} = \mathcal{C}([0,1], \mathbb{C}) \), and consider the norms

\[\|f\|_\infty = \sup\{ |f(x)| : x \in [0,1]\} \]

and

\[\|f\|_1 = \int_{0}^{1} |f(x)| \, dx \]

on \(\mathcal{X} \). If, for each \(n \geq 1 \), we set \(f_n \) to be the function \(f_n(x) = x^n \), then \(\|f_n\|_\infty = 1 \), while \(\|f_n\|_1 = \int_{0}^{1} x^n \, dx = \frac{1}{n+1} \). Clearly \(\| \cdot \|_1 \) and \(||| \cdot ||| \) are inequivalent norms on \(\mathcal{X} \).
1.18. Proposition. Two norms \(\| \cdot \| \) and \(||| \cdot ||| \) on a vector space \(\mathcal{X} \) are equivalent if and only if they generate the same metric topologies.

Proof. Suppose first that \(\| \cdot \| \) and \(||| \cdot ||| \) are equivalent, say \(\kappa_1 \| x \| \leq ||| x ||| \leq \kappa_2 \| x \| \) for all \(x \in \mathcal{X} \), where \(\kappa_1, \kappa_2 > 0 \) are constants. If \(x \in \mathcal{X} \) and \((x_n)_n \) is a sequence in \(\mathcal{X} \), then it immediately follows that

\[
\lim_{n \to \infty} \| x_n - x \| = 0 \quad \text{if and only if} \quad \lim_{n \to \infty} ||| x_n - x ||| = 0.
\]

That is, the two notions of convergence coincide, and thus the topologies are equal.

Conversely, suppose that the metric topologies \(\tau_{\| \cdot \|} \) and \(\tau_{||| \cdot |||} \), induced by \(\| \cdot \| \) and \(||| \cdot ||| \) respectively, coincide. Then \(G = \{ x \in \mathcal{X} : \| x \| < 1 \} \) is an open nbhd of 0 in \((\mathcal{X}, \| \cdot \|) \), and so there exists \(\delta > 0 \) so that \(H = \{ x \in \mathcal{X} : ||| x ||| < \delta \} \subseteq G \). That is, \(||| x ||| < \delta \) implies \(\| x \| < 1 \). In particular, therefore, \(||| x ||| \leq \delta/2 \) implies \(\| x \| \leq 1 \), so that every \(\| \cdot \| \) and \(||| \cdot ||| \) are equivalent norms.

\[\Box \]

1.19. Corollary. Equivalence of norms is an equivalence relation for norms on a vector space \(\mathcal{X} \).

1.20. Definition. Let \((\mathcal{X}, \| \cdot \|) \) be a normed linear space. A series \(\sum_{n=1}^{\infty} x_n \) in \(\mathcal{X} \) is said to be **absolutely summable** if \(\sum_{n=1}^{\infty} \| x_n \| < \infty \).

The following result provides a very practical tool when trying to decide whether or not a given normed linear space is complete. We remark that the second half of the proof uses the standard fact that if \((y_n)_n \) is a Cauchy sequence in a metric space \((Y,d) \), and if \((y_n)_n \) admits a convergent subsequence with limit \(y_0 \), then the original sequence \((y_n)_n \) converges to \(y_0 \) as well.

1.21. Proposition. Let \((\mathcal{X}, \| \cdot \|) \) be a normed linear space. The following statements are equivalent:

(a) \(\mathcal{X} \) is complete, and hence \(\mathcal{X} \) is a Banach space.

(b) Every absolutely summable series in \(\mathcal{X} \) is summable.

Proof.

(a) implies (b): Suppose that \(\mathcal{X} \) is complete, and that \(\sum x_n \) is absolutely summable. For each \(k \geq 1 \), let \(y_k = \sum_{n=1}^{k} x_n \). Given \(\varepsilon > 0 \), we can find
1. NORMED LINEAR SPACES

$N > 0$ so that $m \geq N$ implies $\sum_{n=m}^{\infty} \|x_n\| < \varepsilon$. If $k \geq m \geq N$, then

$$\|y_k - y_m\| = \| \sum_{n=m+1}^{k} x_n \|$$

$$\leq \sum_{n=m+1}^{k} \|x_n\|$$

$$\leq \sum_{n=m+1}^{\infty} \|x_n\|$$

$$< \varepsilon,$$

so that $(y_k)_k$ is Cauchy in \mathcal{X}. Since \mathcal{X} is complete, $y = \lim_{k \to \infty} y_k = \lim_{k \to \infty} \sum_{n=1}^{k} x_n = \sum_{n=1}^{\infty} x_n$ exists, i.e. $\sum_{n=1}^{\infty} x_n$ is summable.

(b) implies (a): Next suppose that every absolutely summable series in \mathcal{X} is summable, and let $(y_j)_j$ be a Cauchy sequence in \mathcal{X}. For each $n \geq 1$ there exists $N_n > 0$ so that $k, m \geq N_n$ implies $\|y_k - y_m\| < 1/2^{n+1}$. Let $x_1 = y_{N_1}$, and for $n \geq 2$, let $x_n = y_{N_n} - y_{N_n-1}$. Then $\|x_n\| < 1/2^n$ for all $n \geq 2$, so that

$$\sum_{n=1}^{\infty} \|x_n\| \leq \|x_1\| + \sum_{n=2}^{\infty} \frac{1}{2^n}$$

$$\leq \|x_1\| + \frac{1}{2} < \infty.$$

By hypothesis, $y = \sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} \sum_{n=1}^{k} x_n$ exists. But $\sum_{n=1}^{k} x_n = y_{N_k}$, so that $\lim_{k \to \infty} y_{N_k} = y \in \mathcal{X}$. Recalling that $(y_j)_j$ was Cauchy, we conclude from the remark preceding the Proposition that $(y_j)_j$ also converges to y. Since every Cauchy sequence in \mathcal{X} converges, \mathcal{X} is complete.

1.22. Theorem. Let $(\mathcal{X}, \| \cdot \|)$ be a normed linear space, and let $\mathcal{M} \subseteq \mathcal{X}$ be a linear manifold. Then

$$p(x + \mathcal{M}) := \inf\{\|x + m\| : m \in \mathcal{M}\}$$

defines a seminorm on the quotient space \mathcal{X}/\mathcal{M}.

This formula defines a norm on \mathcal{X}/\mathcal{M} if and only if \mathcal{M} is closed.

Proof. First observe that the function p is well-defined; for if $x + \mathcal{M} = y + \mathcal{M}$, then $x - y \in \mathcal{M}$ and so

$$p(y + \mathcal{M}) = \inf\{\|y + m\| : m \in \mathcal{M}\}$$

$$= \inf\{\|y + m + (x - y)\| = \|x + m\| : m \in \mathcal{M}\}$$

$$= p(x + \mathcal{M}).$$
Clearly \(p(x + \mathcal{M}) \geq 0 \) for all \(x + \mathcal{M} \in \mathcal{X}/\mathcal{M} \). If \(0 \neq k \in \mathbb{K} \), then \(m \in \mathcal{M} \) if and only if \(\frac{1}{k} m \in \mathcal{M} \) and so
\[
p(k(x + \mathcal{M})) = p(kx + \mathcal{M})
= \inf \{ \| kx + m \| : m \in \mathcal{M} \}
= \inf \{ \| k(x + \frac{1}{k} m) \| : m \in \mathcal{M} \}
= |k| \inf \{ \| x + m_0 \| : m_0 \in \mathcal{M} \}
= |k| p(x + \mathcal{M}).
\]
If \(k = 0 \), then \(p(0 + \mathcal{M}) = 0 \), since \(m = 0 \in \mathcal{M} \).
Finally,
\[
p((x + \mathcal{M}) + (y + \mathcal{M})) = p(x + y + \mathcal{M})
= \inf \{ \| (x + y) + m \| : m \in \mathcal{M} \}
= \inf \{ \| (x + m_1) + (y + m_2) \| : m_1, m_2 \in \mathcal{M} \}
\leq \inf \{ \| x + m_1 \| + \| y + m_2 \| : m_1, m_2 \in \mathcal{M} \}
= p(x + \mathcal{M}) + p(y + \mathcal{M}).
\]
In the case where \(\mathcal{M} \) is closed in \(\mathcal{X} \), suppose that \(p(x + \mathcal{M}) = 0 \) for some \(x \in \mathcal{X} \).
Then
\[
\inf \{ \| x + m \| : m \in \mathcal{M} \} = 0,
\]
so there exist \(m_n \in \mathcal{M}, n \geq 1 \), so that \(-x = \lim_{n \to \infty} m_n \). Since \(\mathcal{M} \) is closed, \(-x \in \mathcal{M} \) and so \(x + \mathcal{M} = x + (-x) + \mathcal{M} = 0 + \mathcal{M} \), proving that \(p \) is a norm.

The converse statement is left as an exercise.

1.23. Let \(\mathcal{X} \) be a normed linear space and \(\mathcal{M} \) be a linear manifold in \(\mathcal{X} \). We shall denote the canonical quotient map from \(\mathcal{X} \) to \(\mathcal{X}/\mathcal{M} \) by \(q \) (or \(q_\mathcal{M} \) if the need to be specific arises). When \(\mathcal{M} \) is closed in \(\mathcal{X} \), we shall denote the norm from Theorem 1.22 once again by \(\| \cdot \| \) (or \(\| \cdot \|_{\mathcal{X}/\mathcal{M}} \)), so that
\[
\| q(x) \| = \| x + \mathcal{M} \| = \inf \{ \| x + m \| : m \in \mathcal{M} \}.
\]
It is clear that \(\| q(x) \| \leq \| x \| \) for all \(x \in \mathcal{X} \), and so \(q \) is continuous. Indeed, given \(\varepsilon > 0 \), we can take \(\delta = \varepsilon \) to get \(\| x - y \| < \delta \) implies \(\| q(x) - q(y) \| \leq \| x - y \| < \varepsilon \).

We shall see below that \(q \) is also an open map - i.e. it takes open sets to open sets.

1.24. Theorem. Let \(\mathcal{X} \) be a normed linear space and \(\mathcal{M} \) be a closed subspace of \(\mathcal{X} \).

(a) If \(\mathcal{X} \) is complete, then so are \(\mathcal{M} \) and \(\mathcal{X}/\mathcal{M} \).

(b) If \(\mathcal{M} \) and \(\mathcal{X}/\mathcal{M} \) are complete, then so is \(\mathcal{X} \).

Proof.
(a) Suppose that \(\mathcal{X} \) is complete. We first show that \(\mathcal{M} \) is complete.
Let \((m_n)_{n=1}^{\infty} \) be a Cauchy sequence in \(\mathcal{M} \). Then it is Cauchy in \(\mathcal{X} \) and \(\mathcal{X} \) is complete, so that \(x = \lim_{n \to \infty} m_n \in \mathcal{X} \). Since \(\mathcal{M} \) is closed in \(\mathcal{X} \), \(x \in \mathcal{M} \). Thus \(\mathcal{M} \) is complete.

Note that this argument shows that any closed subset of a complete metric space is complete.

Next we show that \(\mathcal{X}/\mathcal{M} \) is also complete.

Let \(\sum_n q(x_n) \) be an absolutely summable series in \(\mathcal{X}/\mathcal{M} \). For each \(n \geq 1 \), choose \(m_n \in \mathcal{M} \) so that \(\|x_n + m_n\| \leq \|q(x_n)\| + \frac{1}{2^n} \). Then
\[
\sum_n \|x_n + m_n\| \leq \sum_n \left(\|q(x_n)\| + \frac{1}{2^n}\right) < \infty,
\]
so \(\sum_n (x_n + m_n) \) is summable in \(\mathcal{X} \) since \(\mathcal{X} \) is complete. Set
\[
x_0 := \sum_n (x_n + m_n).
\]
By the continuity of \(q \),
\[
q(x_0) = q\left(\sum_n (x_n + m_n)\right) = \sum_n q(x_n + m_n) = \sum_n q(x_n).
\]
Thus every absolutely summable series in \(\mathcal{X}/\mathcal{M} \) is summable, and so by Proposition 1.21, \(\mathcal{X}/\mathcal{M} \) is complete.

(b) Suppose next that \(\mathcal{M} \) and \(\mathcal{X}/\mathcal{M} \) are both complete.

Let \((x_n)_{n=1}^{\infty} \) be a Cauchy sequence in \(\mathcal{X} \). Then \((q(x_n))_{n=1}^{\infty} \) is Cauchy in \(\mathcal{X}/\mathcal{M} \) and thus \(q(y) = \lim_{n \to \infty} q(x_n) \) exists, by the completeness of \(\mathcal{X}/\mathcal{M} \).

For \(n \geq 1 \), choose \(m_n \in \mathcal{M} \) so that
\[
\|y - (x_n + m_n)\| < \|q(y) - q(x_n)\| + \frac{1}{2^n}.
\]
Since \((x_n + m_n)_{n=1}^{\infty} \) converges to \(y \) in \(\mathcal{X} \), it follows that it is a Cauchy sequence. Since both \((x_n)_{n=1}^{\infty} \) and \((x_n + m_n)_{n=1}^{\infty} \) are Cauchy, it follows that \((m_n)_{n=1}^{\infty} \) is also Cauchy – a fact that follows easily from the observation that
\[
\|m_j - m_i\| \leq \|(x_j + m_j) - (x_i + m_i)\| + \|x_j - x_i\|.
\]
But \(\mathcal{M} \) is complete and so \(m := \lim_{n \to \infty} m_n \in \mathcal{M} \). This yields
\[
y - m = \lim_{n \to \infty} (x_n + m_n) - m = \lim_{n \to \infty} x_n,
\]
so that \((x_n)_{n=1}^{\infty} \) converges to \(y - m \) in \(\mathcal{X} \). That is, \(\mathcal{X} \) is complete.
1.25. Proposition. Let \mathcal{X} be a normed linear space and \mathcal{M} be a closed subspace of \mathcal{X}. Let $q : \mathcal{X} \to \mathcal{X}/\mathcal{M}$ denote the canonical quotient map.

(a) A subset $W \subseteq \mathcal{X}/\mathcal{M}$ is open if and only if $q^{-1}(W)$ is open in \mathcal{X}.

(b) The map q is an open map - i.e., if $G \subseteq \mathcal{X}$ is open, then $q(G)$ is open in \mathcal{X}/\mathcal{M}.

Proof.

(a) If $W \subseteq \mathcal{X}/\mathcal{M}$ is open, then $q^{-1}(W)$ is open in \mathcal{X} because q is continuous. Suppose next that $W \subseteq \mathcal{X}/\mathcal{M}$ and that $q^{-1}(W)$ is open in \mathcal{X}. Let $q(x) \in W$. Then $x \in q^{-1}(W)$, and so we can find $\delta > 0$ so that $V_\delta(x) \subseteq q^{-1}(W)$. If $\|q(y) - q(x)\| < \delta$, then $\|y - x + m\| < \delta$ for some $m \in \mathcal{M}$, and thus $q(y) = q(y + m) \in q(V_\delta(x)) \subseteq W$. That is, $V_\delta(q(x)) \subseteq W$, and W is open.

(b) Let $G \subseteq \mathcal{X}$ be an open set. Observe that $q^{-1}(q(G)) = G + \mathcal{M} = \bigcup_{m \in \mathcal{M}} G + m$ is open, being the union of open sets. By (a), $q(G)$ is open.

1.26. Let \mathcal{M} be a finite-dimensional linear manifold in a normed linear space \mathcal{X}. Then \mathcal{M} is closed in \mathcal{X}. The proof of this is left as an assignment exercise.

1.27. Proposition. Let \mathcal{X} be a normed linear space. If \mathcal{M} and Z are closed subspaces of \mathcal{X} and $\dim Z < \infty$, then $\mathcal{M} + Z$ is closed in \mathcal{X}.

Proof. Let $q : \mathcal{X} \to \mathcal{X}/\mathcal{M}$ denote the canonical quotient map. Since Z is a finite dimensional vector space, so is $q(Z)$. By the exercise preceding this Proposition, $q(Z)$ is closed in \mathcal{X}/\mathcal{M}. Since q is continuous, $\mathcal{M} + Z = q^{-1}(q(Z))$ is closed in \mathcal{X}.

\square
Appendix to Section 1.

1.28. This course assumes that the reader has taken at least enough Real Analysis to have seen that \((\ell^p_\mathbb{Z}(\mathbb{N}), \| \cdot \|_p)\) is a normed linear space for each \(1 \leq p \leq \infty\). Having said that, let us review Hölder’s Inequality as well as Minkowski’s Inequality in this setting, since Hölder’s Inequality is also useful in studying dual spaces in the next Section. The reader will recall that Minkowski’s Inequality is the statement that the \(p\)-norm is subadditive; that is, that the \(p\)-norm satisfies condition (iii) of Definition 1.2. We remark that both inequalities hold for more general \(L^p\)-spaces. Our decision to concentrate on \(\ell^p\)-spaces instead of their more general counterparts is an attempt to accommodate the background of the students who took this course, as opposed to a conscious effort to avoid \(L^p\)-spaces.

Before proving Hölder’s Inequality, we pause to prove the following Lemma.

1.29. Lemma. Let \(a\) and \(b\) be positive real numbers and suppose that \(1 < p, q < \infty\) satisfy \(\frac{1}{p} + \frac{1}{q} = 1\). Then

\[
\left(\frac{a}{b}\right)^{\frac{1}{q}} \leq \frac{a}{p} + \frac{b}{q}.
\]

Proof. Let \(0 < t < 1\) and consider the function

\[
f(x) = x^t - tx + t - 1,
\]

defined on \((0, \infty)\). Then

\[
f'(x) = tx^{t-1} - t = t(x^{t-1} - 1).
\]

Thus \(f(1) = 0 = f'(1)\). Since \(f'(x) > 0\) for \(x \in (0, 1)\) and \(f'(x) < 0\) for \(x \in (1, \infty)\), it follows that

\[
f(x) < f(1) = 0\quad\text{for all } x \neq 1.
\]

That is, \(x^t < (1 - t) + tx\) for all \(x > 0\), with equality holding if and only if \(x = 1\).

Letting \(x = a/b\), \(t = 1/p\) yields

\[
\left(\frac{a}{b}\right)^{\frac{1}{q}} = \frac{a}{b}^{\frac{1}{q}} = \left(\frac{a}{b}\right)^{\frac{1}{p}} \leq (1 - \frac{1}{p}) + \frac{1}{p} \left(\frac{a}{b}\right)
\]

\[
= \frac{1}{p} \left(\frac{a}{b}\right) + \frac{1}{q}.
\]

Multiplying both sides of the equation by \(b\) yields the desired inequality. \(\square\)
1.30. Theorem. Hölder’s Inequality
Let \(1 \leq p, q \leq \infty \), and suppose that \(\frac{1}{p} + \frac{1}{q} = 1 \). Let \(x = (x_n)_n \in \ell^p \) and \(y = (y_n)_n \in \ell^q \). If \(z = (z_n)_n \), where \(z_n = x_ny_n \) for all \(n \geq 1 \), then \(z \in \ell^1 \) and
\[
\|z\|_1 \leq \|x\|_p \|y\|_q.
\]

Proof. The cases where \(p = 1 \) or \(p = \infty \) are routine and are left to the reader.
First let us suppose that \(\|x\|_p = \|y\|_q = 1 \). Applying the previous Lemma to our sequences \(x \) and \(y \) yields, for each \(n \geq 1 \),
\[
|x_ny_n| = \left(|x_n|^p \right)^{\frac{1}{p}} \left(|y_n|^q \right)^{\frac{1}{q}} \leq \frac{1}{p} |x_n|^p + \frac{1}{q} |y_n|^q,
\]
so that
\[
\sum_n |z_n| = \sum_n |x_ny_n| \leq \frac{1}{p} \sum_n |x_n|^p + \frac{1}{q} \sum_n |y_n|^q = \frac{1}{p} \|x\|_p + \frac{1}{q} \|y\|_q = 1.
\]
In general, if \(x \in \ell^p \) and \(y \in \ell^q \), let \(u = x/\|x\|_p \), \(v = y/\|y\|_q \) so that \(\|u\|_p = 1 = \|v\|_q \) and so
\[
\frac{1}{\|x\|_p \|y\|_q} \sum_n |x_ny_n| = \sum_n |u_nv_n| \leq 1.
\]
Thus
\[
\|z\|_1 \leq \|x\|_p \|y\|_q.
\]
\(\Box\)

Hölder’s Inequality is the key to proving Minkowski’s Inequality.

1.31. Theorem. Minkowski’s Inequality.
Let \(1 \leq p \leq \infty \), and suppose that \(x = (x_n)_n \) and \(y = (y_n)_n \) are in \(\ell^p \). Then \(x + y = (x_n + y_n)_n \in \ell^p \) and
\[
\|x + y\|_p \leq \|x\|_p + \|y\|_p.
\]

Proof. Again, the cases where \(p = 1 \) and where \(p = \infty \) are left to the reader. Suppose therefore that \(1 < p < \infty \). Observe that if \(a, b > 0 \), then
\[
\left(\frac{a + b}{2} \right)^p \leq a^p + b^p,
\]
so that $(a + b)^p \leq 2^p (a^p + b^p)$. It follows that

$$\sum_n |x_n + y_n|^p \leq 2^p \sum_n (|x_n|^p + |y_n|^p) < \infty,$$

which proves that $x + y \in \ell^p$.

By Hölder’s Inequality,

$$\sum_n |x_n + y_n|^{p-1} |x_n| \leq \|x\|_p \|(x_n + y_n|^{p-1})_n\|_q,$$

and similarly

$$\sum_n |x_n + y_n|^{p-1} |y_n| \leq \|y\|_p \|(x_n + y_n|^{p-1})_n\|_q.$$

Now

$$\|(x_n + y_n|^{p-1})_n\|_q = \left(\sum_n |x_n + y_n|^{(p-1)q} \right)^{\frac{1}{q}}$$

$$= \left(\sum_n |x_n + y_n|^{(pq-q)} \right)^{\frac{1}{q}}$$

$$= \left(\sum_n |x_n + y_n|^{p} \right)^{\frac{1}{q}}$$

$$= \|(x_n + y_n)_n\|_{p/q}.$$

Hence

$$\|x + y\|_p^p = \sum_n |x_n + y_n| \cdot |x_n + y_n|^{p-1}$$

$$\leq \sum_n (|x_n| + |y_n|) \cdot |x_n + y_n|^{p-1}$$

$$\leq (\|x\|_p + \|y\|_p) \|(x_n + y_n|^{p-1})_n\|_q$$

$$= (\|x\|_p + \|y\|_p) \|(x_n + y_n)_n\|_{p/q},$$

from which we get

$$\|x + y\|_p = \|x + y\|_{p-p/q} \leq \|x\|_p + \|y\|_p.$$

Let us now examine a couple of examples of useful Banach spaces whose definitions require a somewhat better background in Analysis than we are assuming in the main body of the text.
1.32. Example. Let \(x = (x_n)_n \) be a sequence of complex (or real) numbers. The total variation of \(x \) is defined by

\[
V(x) := \sum_{n=1}^{\infty} |x_{n+1} - x_n|.
\]

If \(V(x) < \infty \), we say that \(x \) has bounded variation. The space

\[
\text{bv} := \{ (x_n)_n : x_n \in \mathbb{K}, n \geq 1, V(x) < \infty \}
\]

is called the space of sequences of bounded variation. We may define a norm on \(\text{bv} \) as follows: for \(x \in \text{bv} \), we set

\[
\|(x_n)_n\|_{\text{bv}} := |x_1| + V(x) = |x_1| + \sum_{n=1}^{\infty} |x_{n+1} - x_n|.
\]

It can be shown that \(\text{bv} \) is complete under this norm, and hence that \(\text{bv} \) is a Banach space.

If we let \(\text{bv}_0 = \{ (x_n)_n \in \text{bv} : \lim_{n \to \infty} x_n = 0 \} \), then

\[
\|(x_n)_n\|_{\text{bv}_0} := V((x_n)_n)
\]

defines a norm on \(\text{bv}_0 \), and again, \(\text{bv}_0 \) is a Banach space with respect to this norm.

1.33. Example. The geometric theory of real Banach spaces is an active and exciting area. For a period of time, the following question was open [Lin71]: does every infinite-dimensional Banach space contain a subspace which is linearly homeomorphic to one of the spaces \(\ell^p \), \(1 \leq p < \infty \) or \(c_0 \)? In 1974, B.S. Tsirel’son [Tsi74] provided a counterexample to this conjecture. In this example, we shall discuss the broad outline of the construction of the Tsirel’son space, omitting the proofs of certain technical details.

We begin by considering the space \(c_0 \) of Example 1.4. For each \(n \geq 1 \), let \(e_n \in c_0 \) denote the sequence \((0,0,\ldots,0,1,0,0,\ldots) \), with the unique “1” occurring in the \(n^{th} \) coordinate. Given \(x = (x_n)_n \in c_0 \), we may write \(x = \sum_{n=1}^{\infty} x_n e_n \). Let us also define the map \(P_n : c_0 \to c_0 \) via \(P_n(x_k)_k := (0,0,\ldots,0,x_{n+1},x_{n+2},\ldots) \).

Given a finite set \(\{v_1,v_2,\ldots,v_r\} \) of vectors in \(c_0 \), we shall say that they are block-disjoint for consecutively supported – written \(v_1 < v_2 < \cdots < v_r \) – if there exist \(\alpha_1, \alpha_2, \ldots, \alpha_r, \beta_1, \beta_2, \ldots, \beta_r \in \mathbb{N} \) with

\[
\alpha_1 \leq \beta_1 < \alpha_2 \leq \beta_2 < \cdots < \alpha_r \leq \beta_r
\]

so that \(\text{supp}(v_j) \subseteq [\alpha_j, \beta_j], 1 \leq j \leq r \). Here, for \(x = (x_n)_n \in c_0 \),

\[
\text{supp}(x) := \{ j \in \mathbb{N} : x_j \neq 0 \}.
\]

We shall write \((v_1,v_2,\ldots,v_r) \) for \(\sum_{j=1}^{r} v_j \) when \(v_1 < v_2 < \cdots < v_r \).

For a subset \(B \subseteq c_0 \), we consider the following set of conditions which \(B \) may or may not possess:

(a) \(x \in B \) implies that \(\|x\|_\infty \leq 1 \); i.e. \(B \) is contained in the unit ball of \(c_0 \).
(b) \(\{e_n\}_{n=1}^{\infty} \subseteq \mathcal{B} \).
(c) If \(x = \sum_{n=1}^{\infty} x_n e_n \in \mathcal{B} \), \(y = (y_n)_n \in c_0 \) and \(|y_n| \leq |x_n| \) for all \(n \geq 1 \), then \(y \in \mathcal{B} \). (This is a hereditary property.)
(d) If \(v_1 < v_2 < \cdots < v_r \) lie in \(\mathcal{B} \), then \(\frac{1}{2} P_r((v_1, v_2, \ldots, v_r)) \in \mathcal{B} \).
(e) For every \(x \in \mathcal{B} \) there exists \(n \in \mathbb{N} \) for which \(2P_n(x) \in \mathcal{B} \).

Our first goal is to construct a set \(K \) which has all five of these properties.
Let \(L_1 = \{re_j : -1 \leq r \leq 1, j \geq 1\} \) and for \(n \geq 1 \), set
\[
L_{n+1} = L_n \cup \left\{ \frac{1}{2} P_r((v_1, v_2, \ldots, v_r)) : r \geq 1, v_1 < v_2 < \cdots < v_r \in L_n \right\}.
\]
Let \(K \) denote the pointwise closure of \(\bigcup_{n \geq 1} L_n \). It can be shown that \(K \subseteq c_0 \). We set \(D = \overline{c_0}(K) \) denote the closed convex hull of \(K \) (with the closure taking place in \(c_0 \)).

The Tsirel’son space \(T \) is then defined as span \(D \). The norm on \(T \) is given by the Minkowski functional which we shall encounter later when studying locally convex spaces. It is given by \(\|x\|_T = \inf\{r \in (0, \infty) : x \in rD\} \), where \(rD = \{ry : y \in D\} \). As we shall later see, the definition of this norm ensures that \(D \) is precisely the unit ball of \(T \).

Although we shall not prove it here, \((T, \|\cdot\|_T) \) is a Banach space which does not contain any copy of \(c_0 \) or \(\ell^p \), \(1 \leq p < \infty \).

1.34. Example. Another Banach space of interest to those who study the geometry of said spaces is James’ space.
For a sequence \((x_n)_n \) of real numbers, consider the following condition, which we shall call condition \(J \): for all \(k \geq 1 \),
\[
\sup_{n_1 < n_2 < \cdots < n_k} \left[(x_{n_1} - x_{n_2})^2 + (x_{n_2} - x_{n_3})^2 + \cdots + (x_{n_{k-1}} - x_{n_k})^2 \right] < \infty.
\]
The James’ space is defined to be:
\[
\mathcal{J} = \{(x_n)_n \in c_0 : (x_n)_n \text{ satisfies condition } J\}.
\]
The norm on \(\mathcal{J} \) is defined via:
\[
\|(x_n)_n\|_{\mathcal{J}} := \sup_{n_1 < n_2 < \cdots < n_k} \left[(x_{n_1} - x_{n_2})^2 + (x_{n_2} - x_{n_3})^2 + \cdots + (x_{n_{k-1}} - x_{n_k})^2 \right]^{\frac{1}{2}}.
\]
It can be shown that \(\mathcal{J} \) is a Banach space when equipped with this norm.

1.35. Example. Let \(X \) be a locally compact topological space and let \(\mathcal{B} \) denote the \(\sigma \)-algebra of Borel subsets of \(X \). Let \(\mu \) be a positive measure on \(X \), so that
\[
\mu : \mathcal{B} \rightarrow \mathbb{R} \cup \{\infty\}
\]
satisfies
(a) \(\mu(\emptyset) = 0 \);
(b) \(\mu(B) \geq 0 \) for all \(B \in \mathcal{B} \);
(c) if \(\{ B_n \} \) is a sequence of disjoint, measurable subsets from \(\mathcal{B} \), then

\[
\mu(\bigcup_n B_n) = \sum_n \mu(B_n).
\]

The measure \(\mu \) is said to be finite if \(\mu(X) < \infty \), and it is said to be regular if

(i) \(\mu(K) < \infty \) for all compact subsets \(K \in \mathcal{B} \);
(ii) \(\mu(B) = \sup\{ \mu(K) : K \subseteq B, K \text{ compact} \} \) for all \(B \in \mathcal{B} \); and
(iii) \(\mu(B) = \inf\{ \mu(G) : B \subseteq G, G \text{ open} \} \) for all \(B \in \mathcal{B} \).

A complex-valued, Borel measure on \(X \) is a function

\[
\nu : \mathcal{B} \rightarrow \mathbb{C}
\]

satisfying:

(a) \(\nu(\emptyset) = 0 \), and

(b) if \(\{ B_n \} \) is a sequence of disjoint, measurable subsets from \(\mathcal{B} \), then

\[
\nu(\bigcup_n B_n) = \sum_n \nu(B_n).
\]

Let \(\nu \) be a complex-valued Borel measure on \(X \). For each \(B \in \mathcal{B} \), a measurable partition of \(B \) is a finite collection \(\{ E_1, E_2, \ldots, E_k \} \) of disjoint, measurable sets whose union is \(B \). We define the variation \(|\nu| \) of \(\nu \) to be the function defined as follows: for \(B \in \mathcal{B} \),

\[
|\nu|(B) := \sup\left\{ \sum_{j=1}^k |\nu(E_j)| : \{ E_j \}_{j=1}^k \text{ is a measurable partition of } B \right\}.
\]

It is routine to verify that \(|\nu| \) is then a finite, positive Borel measure on \(X \). We say that \(\nu \) is regular if \(|\nu| \) is.

It is clear that every complex-linear combination of finite, positive, regular Borel measures yields a complex-valued, regular Borel measure on \(X \). A standard result from measure theory known as the Hahn-Jordan Decomposition Theorem states that the converse holds, namely: every complex-valued, regular Borel measure can be written as a complex-linear combination of (four) finite, positive, regular Borel measures.

Let \(M_\mathbb{C}(X) \) denote the complex vector space of all complex-valued, regular Borel measures on \(X \). Then the map

\[
\| \cdot \| : M_\mathbb{C}(X) \rightarrow [0, \infty), \quad \nu \mapsto |\nu|(X)
\]

defines a norm on \(M_\mathbb{C}(X) \), and \(M_\mathbb{C}(X) \) is complete with respect to this norm.

1.36. In Theorem 1.24, we showed that if \(\mathcal{X} \) is a Banach space and \(\mathcal{M} \) is a closed subspace, then \(\mathcal{X} / \mathcal{M} \) is complete. Our proof there was based upon Proposition 1.21. This result also admits a direct proof in terms of Cauchy sequences:

Theorem. Let \(\mathcal{X} \) be a Banach space and suppose that \(\mathcal{M} \) is a closed subspace of \(\mathcal{X} \). Then \(\mathcal{X} / \mathcal{M} \) is complete.
Proof.
Let \((q(x_n))_{n=1}^\infty\) be a Cauchy sequence in \(\mathfrak{X}/\mathfrak{M}\). For each \(n \geq 1\), there exists \(k_n > 1\) so that \(i, j \geq k_n\) implies \(\|q(x_i) - q(x_j)\| < 2^{-n}\). Without loss of generality, we may assume that \(k_n > k_{n-1}\) for all \(n \geq 2\).

Set \(z_n := x_{k_n}, n \geq 1\) and let \(m_1 = 0\). For \(n > 1\), choose \(m_n \in \mathfrak{M}\) so that
\[
\|(z_{n-1} + m_{n-1}) - (z_n + m_n)\| < 2^{-(n-1)}.
\]
That this is possible follows from the definition of the quotient norm along with the inequality of the second paragraph. If we now define \(y_n := z_n + m_n, n \geq 1\), then \(q(y_n) = q(z_n) = q(x_{k_n})\), and for \(n_2 > n_1\),
\[
\|y_{n_1} - y_{n_2}\| \leq \sum_{j=1}^{n_2-n_1} \|y_{n_1+j} - y_{n_1+j-1}\|
\leq \sum_{j=1}^{n_2-n_1} \left(\frac{1}{2}\right)^{(n_1+j-1)}
\leq \sum_{j=0}^{\infty} \left(\frac{1}{2}\right)^{(n_1+j)}
\leq \left(\frac{1}{2}\right)^{n_1-1},
\]
from which it follows that \((y_n)_{n=1}^\infty\) is Cauchy in \(\mathfrak{X}\). Since \(\mathfrak{X}\) is complete, \(y := \lim_{n \to \infty} y_n \in \mathfrak{X}\), and since the quotient norm is contractive, \(q(y) = \lim_{n \to \infty} q(y_n) = \lim_{n \to \infty} q(x_{k_n})\). Since \((q(x_n))_{n=1}^\infty\) is Cauchy, \(q(y) = \lim_{n \to \infty} q(x_n)\), which proves that every Cauchy sequence in \(\mathfrak{X}/\mathfrak{M}\) converges - i.e. that \(\mathfrak{X}/\mathfrak{M}\) is complete.

\[\square\]

I have the body of an eighteen year old. I keep it in the fridge.

Spike Milligan
2. An introduction to operators

Some people are afraid of heights. Not me, I’m afraid of widths.

Steven Wright

2.1. The study of mathematics is the study of mathematical objects and the relationships between them. These relationships are often measured by functions from one object to another. Of course, when both objects belong to the same category (be it the category of vector spaces, groups, rings, etc), it is to be expected that the most important maps between these objects will be morphisms from that category. In this Section we shall concern ourselves with bounded linear operators between normed linear spaces. These bounded linear maps, as we shall soon discover, coincide with those linear maps which are continuous in the norm topology. Since normed linear spaces are vector spaces equipped with a norm topology, the bounded linear operators are the natural morphisms between them.

It should be pointed out that Banach spaces can be quite complicated to analyze. For this reason, many people working in this area often study the structure and geometry of these spaces without necessarily emphasizing the study of the linear maps between them. In the next Section we shall examine the notion of a Hilbert space. These are amongst the best-behaved Banach spaces, and their structure is relatively well understood. For this reason, fewer people study Hilbert spaces alone; Hilbert space theory tends to focus on the theory of the bounded linear maps between them, as well as algebras of such bounded linear operators.

We would also be remiss if we failed to point out that not everyone on the planet restricts themselves to bounded (i.e. continuous) linear operators. Differentiation has the grave misfortune of being an unbounded linear operator, but nevertheless it is hard to avoid if one wishes to study the world around one - or around one’s friends, acquaintances, enemies, and every other one. Indeed, in applied mathematics and physics, it is often the case that the unbounded linear operators are the more interesting examples. Having said that, we shall leave it to the disciples of those schools to wax poetic on these topics.

2.2. Definition. Let \mathcal{X} and \mathcal{Y} be normed linear spaces, and let $T : \mathcal{X} \to \mathcal{Y}$ be a linear map. We say that T is a bounded operator if there exists a constant $k \geq 0$ so that $\|Tx\| \leq k\|x\|$ for all $x \in \mathcal{X}$. When T is bounded, we define

$$\|T\| = \inf\{k \geq 0 : \|Tx\| \leq k\|x\| \text{ for all } x \in \mathcal{X}\}.$$

We shall refer to $\|T\|$ as the operator norm of T.

It is, of course, understood that the norm of Tx is computed using the \mathcal{Y}-norm, while the norm of x is computed using the \mathcal{X}-norm. As we shall see below, the operator norm does define a bona fide norm on the vector space of bounded linear maps from \mathcal{X} to \mathcal{Y}, thereby justifying our terminology.
Our interest in bounded operators stems from the fact that they are precisely the continuous operators from \mathcal{X} to \mathcal{Y}.

2.3. Theorem. Let \mathcal{X} and \mathcal{Y} be normed linear spaces and $T : \mathcal{X} \to \mathcal{Y}$ be a linear map. The following are equivalent:

(a) T is continuous on \mathcal{X}.
(b) T is continuous at 0.
(c) T is bounded.
(d) $\kappa_1 := \sup\{\|Tx\| : x \in \mathcal{X}, \|x\| \leq 1\} < \infty$.
(e) $\kappa_2 := \sup\{\|Tx\| : x \in \mathcal{X}, \|x\| = 1\} < \infty$.
(f) $\kappa_3 := \sup\{|\frac{\|Tx\|}{\|x\|} : 0 \neq x \in \mathcal{X}\} < \infty$.

Furthermore, if any of these holds, then $\kappa_1 = \kappa_2 = \kappa_3 = \|T\|$.

Proof.

(a) implies (b): This is trivial.
(b) implies (c): Suppose that T is continuous at 0. Let $\varepsilon = 1$ and choose $\delta > 0$ so that $\|x - 0\| < \delta$ implies that $\|Tx - T0\| = \|Tx\| < \varepsilon = 1$. If $\|y\| \leq \delta/2$, then $\|Ty\| \leq 1$, and so $\|x\| \leq 1$ implies $\|T(\frac{x}{2})\| \leq 1$, i.e. $\|Tx\| \leq 2/\delta$. Thus $\|T\| \leq 2/\delta < \infty$, and T is bounded.

c) implies (d): This is trivial.
(d) implies (e): This is trivial.
(e) implies (f): Again, this is trivial.
(f) implies (a): Observe that for any $x \in \mathcal{X}$, $\|Tx\| \leq \kappa_2 \|x\|$. (For $x \neq 0$, this follows from the hypothesis, while the linearity of T implies that $T0 = 0$, so the inequality also holds for $x = 0$.) Thus if $\varepsilon > 0$ and $\|x - y\| < \varepsilon/(\kappa_2 + 1)$, then $\|Tx - Ty\| = \|T(x - y)\| \leq \kappa_2 \|x - y\| < \varepsilon$.

The proof of the final statement is left as an exercise for the reader.

2.4. Computing the operator norm of a given operator T is not always a simple task. For example, suppose that $\mathcal{H} = (C^2, \|\cdot\|_2)$ is a two-dimensional Hilbert space with standard orthonormal basis $\{e_1 = (1, 0), e_2 = (0, 1)\}$. Let $T : \mathcal{H} \to \mathcal{H}$ be the map whose matrix with respect to this basis is $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, so that $T(x, y) = (x + 2y, 3x + 4y)$. By definition, $\|T\| = \sup\{\|Tz\| : z \in C^2, \|z\| \leq 1\}$

$= \sup\{\sqrt{|x + 2y|^2 + |3x + 4y|^2} : x, y \in C, \sqrt{|x|^2 + |y|^2} \leq 1\}$,

which involves non-linear equations. For Hilbert spaces of low dimension – say, less than dimension 5 – alternate methods exist (but won’t be developed just yet). Instead, we turn our attention to special classes of operator which are simple enough to allow us to obtain interesting results.

So as to satisfy the curious reader, we mention that the norm of T is $\sqrt{15 + \sqrt{221}}$.

2.5. Example. Multiplication operators.

(a) Let $\mathcal{X} = (\mathcal{C}([0,1],\mathbb{C}), \| \cdot \|_\infty)$, and suppose that $f \in \mathcal{X}$. Define

$$M_f : \mathcal{X} \rightarrow \mathcal{X}$$

$$g \mapsto fg.$$

It is routine to check that M_f is linear. If $\|g\|_\infty \leq 1$, then

$$\|M_fg\|_\infty = \|fg\|_\infty = \sup\{ |f(x)g(x)| : x \in [0,1] \} \leq \|f\|_\infty \|g\|_\infty.$$

Thus $\|M_f\|_\infty \leq \|f\|_\infty < \infty$, and M_f is bounded.

Setting $g(x) = 1$, $x \in [0,1]$, we have $g \in \mathcal{X}$, $\|g\|_\infty = 1$ and $\|M_fg\|_\infty = \|f\|_\infty$, so that $\|M_f\| \geq \|f\|_\infty$ and therefore $\|M_f\| = \|f\|_\infty$.

For (hopefully) obvious reasons, M_f is referred to as a multiplication operator.

(b) We now consider a similar operator acting on a Hilbert space. Let $\mathcal{H} = L^2(X,d\mu)$, where $d\mu$ is a positive, regular Borel measure. Suppose that $f \in L^\infty(X,d\mu)$ and let

$$M_f : \mathcal{X} \rightarrow \mathcal{X}$$

$$g \mapsto fg.$$

Once again, it is easy to check that M_f is linear, while for $g \in \mathcal{H}$,

$$\|M_fg\|_2 = \left(\int_0^1 |f(x)g(x)|^2d\mu \right)^{\frac{1}{2}}$$

$$\leq \left(\int_0^1 \|f\|_\infty^2|g(x)|^2d\mu \right)^{\frac{1}{2}}$$

$$= \|f\|_\infty \|g\|_2,$$

so that $\|M_f\| \leq \|f\|_\infty$, and hence M_f is bounded. As for a lower bound on the norm of M_f, for each $n \geq 1$, let $F_n = \{ x \in X : |f(x)| \geq \|f\|_\infty - 1/n \}$. Then F_n is measurable and $\mu(F_n) > 0$ by definition of $\|f\|_\infty$. Let $E_n \subseteq F_n$ be a measurable set for which $0 < \mu(E_n) < \infty$, $n \geq 1$. The existence of such sets E_n, $n \geq 1$ follows from the regularity of the measure μ. Let $g_n = \chi_{E_n}$, the characteristic function of E_n. Then $g_n \in L^2(X,\mu)$ for all $n \geq 1$ and

$$\|M_fg_n\|_2 = \left(\int_0^1 |f(x)g_n(x)|^2d\mu \right)^{\frac{1}{2}}$$

$$= \left(\int_{E_n} |f(x)|^2d\mu \right)^{\frac{1}{2}}$$

$$\geq \left(\int_{E_n} (\|f\|_\infty - 1/n)^2d\mu \right)^{\frac{1}{2}}$$

$$= (\|f\|_\infty - 1/n) \left(\int_0^1 |g_n(x)|d\mu \right)^{\frac{1}{2}}$$

$$= (\|f\|_\infty - 1/n) \|g_n\|_2.$$
From this we see that \(\|M_f\| \geq \|f\|_\infty - 1/n \). Since \(n \geq 1 \) was arbitrary, \(\|M_f\| \geq \|f\|_\infty \), and so \(\|M_f\| = \|f\|_\infty \).

Observe that the computation of the norm of the operator depended very much upon the underlying norms of the spaces involved.

(c) As a special case of this phenomenon, let \(X = \mathbb{N} \) and suppose that \(d\mu \) is counting measure. Then \(\mathcal{H} = \ell^2(\mathbb{N}) \) and \(f \in \ell^\infty(\mathbb{N}) \). As we are wont to do when dealing with sequences, we denote by \(d_n \) the value \(f(n) \) of \(f \) at \(n \in \mathbb{N} \), so that \(f \equiv (d_n)_{n=1}^\infty \in \ell^\infty(\mathbb{N}) \). By considering the matrix \([M_f]\) of \(M_f \) with respect to the standard orthonormal basis \((e_n)\) for \(\mathcal{H} \), we see that

\[
[M_f] = \begin{bmatrix} d_1 & d_2 & d_3 & \cdots \\
 & d_2 & d_3 & \cdots \\
 & & d_3 & \cdots \\
 & & & \ddots \end{bmatrix}.
\]

Thus, \(M_f \), often denoted in this circumstance as \(D = \text{diag}(d_n) \), is referred to as a \textit{diagonal operator}. The above calculation shows that

\[
\|D\| = \|M_f\| = \|f\|_\infty = \sup\{|f(n) : n \geq 1\} = \sup\{|d_n : n \geq 1\}.
\]

2.6. Example. Weighted shifts. With \(\mathcal{H} = \ell^2(\mathbb{N}) \) and \((w_n)_n \in \ell^\infty(\mathbb{N}) \), consider the map \(W : \mathcal{H} \to \mathcal{H} \) defined by

\[
W(x_n)_n = (0, w_1 x_1, w_2 x_2, w_3 x_3, \ldots) \quad \text{for all} \quad (x_n)_n \in \ell^2(\mathbb{N}).
\]

We leave it as an exercise for the reader to show that \(W \) is a bounded linear operator on \(\mathcal{H} \), and that

\[
\|W\| = \sup\{|w_n : n \geq 1\}.
\]

Such an operator is referred to as a \textit{unilateral forward weighted shift}.

If \((v_n)_n \in \ell^\infty(\mathbb{N}) \) and we define the linear map \(V : \mathcal{H} \to \mathcal{H} \) via

\[
V(x_n)_n = (v_1 x_2, v_2 x_3, v_3 x_4, \ldots) \quad \text{for all} \quad (x_n)_n \in \mathcal{H},
\]

then once again \(V \) is bounded, \(\|V\| = \sup\{|v_n : n \geq 1\} \), and \(V \) is referred to as a \textit{unilateral backward weighted shift}.

Finally, consider \(\mathcal{H} = \ell^2(\mathbb{Z}) \), and with \((u_n)_n \in \ell^\infty(\mathbb{Z}) \), define the linear map \(U : \mathcal{H} \to \mathcal{H} \) via

\[
U(x_n)_n = (u_{n-1} x_{n-1})_n.
\]

Again, \(U \) is bounded with \(\|U\| = \sup\{|u_n : n \in \mathbb{Z}\} \), and \(U \) is referred to as a \textit{bilateral weighted shift}. The reader should ask himself/herself why we do not refer to “forward” and “backward” bilateral shift operators.
2.7. Example. Differentiation operators. Consider the linear manifold
\(P(\mathbb{D}) = \{ p : p \text{ a polynomial} \} \subseteq (C(\mathbb{D}), \| \cdot \|_{\infty}) \). Define the map
\[
D : P(\mathbb{D}) \to P(\mathbb{D}) \\
p \mapsto p',
\]
the derivative of \(p \). Then if \(p_n(z) = z^n \), \(\| p_n \|_{\infty} = 1 \) for each \(n \geq 1 \) and \(Dp_n = np_{n-1} \), whence \(\| D \| \geq n \) for all \(n \geq 1 \). In particular, \(D \) is not bounded. That is, differentiation is not continuous on the linear space of polynomials.

2.8. Notation. The set of bounded linear operators from the normed linear space \(X \) to the normed linear space \(Y \) is denoted by \(B(X, Y) \). If \(X = Y \), we abbreviate this to \(B(X) \). We now fulfil an earlier promise by proving that the map \(T \mapsto \| T \| \) does indeed define a norm on \(B(X, Y) \).

2.9. Proposition. Let \(X \) and \(Y \) be normed linear spaces. Then \(B(X, Y) \) is a vector space and the operator norm is a norm on \(B(X, Y) \).
Proof. Since linear combinations of continuous functions between topological spaces are continuous, \(B(X, Y) \) is a vector space.

As to the second assertion: for \(R, T \in B(X, Y) \) and \(k \in \mathbb{K} \),

(i) \(\| T \| = \sup\{ \| Tx \| : \| x \| \leq 1 \} \geq 0 \);
(ii) \(\| T \| = 0 \) if and only if \(\| Tx \| / \| x \| = 0 \) for all \(x \neq 0 \), which in turn happens if and only if \(Tx = 0 \) for all \(x \in X \); i.e. if and only if \(T = 0 \).
(iii) \[
\| kT \| = \sup\{ \| kTx \| : \| x \| \leq 1 \} \\
= \sup\{ |k| \| Tx \| : \| x \| \leq 1 \} \\
= |k| \| T \|.
\]
(iv) \[
\| R + T \| = \sup\{ \| (R + T)x \| : \| x \| \leq 1 \} \\
\leq \sup\{ \| Rx \| + \| Tx \| : \| x \| \leq 1 \} \\
\leq \sup\{ \| Rx \| + \| Ty \| : \| x \|, \| y \| \leq 1 \} \\
= \| R \| + \| T \|.
\]
This completes the proof.

2.10. Theorem. Let \(X \) and \(Y \) be normed linear spaces and suppose that \(Y \) is complete. Then \(B(X, Y) \) is complete, and as such it is a Banach space.
Proof. Suppose that \(\sum_{n=1}^{\infty} T_n \) is an absolutely summable series in \(B(X, Y) \). Given \(x \in X \),
\[
\sum_{n=1}^{\infty} \| T_n x \| \leq \sum_{n=1}^{\infty} \| T_n \| \| x \| = \| x \| (\sum_{n=1}^{\infty} \| T_n \|) < \infty,
\]

and thus, since \mathcal{Y} is complete, $\sum_{n=1}^{\infty} T_n x \in \mathcal{Y}$ exists. Moreover, the linearity of each T_n implies that the map $T : X \to \mathcal{Y}$ defined via $Tx = \sum_{n=1}^{\infty} T_n x$ is linear, while $\|x\| \leq 1$ implies from above that $\|Tx\| \leq \sum_{n=1}^{\infty} \|T_n\|$. Hence

$$\|T\| \leq \sum_{n=1}^{\infty} \|T_n\| < \infty,$$

implying that T is bounded.

Finally,

$$\|Tx - \sum_{n=1}^{N} T_n x\| = \|\sum_{n=N+1}^{\infty} T_n x\| \leq \|x\| \sum_{n=N+1}^{\infty} \|T_n\|,$$

from which it easily follows that $T = \lim_{N \to \infty} \sum_{n=1}^{N} T_n$. That is, the series $\sum_{n=1}^{\infty} T_n$ is summable. By Proposition 1.21, $\mathcal{B}(X, \mathcal{Y})$ is complete.

As a particular case of Theorem 2.10, consider the case where $\mathcal{Y} = \mathbb{K}$, the base field.

2.11. Definition. Let X be a normed linear space. The dual of X is $\mathcal{B}(X, \mathbb{K})$, and it is denoted by X^*. The elements of X^* are referred to as **continuous linear functionals** or – when no confusion is possible – as **functionals** on X.

Since \mathbb{K} is complete, Theorem 2.10 implies that X^* is again a Banach space. As such, we may consider the dual space of X^*, namely $X^{(2)} = X^{**} := (X^*)^*$, known as the **double dual** of X, and more generally, the nth-iterated dual spaces $X^{(n)} = (X^{(n-1)})^*$, $n \geq 3$. All of these are Banach spaces.

Before proceeding to some examples, let us first introduce some notation and terminology which will prove useful.

2.12. Definition. A collection $\{e_n\}_{n=1}^{\infty}$ in a Banach space X is said to be a **Schauder basis** if every $x \in X$ can be written in a unique way as a norm convergent series

$$x = \sum_{n=1}^{\infty} x_n e_n$$

for some choice $x_n \in \mathbb{K}$, $n \geq 1$.

2.13. Example. (a) For each $n \geq 1$, let e_n denote the sequence $e_n = (0, 0, \ldots, 0, 1, 0, 0, \ldots) \in \mathbb{K}^N$, where the unique “1” occurs in the nth position. Then $\{e_n\}$ is a Schauder basis for c_0 and for ℓ^p, $1 \leq p < \infty$. Observe that it is **not** a Schauder basis for ℓ^∞.
We shall refer to \(\{e_n\}_n \) as the **standard Schauder basis** for \(c_0 \) and for \(\ell^p \).

(b) It is not as obvious what one should choose as the Schauder basis for \((C[0,1], \mathbb{R}) \). It was Schauder [Sch27] who first discovered a basis for this space. The description of such a basis is non-trivial.

2.14. Example.

Consider the Banach space
\[
c_0 = \{ (x_n)_{n=1}^{\infty} \in \mathbb{K}^N : \lim_{n \to \infty} x_n = 0 \},
\]
equipped with the supremum norm \(\|(x_n)_n\|_\infty = \sup \{|x_n| : n \geq 1\} \). We claim that \(c_0^* \) is isometrically isomorphic to \(\ell^1 = \ell^1(\mathbb{N}) \). To see this, consider the map
\[
\Theta : \ell^1 \to c_0^*, \quad z := (z_n)_n \mapsto \varphi_z,
\]
where \(\varphi_z((x_n)_n) = \sum_{n=1}^{\infty} x_n z_n \) for all \((x_n)_n \in c_0 \). That \(\Theta \) is linear is readily seen. That the sum converges absolutely is also easy to verify.

If \(\|(x_n)_n\|_\infty \leq 1 \), then \(|x_n| \leq 1 \) for all \(n \geq 1 \), so that
\[
|\varphi_z((x_n)_n)| = \sum_{n=1}^{\infty} |x_n z_n| \leq \sum_{n=1}^{\infty} |x_n| z_n \leq \sum_{n=1}^{\infty} |z_n| = \|z\|_1.
\]

Hence \(\|\varphi_z\| \leq \|z\|_1 \). On the other hand, if we set \(v[n] = (w_1, w_2, w_3, ..., w_n, 0, 0, 0, ...) \) for each \(n \geq 1 \) (where \(w_j = x_j/|x_j| \) if \(x_j \neq 0 \), while \(w_j = 1 \) if \(x_j = 0 \)), then \(v[n] \in c_0 \), \(\|v[n]\|_\infty = 1 \) for all \(n \geq 1 \), and
\[
\varphi_z(v[n]) = \sum_{j=1}^{n} |z_j|.
\]

From this it follows that \(\|\varphi_z\| \geq \|z\|_1 \). Combining these two estimates yields \(\|\varphi_z\| = \|z\|_1 \).

Thus \(\Theta \) is an isometric injection of \(\ell^1 \) into \(c_0 \). There remains to prove that \(\Theta \) is surjective.

To that end, suppose that \(\varphi \in c_0^* \). Let \(\{e_n\}_n \) denote the standard Schauder basis for \(c_0 \), and for each \(n \geq 1 \), let \(w_n = \varphi(e_n) \). Observe that if \(\beta_n := w_n/|w_n| \) for \(w_n \neq 0 \), and \(\beta_n := 0 \) if \(w_n = 0 \), then
\[
v[n] := \sum_{k=1}^{n} \beta_n e_n \in c_0
\]
and \(\|v[n]\|_\infty = 1 \). Since, for all \(n \geq 1 \),

\[
\sum_{k=1}^{n} |w_n| = \left| \sum_{k=1}^{n} \beta_n w_n \right| \\
= \left| \sum_{k=1}^{n} \varphi(\beta_n e_n) \right| \\
= |\varphi(v[n])| \\
\leq \|\varphi\| \|v[n]\|_\infty \\
= \|\varphi\|,
\]

we see that \(w := (w_1, w_2, w_3, ...) \in \ell^1 \). A routine computation shows that \(\varphi_w|_{c_{00}} = \varphi|_{c_{00}} \). Since \(\varphi, \varphi_w \) are both continuous and since \(c_{00} \) is dense in \(c_0 \), \(\varphi = \varphi_w = \Theta(w) \).

Thus \(\Theta \) is onto.

2.15. Example. Let \(1 \leq p < \infty \). Recall from your Real Analysis courses that there exists an isometric linear bijection \(\Theta : \ell^q \to (\ell^p)^* \), where – as always – \(q \) is the Lebesgue conjugate of \(p \) satisfying \(\frac{1}{p} + \frac{1}{q} = 1 \).

The map is defined via:

\[
\Theta : \ell^q \to (\ell^p)^* \\
z \mapsto \varphi_z,
\]

where for \(z = (z_n)_n \in \ell^q \), we have \(\varphi_z((x_n)_n) = \sum_n x_n z_n \).

We normally abbreviate this result by saying that the dual of \(\ell^p \) is \(\ell^q \), when \(1 \leq p < \infty \). We refer the reader to the Appendix to Section 2 for a proof of this result.

2.16. Example. The above example can be extended to more general measure spaces. Let \(1 \leq p < \infty \), and suppose that \(\mu \) is a \(\sigma \)-finite, positive, regular Borel measure on \(L^p(X, \mu) \). Again, the map

\[
\Theta : L^q(X, \mu) \to L^p(X, \mu)^* \\
g \mapsto \varphi_g,
\]

where \(\varphi_g(f) = \int_X fg d\mu \) defines a linear, isometric bijection between \(L^q(X, \mu) \) and \(L^p(X, \mu)^* \).

If we drop the hypothesis that \(\mu \) is \(\sigma \)-finite, the result still holds for \(1 < p < \infty \). For reasons we shall discuss in the next Section, when \(p = 2 \), we often consider the related map

\[
\Omega : L^2(X, \mu) \to L^2(X, \mu)^* \\
g \mapsto \varphi_g,
\]

where \(\varphi_g(f) = \int_X fg d\mu \) defines a conjugate-linear, isometric bijection between \(L^2(X, \mu) \) and \(L^2(X, \mu)^* \).
2.17. Example. A function $f : [0, 1] \to \mathbb{K}$ is said to be of bounded variation if there exists $\kappa > 0$ such that for every partition $\{0 = t_0 < t_1 < t_2 < \cdots < t_n = 1\}$ of $[0, 1], \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| \leq \kappa.$

The infimum of all such κ’s for which the above inequality holds is denoted by $\|f\|_v$, and is called the variation of f.

Recall from your earlier courses in Analysis that if f is a function of bounded variation, then for all $x \in (0, 1], f(x^-) := \lim_{t \to x^-} f(t)$ exists, and for all $x \in [0, 1), f(x^+) := \lim_{t \to x^+} f(t)$ exists (though they might not be equal, of course). We set $f(0^-) = f(0)$ and $f(1^+) = f(1)$. It is known that a function of bounded variation admits at most a countable number of discontinuities in the interval $[0, 1]$, and for $g \in \mathcal{C}([0, 1], \mathbb{K})$, the Riemann-Stieltjes integral

$$\int_{0}^{1} g \, df$$

exists.

Let $BV[0, 1] = \{f : [0, 1] \to \mathbb{K} : \|f\|_v < \infty, \text{ } f \text{ is left-continuous on } (0, 1) \text{ and } f(0) = 0\}$.

Then $(BV[0, 1], \|\cdot\|_v)$ is a Banach space with norm given by the variation. Indeed, the dual of $(\mathcal{C}([0, 1]), \|\cdot\|_\infty)$ is isometrically isomorphic to $BV[0, 1]$. For $f \in BV[0.1]$ and $g \in \mathcal{C}([0, 1])$, we define a functional $\varphi_f \in (\mathcal{C}([0, 1], \mathbb{K})$ by

$$\varphi_f(g) := \int_{0}^{1} g \, df.$$

2.18. Proposition. Let \mathcal{X} be a normed linear space. Then there exists a contractive linear map $\mathcal{J} : \mathcal{X} \to \mathcal{X}^{**}$.

Proof. Let $z \in \mathcal{X}$ and define a map $\widehat{z} : \mathcal{X}^* \to \mathbb{K}$ via $\widehat{z}(x^*) = x^*(z)$. It is routine to check that \widehat{z} is linear, and if $\|x^*\| \leq 1$, then $|\widehat{z}(x^*)| = |x^*(z)| \leq \|x^*\| \|z\|$, so that $\|\widehat{z}\| \leq \|z\|$; in particular, $\widehat{z} \in \mathcal{X}^{**}$.

It is also easy to verify that the map

$$\mathcal{J} : \mathcal{X} \to \mathcal{X}^{**}$$

$$z \mapsto \widehat{z}$$

is linear, and the first paragraph shows that \mathcal{J} is contractive.

2.19. The map \mathcal{J} is referred to as the canonical embedding of \mathcal{X} into \mathcal{X}^{**}. It is not necessarily the only embedding of interest, however. Once we have proven the Hahn-Banach Theorem, we shall be in a position to show that \mathcal{J} is in fact isometric.

We point out that if \mathcal{J} is an isometric bijection from \mathcal{X} onto \mathcal{X}^{**}, then \mathcal{X} is said to be reflexive. These are in some sense amongst the best behaved Banach spaces. We shall return to the notion of reflexivity of Banach spaces in a later section.
2. AN INTRODUCTION TO OPERATORS

2.20. Although norms of operators can be difficult to compute, there are cases where useful estimates can be obtained.

Consider the Volterra operator

\[V : C([0, 1], \mathbb{K}) \rightarrow C([0, 1], \mathbb{K}) \]

\[f \mapsto Vf, \]

where \(Vf(x) = \int_0^x f(t)dt \) for all \(x \in [0, 1] \). (Since all functions are continuous, it suffices to consider Riemann integration.)

Then

\[\|Vf\| = \sup\{|Vf(x)| : x \in [0, 1]\} \]

\[= \sup\{|\int_0^x f(t)dt| : x \in [0, 1]\} \]

\[\leq \sup\{\int_0^x \|f\|_\infty dt : x \in [0, 1]\} \]

\[= \sup\{(x - 0) \|f\|_\infty : x \in [0, 1]\} \]

\[= \|f\|_\infty. \]

Thus \(\|V\| \leq 1 \). If \(1(x) := 1 \) for all \(x \in [0, 1] \), then \(1 \in C([0, 1], \mathbb{K}) \), \(\|1\|_\infty = 1 \), and \(V1 = j \), where \(j(x) = x \), \(x \in [0, 1] \). But then \(\|V1\|_\infty = \|j\|_\infty = 1 \), showing that \(\|V\| \geq 1 \), and hence \(\|V\| = 1 \).

Far more interesting (and useful) is the computation of \(\|V^n\| \) for \(n \geq 2 \).

Let us first general the construction of the operator \(V \). We may consider the function \(k : [0, 1] \times [0, 1] \rightarrow \mathbb{C} \) defined by

\[k(x, y) = \begin{cases}
0 & \text{if } x < y, \\
1 & \text{if } x \geq y.
\end{cases} \]

Then

\[(Vf)(x) = \int_0^x f(y)dy = \int_0^1 k(x, y)f(y)dy. \]

The function \(k = k(x, y) \) is referred to as the kernel of the integral operator \(V \). This should not be confused with the notion of a null space of a linear map, also referred to as its kernel.
Now
\[(V^2 f)(x) = (V(V f))(x)\]
\[= \int_0^1 k(x, t) (V f)(t) dt\]
\[= \int_0^1 k(x, t) \int_0^1 k(t, y) f(y) dy dt\]
\[= \int_0^1 f(y) \int_0^1 k(x, t) k(t, y) dt dy\]
\[= \int_0^1 f(y) k_2(x, y) dy,
\]
where \(k_2(x, y) = \int_0^1 k(x, t) k(t, y) dt\) is a new kernel for the integral operator \(V^2\).

Note that
\[|k_2(x, y)| = \left| \int_0^1 k(x, t) k(t, y) dt \right|\]
\[= \left| \int_y^x k(x, t) k(t, y) dt \right|\]
\[= (x - y) \text{ for } x > y,
\]
while for \(x < y, k_2(x, y) = 0.\)

In general, since \(x - y < 1 - 0 = 1\), we get
\[(V^n f)(x) = \int_0^1 f(y) k_n(x, y) dy, \quad \text{where}\]
\[k_n(x, y) = \int_0^1 k(x, t) k_{n-1}(t, y) dt, \quad \text{and where}\]
\[|k_n(x, y)| \leq \frac{1}{(n-1)!} (x - y)^{n-1} \leq \frac{1}{(n-1)!}.
\]

It follows that
\[\|V^n\| = \sup_{\|f\|=1} \|V^n f\|_\infty\]
\[= \sup_{\|f\|=1} \| \int_0^1 f(y) k_n(x, y) dy \|_\infty\]
\[\leq \sup_{\|f\|=1} \|f\|_\infty \|k_n(x, y)\|_\infty\]
\[\leq 1/(n-1)!.
\]

A simple consequence of these computations is that
\[\lim_{n \to \infty} \|V^n\|^{\frac{1}{n}} = \lim_{n \to \infty} 1/(n-1)! = 0.
\]

We shall have more to say about this in the Appendix to Section 3.
2.21. Example. Let \(\{e_1, e_2, ..., e_n\} \) denote the standard basis for \(\mathbb{K}^n \), so that \(e_j = (0, 0, ..., 0, 1, 0, ..., 0) \), where the 1 occurs in the \(j \text{th} \) position, \(1 \leq j \leq n \). Suppose that \(1 \leq p \leq \infty \), and that \(\mathbb{K}^n \) carries the \(p \)-norm from Example 1.7.

Let \([t_{ij}] \in \mathbb{M}_n(\mathbb{K}) \), and define the map

\[
T : \mathbb{K}^n \rightarrow \mathbb{K}^n
\]

\[
x \mapsto [t_{ij}]x.
\]

It is instructive, while not difficult, to prove that if every row and every column of \([t_{ij}] \) has at most one non-zero entry, then

\[
\|T\| = \max_{1 \leq i,j \leq n} |t_{ij}|.
\]

We leave this as an exercise for the reader.

2.22. Example. Let \(n \geq 1 \) be an integer and consider \(\mathbb{M}_n = \mathbb{M}_n(\mathbb{C}) \). For \(T \in \mathcal{X} \), \(T^*T \) is a hermitian matrix, and as such, has positive eigenvalues. Denote by \(s_1, s_2, ..., s_n \) the square roots of these eigenvalues (counted according to multiplicity) and for \(1 \leq p < \infty \), set

\[
\|T\|_p = \left(\sum_{k=1}^{n} s_k^p \right)^{\frac{1}{p}}.
\]

For \(p = \infty \), set

\[
\|T\|_\infty = \max\{s_1, s_2, ..., s_n\}.
\]

It can be shown that \(\| \cdot \|_p \) is indeed a norm on \(\mathbb{M}_n \) for all \(1 \leq p \leq \infty \). Let us denote the space \(\mathbb{M}_n \) equipped with the norm \(\| \cdot \|_p \) by \(\mathcal{C}_p^n \). We shall refer to it as the \(n \)-dimensional Schatten \(p \)-class of operators on \(\mathbb{C}^n \). Then we shall leave it as an exercise for the reader to prove that \(\mathcal{C}_p^n \simeq \mathcal{C}_q^n \), where \(q \) is the Lebesgue conjugate of \(p \), i.e., \(\frac{1}{p} + \frac{1}{q} = 1 \).

The above identification can be realized via the map:

\[
\Phi : \mathcal{C}_q^n \rightarrow \mathcal{C}_p^{n*}
\]

\[
\hat{R} \mapsto \varphi_R
\]

where \(\varphi_R : \mathcal{C}_p^n \rightarrow \mathbb{C} \) is the map \(\varphi_R(T) = \text{tr}(RT) \), and where \(\text{tr}[x_{ij}] = \sum_{k=1}^{n} x_{kk} \) denotes the standard trace functional on \(\mathbb{M}_n \).

The above result has a generalisation to infinite-dimensional Hilbert spaces. We refer the reader to [Dav88] for a more detailed treatment of this topic.

2.23. Example. We now return to the proof of the fact that the dual of \(\ell^p \) is \(\ell^q \) when \(1 < p < \infty \), as stated in Example 2.15.

Given \(z = (z_n)_n \in \ell^q \), we define

\[
\beta_z : \ell^p \rightarrow \mathbb{K}
\]

\[
(x_n)_n \mapsto \sum_n x_n z_n.
\]
Note that by Hölder's Inequality, Theorem 1.30, for \(x = (x_n)_n \in \ell^p \), we have

\[
|\beta_z(x)| = \left| \sum_n x_n z_n \right|
\leq \sum_n |x_n z_n|
= \|xz\|_1
\leq \|x\|_p \|z\|_q,
\]

so that indeed \(\beta_z(x) \in \mathbb{K} \). Clearly \(\beta_z \) is linear, and so the above argument also shows that \(\|\beta_z\| \leq \|z\|_q \).

Furthermore, if we set \(x_n = \alpha_n z_n^{q-1} = \alpha_n z_n^{q/p} \), where \(\alpha_n \in \mathbb{K} \) is chosen so that \(|\alpha_n| = 1 \) and \(x_n z_n \geq 0 \) for all \(n \geq 1 \), then

\[
\left(\sum_n |x_n|^p \right)^{\frac{1}{p}} = \left(\sum_n (|z_n|^q)^{\frac{q}{p}} \right)^{\frac{1}{p}} = \left(\sum_n |z_n|^q \right)^{\frac{1}{p}} = \|z\|_q^{q/p},
\]

so that \(x \in \ell^p \), and

\[
|\beta_z(x)| = \sum_n x_n z_n
= \sum_n |z_n|^q
= \|z\|^q/|z\|_q
= \|x\|_p \|z\|_q,
\]

so that \(\|\beta_z\| \geq \|z\|_q \), and therefore \(\|\beta_z\| = \|z\|_q \).

Consider the map \(\Theta \) defined via:

\[
\Theta : \ell^q \to (\ell^p)^*, \\
\quad z \mapsto \beta_z,
\]

with \(\beta_z \) defined as above. Then \(\Theta \) is easily seen to be linear, and from above, it is isometric (hence injective). There remains only to show that \(\Theta \) is surjective.

To that end, let \(\varphi \in (\ell^p)^* \). For each \(n \geq 1 \), let \(z_n := \varphi(e_n) \), where \(\{e_n\}_n \) is the standard Schauder basis for \(\ell^p \). Set \(z[n] := \sum_{k=1}^n z_k e_k \), and \(x[n] := \sum_{k=1}^n \alpha_k z_k^{q-1} \), where – as before – \(\alpha_k \) is chosen so that \(|\alpha_k| = 1 \) and \(x_k z_k \geq 0 \) for all \(k \geq 1 \). Then \(z[n] \in \ell^q \) and \(x[n] \in \ell^p \) for all \(n \geq 1 \).
Observe that if \(y = (y_n)_n \in \ell^p \), then by the continuity of \(\varphi \),

\[
\varphi(y) = \varphi \left(\sum_n y_ne_n \right) = \sum_n y_n\varphi(e_n) = \sum_n y_nz_n.
\]

Now

\[
|\varphi(x[n])| = \left| \sum_{k=1}^n \alpha_k z_k^{-1}z_k \right| = \sum_{k=1}^n |z_k|^q = \|z[n]\|_q^{-1} \|z[n]\|_q,
\]

where

\[
\|z[n]\|_q^{-1} = \left(\sum_{k=1}^n |z_k|^q \right)^{\frac{a-1}{q}} = \left(\sum_{k=1}^n (|z_k|^{q/p})^p \right)^{1-\frac{1}{q}} = \left(\sum_{k=1}^n |x_k|^p \right)^{1/p} = \|x[n]\|_p.
\]

Thus

\[
|\varphi(x[n])| = \|x[n]\|_p \|z[n]\|_q \leq \|x[n]\|_p \|\varphi\| \quad \text{for all } n \geq 1.
\]

It follows that \(\|z[n]\|_q \leq \|\varphi\| \) for all \(n \geq 1 \), so that if \(z := (z_n)_n \), then \(z \in \ell^q \) with \(\|z\|_q \leq \|\varphi\| \).

Finally, \(\varphi(y) = \beta_z(y) \) for all \(y \in \ell^p \), so that \(\varphi = \beta_z = \Theta(z) \), proving that \(\Theta \) is surjective, as required.

I handed in a script last year and the studio didn’t change one word. The word they didn’t change was on page 87.

Steve Martin
3. Hilbert space

You should always go to other people’s funerals; otherwise, they won’t come to yours.

Yogi Berra

3.1. In this brief Chapter, we shall examine a class of very well-behaved Banach spaces, namely the class of Hilbert spaces. Hilbert spaces are the generalizations of our familiar (two- and) three-dimensional Euclidean space. There are two basic approaches to studying Hilbert spaces. If one is interested in Banach space geometry – and many people are – then one often tries to compare other Banach spaces to Hilbert spaces. As an example of such a phenomenon, we mention the calculation of the Banach-Mazur distance between Banach spaces, which we define in the Appendix to this Section.

In the second approach, one decides that because Hilbert spaces are so well-behaved, they are in some sense “understood”, and for this reason they are “less interesting” to study than the set of bounded linear operators acting upon them. One can then study the operators individually or in sets which have no algebraic structure – this kind of analysis belongs to Single Operator Theory. Alternatively, one can various Operator Algebras, of which there are myriads of examples. The literature dealing with operators and operator algebras is vast.

3.2. Recall that a Hilbert space \(\mathcal{H} \) is a vector space equipped with an inner product \(\langle \cdot, \cdot \rangle \) so that the induced norm \(\|x\| := \langle x, x \rangle^{1/2} \) gives rise to a complete normed linear space, i.e. a Banach space. [When the corresponding normed linear space is not complete, we refer only to inner product spaces.]

In any inner product space we have the Cauchy-Schwarz Inequality:

\[
|\langle x, y \rangle|^2 \leq \|x\|^2 \|y\|^2,
\]

for all \(x, y \in \mathcal{H} \). We say that \(x \) and \(y \) are orthogonal if \(\langle x, y \rangle = 0 \), and we write \(x \perp y \).

3.3. Example.

(a) If \((X, \mu)\) is a measure space, then \(L^2(X, \mu)\) is a Hilbert space, with the inner product given by

\[
\langle f, g \rangle = \int_X f(x)\overline{g(x)}d\mu(x).
\]

(b) \(\ell^2 = \{(x_n)_n : x_n \in \mathbb{K}, n \geq 1 \text{ and } \sum_{n=1}^{\infty} |x_n|^2 < \infty\}\) is a Hilbert space, with the inner product given by

\[
\langle (x_n)_n, (y_n)_n \rangle = \sum_n x_n \overline{y_n}.
\]
The reader with a background in measure theory will recognize that the second example is merely a particular case of the first. While these are the canonical inner products on these spaces, they are not the only ones.

For example, if \((r_n)_n\) is any sequence of strictly positive integers, one can define a **weighted \(\ell^2\) space** relative to this sequence by setting

\[
\ell^2(r_n)_n := \{(x_n)_n \in K^\mathbb{N} : \sum_n r_n |x_n|^2 < \infty\}
\]

with inner product

\[
\langle (x_n)_n, (y_n)_n \rangle = \sum_n r_n x_n \overline{y_n}.
\]

3.4. Theorem

Let \(\mathcal{H}\) be a Hilbert space and suppose that \(x_1, x_2, \ldots, x_n \in \mathcal{H}\).

(a) **[The Pythagorean Theorem]** If the vectors are pairwise orthogonal, then

\[
\| \sum_{j=1}^n x_j \|^2 = \sum_{j=1}^n \| x_j \|^2.
\]

(b) **[The Parallelogram Law]**

\[
\| x_1 + x_2 \|^2 + \| x_1 - x_2 \|^2 = 2 \left(\| x_1 \|^2 + \| x_2 \|^2 \right).
\]

Proof. Both of these results follow immediately from the definition of the norm in terms of the inner product.

The Parallelogram Law is a useful tool to show that many norms are not Hilbert space norms.

3.5. Theorem

Let \(\mathcal{H}\) be a Hilbert space, and \(K \subseteq \mathcal{H}\) be a closed, non-empty convex subset of \(\mathcal{H}\). Given \(x \in \mathcal{H}\), there exists a unique point \(y \in K\) which is closest to \(x\); that is,

\[
\| x - y \| = \text{dist}(x, K) = \min \{ \| x - z \| : z \in K \}.
\]

Proof. By translating \(K\) by \(-x\), it suffices to consider the case where \(x = 0\).

Let \(d := \text{dist}(0, K)\), and choose \(k_n \in K\) so that \(\|0 - k_n\| < d + \frac{1}{n}\), \(n \geq 1\). By the Parallelogram Law,

\[
\| \frac{k_n - k_m}{2} \|^2 = \frac{1}{2} \| k_n \|^2 + \frac{1}{2} \| k_m \|^2 - \| \frac{k_n + k_m}{2} \|^2 \\
\leq \frac{1}{2} \left(d + \frac{1}{n} \right)^2 + \frac{1}{2} \left(d + \frac{1}{m} \right)^2 - d^2,
\]

as \(\frac{k_n + k_m}{2} \in K\) because \(K\) is assumed to be convex.

We deduce from this that the sequence \(\{k_n\}_{n=1}^\infty\) is Cauchy, and hence converges to some \(k \in K\), since \(K\) is closed and \(\mathcal{H}\) is complete. Clearly \(\lim_{n \to \infty} k_n = k\) implies that \(d = \lim_{n \to \infty} \| k_n \| = \| k \|\).
As for uniqueness, suppose that $z \in K$ and that $\|z\| = d$. Then
\[
0 \leq \left\| \frac{k - z}{2} \right\|^2 = \frac{1}{2} \|k\|^2 + \frac{1}{2} \|z\|^2 - \frac{1}{2} \left\| \frac{k + z}{2} \right\|^2
\leq \frac{1}{2} d^2 + \frac{1}{2} d^2 - d^2 = 0,
\]
and so $k = z$. \square

3.6. Theorem. Let \mathcal{H} be a Hilbert space, and let $\mathcal{M} \subseteq \mathcal{H}$ be a closed subspace. Let $x \in \mathcal{H}$, and $m \in \mathcal{M}$. The following are equivalent:

(a) $\|x - m\| = \text{dist}(x, \mathcal{M})$;
(b) The vector $x - m$ is orthogonal to \mathcal{M}, i.e., $\langle x - m, y \rangle = 0$ for all $y \in \mathcal{M}$.

Proof.

(a) implies (b): Suppose that $\|x - m\| = \text{dist}(x, \mathcal{M})$, and suppose to the contrary that there exists $y \in \mathcal{M}$ so that $k := \langle x - m, y \rangle \neq 0$. There is no loss of generality in assuming that $\|y\| = 1$. Consider $z = m + ky \in \mathcal{M}$. Then
\[
\|x - z\|^2 = \|x - m - ky\|^2
= \langle x - m - ky, x - m - ky \rangle
= \|x - m\|^2 - k\langle y, x - m \rangle - \overline{k}\langle x - m, y \rangle + |k|^2 \|y\|^2
= \|x - m\|^2 - |k|^2
< \text{dist}(x, \mathcal{M}),
\]
a contradiction. Hence $x - m \in \mathcal{M}^\perp$.

(b) implies (a): Suppose that $x - m \in \mathcal{M}^\perp$. If $z \in \mathcal{M}$ is arbitrary, then $y := z - m \in \mathcal{M}$, so by the Pythagorean Theorem,
\[
\|x - z\|^2 = \|(x - m) - y\|^2 = \|x - m\|^2 + \|y\|^2 \geq \|x - m\|^2,
\]
and thus $\text{dist}(x, \mathcal{M}) \geq \|x - m\|$. Since the other inequality is obvious, (a) holds. \square

3.7. Remarks.

(a) Given any non-empty subset $\mathcal{S} \subseteq \mathcal{H}$, let
\[
\mathcal{S}^\perp := \{ y \in \mathcal{H} : \langle x, y \rangle = 0 \text{ for all } x \in \mathcal{S} \}.
\]
It is routine to show that \mathcal{S}^\perp is a norm-closed subspace of \mathcal{H}. In particular,
\[
(\mathcal{S}^\perp)^\perp \supseteq \overline{\text{span}} \mathcal{S},
\]
the norm closure of the linear span of \mathcal{S}.

(b) Recall from Linear Algebra that if \mathcal{V} is a vector space and \mathcal{W} is a (vector) subspace of \mathcal{V}, then there exists a (vector) subspace $\mathcal{X} \subseteq \mathcal{V}$ such that
3. HILBERT SPACE

(i) \(W \cap X = \{0\} \), and
(ii) \(V = W + X := \{w + x : w \in W, y \in X\} \).

We say that \(W \) is \textbf{algebraically complemented} by \(X \). The existence of such a \(X \) for each \(W \) says that every vector subspace of a vector space is algebraically complemented. We shall write \(V = W + X \) to denote the fact that \(X \) is an algebraic complement for \(W \) in \(V \).

If \(X \) is a Banach space and \(Y \) is a closed subspace of \(X \), we say that \(Y \) is \textbf{topologically complemented} if there exists a closed subspace \(Z \) of \(X \) such that \(Z \) is an algebraic complement to \(Y \). The issue here is that both \(Y \) and \(Z \) must be closed subspaces. It can be shown that the closed subspace \(c_0 \) of \(\ell^\infty \) is not topologically complemented in \(\ell^\infty \). This result is known as Phillips’ Theorem (see the paper of R. Whitley [Whi66] for a short but elegant proof). We shall write \(X = Y \oplus Z \) if \(Z \) is a topological complement to \(Y \) in \(X \).

Now let \(H \) be a Hilbert space and let \(M \subseteq H \) be a closed subspace of \(H \). We claim that \(H = M \oplus M^\perp \). Indeed, if \(z \in M \cap M^\perp \), then \(\|z\|^2 = \langle z, z \rangle = 0 \), so \(z = 0 \). Also, if \(x \in H \), then we may let \(m_1 \in M \) be the element satisfying \(\|x - m_1\| = \text{dist}(x, M) \).

The existence of \(m_1 \) is guaranteed by Theorem 3.5. By Theorem 3.6, \(m_2 := x - m_1 \) lies in \(M^\perp \), and so \(x \in M + M^\perp \). Since \(M \) and \(M^\perp \) are closed subspaces of a Banach space and they are algebraically complements, we are done.

In this case, the situation is even stronger. The space \(M \) may admit more than one topological complement in \(H \) - however, the space \(M^\perp \) above is unique in that it is an \textbf{orthogonal complement}. That is, as well as being a topological complement to \(M \), every vector in \(M^\perp \) is orthogonal to every vector in \(M \).

(c) With \(M \) as in (b), we have \(H = M \oplus M^\perp \), so that if \(x \in H \), then we may write \(x = m_1 + m_2 \) with \(m_1 \in M, m_2 \in M^\perp \) in a unique way. Consider the map:

\[
P : H \to M \oplus M^\perp, \quad x \mapsto m_1,
\]

relative to the above decomposition of \(x \). It is elementary to verify that \(P \) is linear, and that \(P \) is \textbf{idempotent}, i.e., \(P = P^2 \). We remark in passing that \(m_2 = (I - P)x \), and that \((I - P)^2 = (I - P) \) as well.

In fact, for \(x \in H \), \(\|x\|^2 = \|m_1\|^2 + \|m_2\|^2 \) by the Pythagorean Theorem, and so \(\|Px\| = \|m_1\| \leq \|x\| \), from which it follows that \(\|P\| \leq 1 \). If \(M \neq \{0\} \), then choose \(m \in M \) with \(\|m\| \neq 0 \). Then \(Pm = m \), and so \(\|P\| \geq 1 \). Combining these estimates, \(M \neq 0 \) implies \(\|P\| = 1 \).

We refer to the map \(P \) as the \textbf{orthogonal projection} of \(H \) onto \(M \). The map \(Q := (I - P) \) is the orthogonal projection onto \(M^\perp \), and we leave it to the reader to verify that \(\|Q\| = 1 \).
(d) Let \(\varnothing \neq S \subseteq H \). We saw in (a) that \(S^\perp \supseteq \text{span} S \). In fact, if we let \(M = \text{span} S \), then \(M \) is a closed subspace of \(H \), and so by (b),
\[
H = M \oplus M^\perp.
\]
It is routine to check that \(S^\perp = M^\perp \). Suppose that there exists \(0 \neq x \in S^\perp \), \(x \not\in M \). Then \(x \in H \), and so we can write \(x = m_1 + m_2 \) with \(m_1 \in M \), and \(m_2 \in M^\perp = S^\perp \) (\(m_2 \neq 0 \), otherwise \(x \in M \)). But then \(0 \neq m_2 \in S^\perp \) and so
\[
\langle m_2, x \rangle = \langle m_2, m_1 \rangle + \langle m_2, m_2 \rangle
\]
\[
= 0 + \|m_2\|^2
\]
\[
\neq 0.
\]
This contradicts the fact that \(x \in S^\perp \). It follows that \(S^\perp = \text{span} S \).

(e) Suppose that \(M \) admits an orthonormal basis \(\{e_k\}_{k=1}^n \). Let \(x \in H \), and let \(P \) denote the orthogonal projection onto \(M \). By (b), \(Px \) is the unique element of \(M \) so that \(x - Px \) lies in \(M^\perp \). Consider the vector \(w = \sum_{k=1}^n \langle x, e_k \rangle e_k \). Then
\[
\langle x - w, e_j \rangle = \langle x, e_j \rangle - \sum_{k=1}^n \langle x, e_k \rangle \langle e_k, e_j \rangle
\]
\[
= \langle x, e_j \rangle - \sum_{k=1}^n \langle x, e_k \rangle \langle e_k, e_j \rangle
\]
\[
= \langle x, e_j \rangle - \langle x, e_j \rangle \|e_j\|^2
\]
\[
= 0.
\]
It follows that \(x - w \in M^\perp \), and thus \(w = Px \). That is, \(Px = \sum_{k=1}^n \langle x, e_k \rangle e_k \).

3.8. **Theorem.** **The Riesz Representation Theorem** Let \(\{0\} \neq H \) be a Hilbert space over \(K \), and let \(\varphi \in H^* \). Then there exists a unique vector \(y \in H \) so that
\[
\varphi(x) = \langle x, y \rangle \quad \text{for all} \ x \in H.
\]
Moreover, \(\|\varphi\| = \|y\| \).

Proof. Given a fixed \(y \in H \), let us denote by \(\beta_y \) the map \(\beta_y(x) = \langle x, y \rangle \). Our goal is to show that \(H^* = \{\beta_y : y \in H\} \). First note that if \(y \in H \), then \(\beta_y(kx_1 + x_2) = \langle kx_1 + x_2, y \rangle = k\langle x_1, y \rangle + \langle x_2, y \rangle = k\beta_y(x_1) + \beta_y(x_2) \), and so \(\beta_y \) is linear. Furthermore, for each \(x \in H \), \(|\beta_y(x)| = |\langle x, y \rangle| \leq \|x\| \|y\| \) by the Cauchy-Schwarz Inequality. Thus \(\|\beta_y\| \leq \|y\| \), and hence \(\beta_y \) is continuous - i.e. \(\beta_y \in H^* \).

It is not hard to verify that the map
\[
\Theta : H \rightarrow H^*
\]
\[
y \mapsto \beta_y
\]
is conjugate-linear (if \(K = \mathbb{C} \)), otherwise it is linear (if \(K = \mathbb{R} \)). From the first paragraph, it is also contractive. But \([\Theta(y)](y) = \beta_y(y) = \langle y, y \rangle = \|y\|^2 \), so that
\[\|\Theta(y)\| \geq \|y\| \text{ for all } y \in \mathcal{H}, \text{ and } \Theta \text{ is isometric as well. It immediately follows that } \Theta \text{ is injective, and there remains only to prove that } \Theta \text{ is surjective.} \]

Let \(\varphi \in \mathcal{H}^* \). If \(\varphi = 0 \), then \(\varphi = \Theta(0) \). Otherwise, let \(\mathcal{M} = \ker \varphi \), so that \(\text{codim } \mathcal{M} = 1 = \dim \mathcal{M}^\perp \), since \(\mathcal{H}/\mathcal{M} \cong \mathbb{K} \cong \mathcal{M}^\perp \). Choose \(e \in \mathcal{M}^\perp \) with \(\|e\| = 1 \).

Let \(\mathcal{P} \) denote the orthogonal projection of \(\mathcal{H} \) onto \(\mathcal{M} \), constructed as in Remark 3.7. Then, as \(I - \mathcal{P} \) is the orthogonal projection onto \(\mathcal{M}^\perp \), and as \(\{e\} \) is an orthonormal basis for \(\mathcal{M}^\perp \), by Remark 3.7 (d), for all \(x \in \mathcal{H} \), we have
\[
x = \mathcal{P}x + (I - \mathcal{P})x = \mathcal{P}x + \langle x, e \rangle e.
\]
Thus for all \(x \in \mathcal{H} \),
\[
\varphi(x) = \varphi(\mathcal{P}x) + \langle x, e \rangle \varphi(e) = \langle x, \overline{\varphi(e)}e \rangle = \beta y(x),
\]
where \(y := \overline{\varphi(e)}e \). Hence \(\varphi = \beta y \), and \(\Theta \) is onto.

\[\square\]

3.9. Remark. The fact that the map \(\Theta \) defined in the proof the Riesz Representation Theorem above induces an isometric, conjugate-linear automorphism of \(\mathcal{H} \) is worth remembering.

3.10. Definition. A subset \(\{e_\lambda\}_{\lambda \in \Lambda} \) of a Hilbert space \(\mathcal{H} \) is said to be orthonormal if \(\|e_\lambda\| = 1 \) for all \(\lambda \), and \(\lambda \neq \alpha \) implies that \(\langle e_\lambda, e_\alpha \rangle = 0 \).

An orthonormal set in a Hilbert space is called an orthonormal basis for \(\mathcal{H} \) if it is maximal in the collection of all orthonormal sets of \(\mathcal{H} \), partially ordered with respect to inclusion.

If \(E = \{e_\lambda\}_\lambda \) is any orthonormal set in \(\mathcal{H} \), then an easy application of Zorn’s Lemma implies the existence of a orthonormal basis in \(\mathcal{H} \) which contains \(E \). The reader is warned that if \(\mathcal{H} \) is infinite-dimensional, then an orthonormal basis for \(\mathcal{H} \) is never a vector space (i.e. a Hamel) basis for \(\mathcal{H} \).

3.11. Example.
(a) If \(\mathcal{H} = \ell^2 \) then the standard Schauder basis \(\{e_n\}_{n=1}^\infty \) for \(\ell^2 \) as defined in Example 2.13 is an orthonormal basis for \(\mathcal{H} \).
(b) If \(\mathcal{H} = L^2([0,1], dm) \), where \(\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} \) and \(dm \) represents normalised Lebesgue measure, then \(\{f_n\}_{n \in \mathbb{Z}} \) is an orthonormal basis for \(L^2(\mathbb{T}, dm) \), where \(f_n(z) = e^{inz} \) for all \(z \in \mathbb{T} \) and for all \(n \in \mathbb{Z} \).

We recall from Linear Algebra:

If \(H \) is a Hilbert space over \(K \) and \(\{x_n\}_{n=1}^\infty \) is a linearly independent set in \(H \), then we can find an orthonormal set \(\{y_n\}_{n=1}^\infty \) in \(H \) so that \(\text{span}\{x_1, x_2, \ldots, x_k\} = \text{span}\{y_1, y_2, \ldots, y_k\} \) for all \(k \geq 1 \).

Proof. We leave it to the reader to verify that setting \(y_1 = x_1/\|x_1\| \), and recursively defining

\[
y_k := \frac{x_k - \sum_{j=1}^{k-1} \langle x_k, y_j \rangle y_j}{\|x_k - \sum_{j=1}^{k-1} \langle x_k, y_j \rangle y_j\|}, \quad k \geq 1
\]

will do. \(\Box \)

3.13. Theorem. Bessel’s Inequality

If \(\{e_n\}_{n=1}^\infty \) is an orthonormal set in a Hilbert space \(H \), then for each \(x \in H \),

\[
\sum_{n=1}^\infty |\langle x, e_n \rangle|^2 \leq \|x\|^2.
\]

Proof. For each \(k \geq 1 \), let \(P_k \) denote the orthogonal projection of \(H \) onto \(\text{span}\{e_n\}_{n=1}^k \). Given \(x \in H \), we have seen that \(\|P_k\| \leq 1 \), and that \(P_k x = \sum_{n=1}^k \langle x, e_n \rangle e_n \). Hence \(\|x\|^2 \geq \|P_k x\|^2 = \sum_{n=1}^k |\langle x, e_n \rangle|^2 \) for all \(k \geq 1 \), from which the result follows. \(\Box \)

3.14. Before considering a non-separable version of the above result, we pause to define what we mean by a sum over an uncountable index set.

Given a Banach space \(X \) and a set \(\{x_\lambda\}_{\lambda \in \Lambda} \) of vectors in \(X \), let \(F \) denote the collection of all finite subsets of \(\Lambda \), partially ordered by inclusion. For each \(F \in F \), define \(y_F = \sum_{\lambda \in F} x_\lambda \), so that \(\{y_F\}_{F \in F} \) is a net in \(X \). If \(y = \lim_{F \in F} y_F \) exists, then we say that \(y = \sum_{\lambda \in \Lambda} x_\lambda \) is unconditionally summable to \(y \).

In other words, \(\sum_\lambda x_\lambda = y \) if for all \(\varepsilon > 0 \) there exists \(F_0 \in F \) so that \(F \supseteq F_0 \) implies that \(\|\sum_{\lambda \in F} x_\lambda - y\| < \varepsilon \).

3.15. Corollary. Let \(H \) be a Hilbert space and \(E \subseteq H \) be an orthonormal set.

(a) Given \(x \in H \), the set \(\{e \in E : \langle x, e \rangle \neq 0\} \) is countable.

(b) For all \(x \in H \), \(\sum_{e \in E} |\langle x, e \rangle|^2 \leq \|x\|^2 \).

Proof.

(a) Fix \(x \in H \). For each \(k \geq 1 \), define \(F_k = \{e \in E : \|\langle x, e \rangle\| \geq \frac{1}{k}\} \). Suppose that there exists \(k_0 \geq 1 \) so that \(F_{k_0} \) is infinite. Choose a countably infinite subset \(\{e_n\}_{n=1}^\infty \) of \(F_{k_0} \). By Bessel’s Inequality,

\[
\sum_{n=1}^m \frac{1}{k_0^2} \leq \sum_{n=1}^m |\langle x, e_n \rangle|^2 \leq \|x\|^2.
\]
for all $m \geq 1$. This is absurd. Thus $|F_k| < \infty$ for all $k \geq 1$. But then

$$\{ e \in E : \langle x, e \rangle \neq 0 \} = \bigcup_{k \geq 1} F_k$$

is countable.

(b) This is left as a (routine) exercise for the reader.

3.16. Lemma. Let \mathcal{H} be a Hilbert space, $E \subseteq \mathcal{H}$ be an orthonormal set, and $x \in \mathcal{H}$. Then

$$\sum_{e \in E} \langle x, e \rangle e$$

converges in \mathcal{H}.

Proof. Since \mathcal{H} is complete, it suffices to show that if F as in Paragraph 3.14 denotes the collection of finite subsets of E, partially ordered by inclusion, and if for each $F \in \mathcal{F}$, $y_F = \sum_{e \in F} \langle x, e \rangle e$, then $(y_F)_{F \in \mathcal{F}}$ is a Cauchy net.

Let $\varepsilon > 0$. By Corollary 3.15, we can find a countable subcollection $\{ e_n \}_{n=1}^{\infty} \subseteq E$ so that $e \in E \setminus \{ e_n \}_{n=1}^{\infty}$ implies that $\langle x, e \rangle = 0$. Moreover, by Bessel's Inequality, we can find $N > 0$ so that $\sum_{k=N+1}^{\infty} |\langle x, e_k \rangle|^2 < \varepsilon^2$. Let $F_0 = \{ e_1, e_2, ..., e_N \}$.

If $F, G \in \mathcal{F}$ and $F_0 \leq F, F_0 \leq G$, then

$$\|y_F - y_G\|^2 = \| \sum_{e \in F \setminus G} \langle x, e \rangle e - \sum_{e \in G \setminus F} \langle x, e \rangle e \|^2$$

$$= \sum_{e \in (F \setminus G) \cup (G \setminus F)} |\langle x, e \rangle|^2$$

$$\leq \sum_{k=N+1}^{\infty} |\langle x, e_k \rangle|^2$$

$$< \varepsilon^2.$$

Thus $(y_F)_{F \in \mathcal{F}}$ is Cauchy, and therefore convergent, as required.

3.17. Theorem. Let E be an orthonormal set in a Hilbert space \mathcal{H}. The following are equivalent:

(a) The set E is an orthonormal basis for \mathcal{H}. (That is, E is a maximal orthonormal set in \mathcal{H}.)

(b) The set $\text{span} E$ is norm-dense in \mathcal{H}.

(c) For all $x \in \mathcal{H}$, $x = \sum_{e \in E} \langle x, e \rangle e$.

(d) For all $x \in \mathcal{H}$, $\|x\|^2 = \sum_{e \in E} |\langle x, e \rangle|^2$. [Parceval’s Identity]

Proof. Let $E = \{ e_\lambda \}_{\lambda \in \Lambda}$ be an orthonormal set in \mathcal{H}.

(a) implies (b): Let $\mathcal{M} = \text{span} E$. If $\mathcal{M} \neq \mathcal{H}$, then $\mathcal{M}^\perp \neq \{ 0 \}$, so we can find $z \in \mathcal{M}^\perp$, $\|z\| = 1$. But then $\mathcal{E} \cup \{ z \}$ is an orthonormal set, contradicting the maximality of E.

(b) implies (c): Let \(y = \sum_{\lambda \in \Lambda} \langle x, e_\lambda \rangle e_\lambda \), which exists by Lemma 3.16. Then \(\langle y - x, e_\lambda \rangle = 0 \) for all \(\lambda \in \Lambda \), so \(y - x \) is orthogonal to \(M = \text{span} \mathcal{E} = \mathcal{H} \).

But then \(y - x \perp y - x \), so that \(y - x = 0 \), i.e. \(y = x \).

(c) implies (d): \(\|x\|^2 = \langle \sum_{e \in \mathcal{E}} \langle x, e \rangle e, \sum_{f \in \mathcal{F}} \langle x, f \rangle f \rangle = \sum_{e \in \mathcal{E}} |\langle x, e \rangle|^2 \). [Check!]

(d) implies (a): If \(e \perp e_\lambda \) for all \(\lambda \in \Lambda \), then \(\|e\|^2 = \sum_{\lambda \in \Lambda} |\langle e, e_\lambda \rangle|^2 = 0 \), so that \(\mathcal{E} \) is maximal.

\(\square \)

3.18. Proposition. If \(\mathcal{H} \) is a Hilbert space, then any two orthonormal bases for \(\mathcal{H} \) have the same cardinality.

Proof. We shall only deal with the infinite-dimensional situation, since the finite-dimensional case was dealt with in linear algebra.

Let \(\mathcal{E} \) and \(\mathcal{F} \) be two orthonormal bases for \(\mathcal{H} \). Given \(e \in \mathcal{E} \), let \(\mathcal{F}_e = \{ f \in \mathcal{F} : \langle e, f \rangle \neq 0 \} \). Then \(|\mathcal{F}_e| \leq \aleph_0 \). Moreover, given \(f \in \mathcal{F} \), there exists \(e \in \mathcal{E} \) so that \(\langle e, f \rangle \neq 0 \), otherwise \(f \) is orthogonal to \(\text{span} \mathcal{E} = \mathcal{H} \), a contradiction.

Thus \(\mathcal{F} = \bigcup_e \mathcal{F}_e \), and so \(|\mathcal{F}| \leq (\sup_{e \in \mathcal{E}} |\mathcal{F}_e|) |\mathcal{E}| \leq \aleph_0 |\mathcal{E}| = |\mathcal{E}| \). By symmetry, \(|\mathcal{E}| \leq |\mathcal{F}| \), and so \(|\mathcal{E}| = |\mathcal{F}| \).

\(\square \)

The above result justifies the following definition:

3.19. Definition. The **dimension** of a Hilbert space \(\mathcal{H} \) is the cardinality of any orthonormal basis for \(\mathcal{H} \), and it is denoted by \(\dim \mathcal{H} \).

The appropriate notion of isomorphism in the category of Hilbert spaces involve linear maps that preserve the inner product.

3.20. Definition. Two Hilbert spaces \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) are said to be **isomorphic** if there exists a linear bijection \(U : \mathcal{H}_1 \to \mathcal{H}_2 \) so that

\[\langle Ux, Uy \rangle = \langle x, y \rangle \]

for all \(x, y \in \mathcal{H}_1 \). We write \(\mathcal{H}_1 \simeq \mathcal{H}_2 \) to denote this isomorphism.

We also refer to the linear maps implementing the above isomorphism as **unitary operators.** Note that

\[\|Ux\|^2 = \langle Ux, Ux \rangle = \langle x, x \rangle = \|x\|^2 \]

for all \(x \in \mathcal{H}_1 \), so that unitary operators are isometries. Moreover, the inverse map \(U^{-1} : \mathcal{H}_2 \to \mathcal{H}_1 \) defined by \(U^{-1}(Ux) := x \) is also linear, and

\[\langle U^{-1}(Ux)U^{-1}(Uy) \rangle = \langle x, y \rangle = \langle Ux, Uy \rangle, \]

so that \(U^{-1} \) is also a unitary operator. Furthermore, if \(\mathcal{L} \subseteq \mathcal{H}_1 \) is a closed subspace, then \(\mathcal{L} \) is complete, whence \(U \mathcal{L} \) is also complete and hence closed in \(\mathcal{H}_2 \).
Unlike the situation in Banach spaces, where two non-isomorphic Banach spaces can have Schauder bases of the same cardinality, the case of Hilbert spaces is as nice as one can imagine.

3.21. Theorem. Two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 over \mathbb{K} are isomorphic if and only if they have the same dimension.

Proof. Suppose first that \mathcal{H}_1 and \mathcal{H}_2 are isomorphic, and let $U : \mathcal{H}_1 \to \mathcal{H}_2$ be a unitary operator. Let $\{e_\lambda\}_{\lambda \in \Lambda}$ be an orthonormal basis for \mathcal{H}_1. We claim that $\{Ue_\lambda\}_{\lambda \in \Lambda}$ is an orthonormal basis for \mathcal{H}_2.

Indeed, $\langle Ue_\alpha, Ue_\beta \rangle = \langle e_\alpha, e_\beta \rangle = \delta_{\alpha,\beta}$ (the Kronecker delta function), $\|Ue_\alpha\| = \|e_\alpha\| = 1$ for all $\alpha \in \Lambda$, and

$$\mathcal{H}_2 = U\mathcal{H}_1 = U(\text{span}\{e_\lambda\}_{\lambda \in \Lambda}) = \text{span}\{Ue_\lambda\}_{\lambda \in \Lambda},$$

by the continuity of U.

Hence $\dim \mathcal{H}_2 = |\{Ue_\lambda\}_{\lambda \in \Lambda}| = |\Lambda| = \dim \mathcal{H}_1$.

Conversely, suppose that $\dim \mathcal{H}_2 = \dim \mathcal{H}_1$. Then we can find a set Λ and orthonormal bases $\{e_\lambda : \lambda \in \Lambda\}$ for \mathcal{H}_1, and $\{f_\lambda : \lambda \in \Lambda\}$ for \mathcal{H}_2. Consider the map

$$U : \mathcal{H}_1 \to \ell^2(\Lambda)$$

$$x \mapsto (\langle x, e_\lambda \rangle)_{\lambda \in \Lambda},$$

where $\ell^2(\Lambda) := \{f : \Lambda \to \mathbb{K} : \sum_{\lambda \in \Lambda} |f(\lambda)|^2 < \infty\}$. This is an inner product space using the inner product $\langle f, g \rangle = \sum_{\lambda \in \Lambda} f(\lambda)g(\lambda)$. The proof that $\ell^2(\Lambda)$ is complete is essentially the same as in the case of $\ell^2(\mathbb{N})$.

It is routine to check that U is linear. Moreover,

$$\langle Ux, Uy \rangle = \sum_{\lambda} \langle x, e_\lambda \rangle \overline{\langle y, e_\lambda \rangle}$$

$$= \sum_{\lambda} \langle \langle x, e_\lambda \rangle e_\lambda, \langle y, e_\lambda \rangle e_\lambda \rangle$$

$$= \langle \sum_{\lambda} \langle x, e_\lambda \rangle e_\lambda, \sum_{\gamma} \langle y, e_\gamma \rangle e_\gamma \rangle$$

$$= \langle x, y \rangle$$

for all $x, y \in \mathcal{H}$, and so $\|Ux\|^2 = \langle Ux, Ux \rangle = \langle x, x \rangle = \|x\|^2$ for all $x \in \mathcal{H}_1$. It follows that U is isometric and therefore injective.

If $(r_\lambda)_{\lambda} \in \ell^2(\Lambda)$ has finite support, then $x := \sum_{\lambda \in \Lambda} r_\lambda e_\lambda \in \mathcal{H}_1$ and $Ux = (r_\lambda)_{\lambda}$. Thus U is dense. But from the comment above, $U\mathcal{H}_1$ is closed, and therefore $U\mathcal{H}_1 = \ell^2(\Lambda)$.

We have shown that U is a unitary operator implementing the isomorphism of \mathcal{H}_1 and $\ell^2(\Lambda)$. By symmetry once again, there exists a unitary $V : \mathcal{H}_2 \to \ell^2(\Lambda)$. But then $V^{-1}U : \mathcal{H}_1 \to \mathcal{H}_2$ is unitary, showing that $\mathcal{H}_1 \simeq \mathcal{H}_2$.

\Box
3.22. Corollary. The spaces $\ell^2(\mathbb{N})$, $\ell^2(\mathbb{Q})$, $\ell^2(\mathbb{Z})$ and $L^2([0,1],dx)$ (where dx represents Lebesgue measure) are all isomorphic, as they are all infinite dimensional, separable Hilbert spaces.
Appendix to Section 3.

3.23. When dealing with Hilbert space operators and operator algebras, one tends to focus upon complex Hilbert spaces. One reason for this is that the spectrum provides a terribly useful tool for analyzing operators. For \mathfrak{X} a normed linear space, let I (or $I_\mathfrak{X}$ if we wish to emphasize the underlying space) denote the identity map $Ix = x$ for all $x \in \mathfrak{X}$.

3.24. Definition. Let \mathfrak{X} and \mathfrak{Y} be Banach spaces, and let $T \in B(\mathfrak{X}, \mathfrak{Y})$. We say that T is invertible if there exists a (continuous) linear map $R \in B(\mathfrak{Y}, \mathfrak{X})$ such that $RT = I_\mathfrak{X}$ and $TR = I_\mathfrak{Y}$.

If $T \in B(\mathfrak{X})$, we define the spectrum of T to be:

$$\sigma(T) = \{\lambda \in \mathbb{K} : (T - \lambda I) \text{ is not invertible}\}.$$

3.25. When \mathfrak{X} is a finite-dimensional space, the spectrum of T coincides with the eigenvalues of T. The reader will recall from their Linear Algebra courses that eigenvalues of linear maps need not exist when the underlying field is not algebraically closed. When $\mathbb{K} = \mathbb{C}$, it can be shown that the spectrum of an operator $T \in B(\mathfrak{X})$ is a non-empty, compact subset of \mathbb{C}, and a so-called functional calculus which allows one to naturally define $f(T)$ for any complex-valued function which is analytic in an open neighbourhood of $\sigma(T)$. This, however, is beyond the scope of the present notes.

If \mathfrak{X} is a Banach space, an operator $Q \in B(\mathfrak{X})$ is said to be quasinilpotent if $\sigma(Q) = \{0\}$. The argument of Paragraph 2.20 says that the Volterra operator is quasinilpotent.

A wonderful theorem of A. Beurling, known as Beurling’s spectral radius formula relates the spectrum of an operator T to a limit of the kind obtained in Paragraph 2.20.

Theorem. Beurling’s Spectral Radius Formula.

Let \mathfrak{X} be a complex Banach space and $T \in B(\mathfrak{X})$. Then

$$\text{spr}(T) := \max\{|k| : k \in \sigma(T)\} = \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}}.$$

The quantity $\text{spr}(T)$ is known as the spectral radius of T. It is worth pointing out that an implication of Beurling’s Spectral Radius Formula is that the limit on the right-hand side of the equation exists! A priori, this is not obvious.
3.26. As mentioned in paragraph 3.1, Hilbert spaces arise naturally in the study of Banach space geometry. In this context, much of the literature concerns real Hilbert spaces.

For example, for each \(n \geq 1 \), let \(Q_n \) denote the set of \(n \)-dimensional (real) Banach spaces. Given Banach spaces \(\mathcal{X} \) and \(\mathcal{Y} \) in \(Q_n \), we denote by \(GL(\mathcal{X}, \mathcal{Y}) \) the set of all invertible operators from \(\mathcal{X} \) to \(\mathcal{Y} \). We can define a metric \(\delta \) on \(Q_n \) via:

\[
\delta(\mathcal{X}, \mathcal{Y}) := \log \left(\inf \{ \| T \| \| T^{-1} \| : T \in GL(\mathcal{X}, \mathcal{Y}) \} \right).
\]

It can be shown that \((Q_n, \delta) \) is a compact metric space, known as the Banach-Mazur compactum. One also refers to the quantity

\[
d(\mathcal{X}, \mathcal{Y}) = \inf \{ \| T \| \| T^{-1} \| : T \in GL(\mathcal{X}, \mathcal{Y}) \}
\]

as the Banach-Mazur distance between \(\mathcal{X} \) and \(\mathcal{Y} \), and it is an important problem in Banach space geometry to calculate Banach-Mazur distances between the \(n \)-dimensional subspaces of two infinite-dimensional Banach spaces, say \(\mathcal{V} \) and \(\mathcal{W} \). Typically, one is interested in knowing something about the asymptotic behaviour of these distances as \(n \) tends to infinity.

We mention without proof two interesting facts concerning the Banach-Mazur distance:

(a) If \(\mathcal{X} \), \(\mathcal{Y} \) and \(\mathcal{Z} \) are \(n \)-dimensional Banach spaces, then

\[
d(\mathcal{X}, \mathcal{Z}) \leq d(\mathcal{X}, \mathcal{Y}) \cdot d(\mathcal{Y}, \mathcal{Z}).
\]

(b) A Theorem of Fritz John shows that (with \(\ell_2^n := (\mathbb{R}^n, \| \cdot \|_2) \)),

\[
d(\mathcal{X}, \ell_2^n) \leq \sqrt{n} \text{ for all } n \geq 1.
\]

It clearly follows from these two properties that \(d(\mathcal{X}, \mathcal{Y}) \leq n \) for all \(\mathcal{X}, \mathcal{Y} \in Q_n \).

3.27. We mentioned earlier in this section that the Parallelogram Law is useful in determining that a given norm is not induced by an inner product. In fact, it can be shown that a norm on a Banach space \(\mathcal{X} \) is the norm induced by some inner product if and only if the norm satisfies the Parallelogram Law.

My friends tell me I have an intimacy problem. But they don't really know me.

Garry Shandling
4. Topological Vector Spaces

Someday I want to be rich. Some people get so rich they lose all respect for humanity. That’s how rich I want to be.

Rita Rudner

4.1. Let H be an infinite-dimensional Hilbert space. The norm topology on $\mathcal{B}(H)$ is but one example of an interesting topology we can place on this set. We are also interested in studying certain weak topologies on $\mathcal{B}(H)$ generated by a family of functions. The topologies that we shall obtain are not induced by a metric obtained from a norm. In order to gain a better understand of the nature of the topologies we shall obtain, we now turn our attention to the notion of a topological vector space.

4.2. Definition. Let W be a vector space over the field K, and let T be a topology on W. We say that the topology T is compatible with the vector space structure on W if the maps

$$\sigma : W \times W \to W \quad (x, y) \mapsto x + y$$

and

$$\mu : K \times W \to W \quad (k, x) \mapsto kx$$

are continuous, where $K \times W$ and $W \times W$ carry their respective product topologies.

A topological vector space (abbreviated TVS) is a pair (W, T) where W is a vector space with a compatible Hausdorff topology. Informally, we refer to W as the topological vector space.

4.3. Remark. Not all authors require T to be Hausdorff in the above definition. However, for all spaces of interest to us, the topology will indeed be Hausdorff. Furthermore, one can always pass from a non-Hausdorff topology to a Hausdorff topology via a natural quotient map. (See Appendix T.)

4.4. Example. Let $(X, \| \cdot \|)$ be any normed linear space, and let T denote the norm topology. Suppose $(x, y) \in X \times X$ and $\epsilon > 0$. Choose a net $(x_\alpha, y_\alpha)_{\alpha \in \Lambda} \in X \times X$ so that $\lim_\alpha (x_\alpha, y_\alpha) = (x, y)$. Then there exists $\alpha_0 \in \Lambda$ so that $\alpha \geq \alpha_0$ implies $\|x_\alpha - x\| < \epsilon / 2$, $\|y_\alpha - y\| < \epsilon / 2$. But then $\alpha \geq \alpha_0$ implies $\|x_\alpha + y_\alpha - (x + y)\| \leq \|x_\alpha - x\| + \|y_\alpha - y\| < \epsilon$. In other words, $\sigma(x_\alpha, y_\alpha)$ tends to $\sigma(x, y)$ and so σ is continuous.

Similarly, if $(k, x) \in K \times X$, then we can choose a net $(k_\alpha, x_\alpha)_{\alpha \in \Lambda}$ so that $\lim_\alpha (k_\alpha, x_\alpha) = (k, x)$. But then we can find $\alpha_0 \in \Lambda$ so that $\alpha \geq \alpha_0$ implies $|k_\alpha - k| < 1$, and so $|k_\alpha| < |k| + 1$. Next we can find α_1 so that $\alpha \geq \alpha_1$ implies $|k_\alpha - k| < \epsilon / 2\|x\|$.

and α_2 so that $\alpha \geq \alpha_2$ implies $\|x_\alpha - x\| < \varepsilon/(2(|k| + 1))$. Choosing $\alpha \geq \alpha_0, \alpha_1$ and α_2 we get

$$
\|\mu(k_\alpha, x_\alpha) - \mu(k, x)\| = \|k_\alpha x_\alpha - kx\|
\leq \|k_\alpha x_\alpha - k_\alpha x\| + \|k_\alpha x - kx\|
\leq |k_\alpha| \|x_\alpha - x\| + \|k_\alpha - k\| \|x\|
\leq \varepsilon/2 + \varepsilon/2 = \varepsilon.
$$

This proves that μ is continuous. Hence X is a TVS with the norm topology.

4.5. Example. As a concrete example of the situation in Example 4.4, let $n \geq 1$ be an integer and for $(x_1, x_2, ..., x_n) \in \mathbb{C}^n$, set $\|(x_1, x_2, ..., x_n)\|_\infty = \max\{|x_k| : 1 \leq k \leq n\}$. Then \mathbb{C}^n is a TVS with the induced norm topology. Of course, in this example, the norm topology coincides with the usual topology on \mathbb{C}^n coming from the Euclidean norm $\|(x_1, x_2, ..., x_n)\|_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}$, since $\|\cdot\|_\infty$ and $\|\cdot\|_2$ are equivalent norms on \mathbb{C}^n.

4.6. Remark. In the assignments we shall see how to construct a TVS which is not a normed linear space. See also the discussion of Fréchet spaces in the Appendix to Section 5.

4.7. Remark. Let (W, T) be a TVS, and let $U \in U_0$ be a nbhd of 0 in W. The continuity of $\sigma : W \times W \to W$ implies that $\sigma^{-1}(U)$ is open in $W \times W$. As such, $\sigma^{-1}(U)$ contains a basic nbhd $N_1 \times N_2$ of $(0, 0)$, where $N_1, N_2 \in U_0$ are open (see Appendix T). But if $N = N_1 \cap N_2$, then $N \in U_0$ and $N \times N \subseteq N_1 \times N_2 \subseteq \sigma^{-1}(U)$. Thus for all $U \in U_0$ there exists $N \in U_0$ so that $\sigma(N \times N) = N + N := \{m + n : m, n \in N\} \subseteq U$.

Similarly, we can find a nbhd $V_\varepsilon(0)$ of 0 in \mathbb{K} and $N \in U_0^W$ open so that $V_\varepsilon(0) \times N \subseteq \mu^{-1}(U)$, or equivalently,

$$
\{kn : n \in N, 0 \leq |k| < \varepsilon\} \subseteq U.
$$

4.8. Definition. A nbhd N of 0 in a TVS W is called balanced if $kN \subseteq N$ for all $k \in \mathbb{K}$ satisfying $|k| \leq 1$.

4.9. Example. Let $(X, \|\cdot\|)$ be a normed linear space. For all $\delta > 0$, $V_\delta(0) = \{x \in X : \|x\| < \delta\}$ is a balanced nbhd of 0.
4.10. Proposition. Let \((W, T)\) be a TVS. Every nbhd of 0 contains a balanced, open nbhd of 0.

Proof. By Remark 4.7, given \(U \in \mathcal{U}_0\), we can find \(\varepsilon > 0\) and \(N \in \mathcal{U}_0\) open such that \(k \in \mathbb{K}, 0 < |k| < \varepsilon\) implies \(kN \subseteq U\). Since multiplication by a non-zero scalar is a homeomorphism, each \(kN\) is open.

Let \(M = \bigcup_{0 < |k| < \varepsilon} kN\). Then \(M \subseteq U\) and \(M \supseteq \frac{\varepsilon}{2}N\), so \(M \in \mathcal{U}_0\). A routine calculation shows that \(M\) is balanced. It is also open, being the union of open sets. \(\square\)

4.11. Suppose \((\mathcal{W}, T)\) is a TVS, \(w_0 \in \mathcal{W}\) and \(k_0 \in \mathbb{K}\). Define

\[
\tau_{w_0} : \mathcal{W} \to \mathcal{W} \quad \text{via} \quad \tau_{w_0}(x) = w_0 + x.
\]

By continuity of addition, we get that \(\tau_{w_0}\) is continuous, and clearly \(\tau_{w_0}\) is a bijection. But \(\tau_{w_0}^{-1} = \tau_{-w_0}\) is also a translation, and therefore it is continuous by the above argument. That is, \(\tau_{w_0}\) is a homeomorphism.

This simple observation underlies a particularly useful fact about TVS’s, namely:

\[N \in \mathcal{U}_0^\mathcal{W}\] if and only if \(w_0 + N \in \mathcal{U}_0^\mathcal{W}\).

That is,

the nbhd system at any point in \(\mathcal{W}\) is determined by the nbhd system at 0.

If \(k_0 \neq \mathbb{K}\), then \(\lambda_{k_0} : \mathcal{W} \to \mathcal{W}\) defined by \(\lambda_{k_0}(x) = k_0x\) is also a continuous bijection (by continuity of scalar multiplication) and has continuous inverse \(\lambda_{k_0}^{-1}\). Thus

\[N \in \mathcal{U}_0^\mathcal{W}\] if and only if \(k_0N \in \mathcal{U}_0^\mathcal{W}\) for all \(0 \neq k_0 \in \mathbb{K}\).

The following result shows that the assumption that a TVS topology be Hausdorff may be replaced with a weaker assumption - namely that points be closed (i.e. that \(T\) be \(T_1\)) - from which the Hausdorff condition follows.

4.12. Proposition. Let \(\mathcal{V}\) be a vector space with a topology \(T\) for which

(i) addition is continuous;
(ii) scalar multiplication is continuous; and
(iii) points in \(\mathcal{V}\) are closed in the \(T\)-topology.

Then \(T\) is a Hausdorff topology and \((\mathcal{V}, T)\) is a TVS.

Proof. Let \(x \neq y \in \mathcal{V}\). Then \(\{y\}\) is closed (i.e. \(\mathcal{V}\setminus\{y\}\) is open) and so we can find an open nbhd \(U \in \mathcal{U}_x\) of \(x\) so that \(y \notin U\). As above, by continuity of addition, translation is a homeomorphism of \(\mathcal{V}\) and so \(U = x + U_0\) for some open nbhd \(U_0\) of 0. Also by continuity of addition, there exists an open nbhd \(V\) of 0 so that \(V + V \subseteq U_0\).

By continuity of scalar multiplication, \(V\) is again an open nbhd of 0, and hence \(W = V \cap (-V)\) is an open nbhd of 0 as well, with \(W + W \subseteq V + V \subseteq U_0\).

Suppose that \((x + W) \cap (y + W) \neq \emptyset\). Then there exist \(w_1, w_2 \in W\) so that \(x + w_1 = y + w_2\), i.e. \(x + w_1 - w_2 = y\). But \(w_1 - w_2 \in W + W\), so that \(y \in x + (W + W) \subseteq x + U_0 = U\), a contradiction. Hence \((x + W) \in \mathcal{U}_x, (y + W) \in \mathcal{U}_y\) are disjoint open nbhds of \(x\) and \(y\) respectively, and \((\mathcal{V}, T)\) is Hausdorff.
4.13. Proposition. Let \((W, T)\) be a TVS and \(\mathcal{V}\) be a linear manifold in \(W\). Then

(a) \(\mathcal{V}\) is a TVS with the relative topology induced by \(T\); and
(b) \(\overline{\mathcal{V}}\) is a subspace of \(W\).

Proof.
(a) This is clear, since the continuity of \(\sigma|_{\mathcal{V}}\) and \(\mu|_{\mathcal{V}}\) is inherited from the continuity of \(\sigma\) and \(\mu\).
(b) Suppose \(y, z \in \overline{\mathcal{V}}\) and \(k \in \mathbb{K}\). Choose a net \((y_\alpha, z_\alpha) \in \mathcal{V} \times \mathcal{V}\) so that \(\lim_\alpha (y_\alpha, z_\alpha) = (y, z)\). By continuity of \(\sigma\) on \(W \times W\), \(y_\alpha + z_\alpha \to y + z\). But \(y_\alpha + z_\alpha \in \mathcal{V}\) for all \(\alpha\), and so \(y + z \in \overline{\mathcal{V}}\). Similarly, if we choose a net \((k_\alpha, y_\alpha)\) in \(\mathbb{K} \times \mathcal{V}\) which converges to \((k, y)\), then the continuity of \(\mu\) implies that \(k_\alpha y_\alpha \to ky\). Since \(k_\alpha y_\alpha \in \mathcal{V}\) for all \(\alpha\), \(ky \in \overline{\mathcal{V}}\).

\[\Box\]

4.14. Exercise. Let \((\mathcal{V}, T)\) be a TVS. Prove the following.
(a) If \(C \subseteq \mathcal{V}\) is convex, then so is \(\overline{C}\).
(b) If \(E \subseteq \mathcal{V}\) is balanced, then so is \(\overline{E}\).

4.15. Definition. Let \((\mathcal{V}, T)\) be a TVS, and let \((x_\lambda)\) be a net in \(\mathcal{V}\). We say that \((x_\lambda)\) is a Cauchy net if for all \(U \in \mathcal{U}_0\) there exists \(\lambda_0 \in \Lambda\) so that \(\lambda_1, \lambda_2 \geq \lambda_0\) implies that \(x_{\lambda_1} - x_{\lambda_2} \in U\).

We say that a subset \(K \subseteq \mathcal{V}\) is Cauchy complete if every Cauchy net in \(K\) converges to some element of \(K\).

We pause to verify that if \((x_\lambda)\) is a net in \(\mathcal{V}\) which converges to some \(x \in \mathcal{V}\), then \((x_\lambda)\) is a Cauchy net. Indeed, let \(U \in \mathcal{U}_0\) and choose a balanced, open nbhd \(N \in \mathcal{U}_0\) so that \(N + N = N - N \subseteq U\). Also, choose \(\lambda_0 \in \Lambda\) so that \(\lambda \geq \lambda_0\) implies that \(x_\lambda \in x + N\). If \(\lambda_1, \lambda_2 \geq \lambda_0\), then \(x_{\lambda_1} - x_{\lambda_2} = (x_{\lambda_1} - x) - (x_{\lambda_2} - x) \in N - N \subseteq U\). Thus \((x_\lambda)\) is a Cauchy net.

4.16. Example. If \((X, \| \cdot \|)\) is a normed linear space, then \(X\) is Cauchy complete if and only if \(X\) is complete. Indeed, the topology here being a metric topology, we need only consider sequences instead of general nets.

4.17. Lemma. Let \(\mathcal{V}\) be a TVS and \(\mathcal{K} \subseteq \mathcal{V}\) be complete. Then \(\mathcal{K}\) is closed in \(\mathcal{V}\).

Proof. Suppose that \(z \in \overline{\mathcal{K}}\). For each \(U \in \mathcal{U}_2\), there exists \(y_U \in \mathcal{K}\) so that \(y_U \in U\). The family \(\{U : U \in \mathcal{U}_2\}\) forms a directed set under reverse-inclusion, namely: \(U_1 \leq U_2\) if \(U_2 \subseteq U_1\). Thus \((y_U)_{U \in \mathcal{U}_2}\) is a net in \(\mathcal{K}\). By definition, this net converges to the point \(z\), i.e. \(\lim_U y_U = z\). (Since \(\mathcal{V}\) is Hausdorff, this is the unique limit point of the net \((y_U)_{U \in \mathcal{U}_2}\).) From the comments following Definition 4.15, \((y_U)_{U \in \mathcal{U}_2}\) is a Cauchy net. Since \(\mathcal{K}\) is complete, it follows that \(z \in \mathcal{K}\), and hence that \(\mathcal{K}\) is closed.

\[\Box\]
4.18. Let (\mathcal{V}, T) be a TVS and W be a closed subspace of \mathcal{V}. Then \mathcal{V}/W exists as a quotient space of vector spaces. Let $q: \mathcal{V} \to \mathcal{V}/W$ denote the canonical quotient map.

We can establish a topology on \mathcal{V}/W using the T topology on \mathcal{V} by defining a subset $G \subseteq \mathcal{V}/W$ to be open if $q^{-1}(G)$ is open in \mathcal{V}.

- If $\{G_\lambda\}_\lambda \subseteq \mathcal{V}/W$ and $q^{-1}(G_\lambda)$ is open in \mathcal{V} for all λ, then $q^{-1}(\cup_\lambda G_\lambda) = \cup_\lambda q^{-1}(G_\lambda)$ is open, and thus $\cup_\lambda G_\lambda$ is open in \mathcal{V}/W.

- If $G_1, G_2 \subseteq \mathcal{V}/W$ and $q^{-1}(G_i)$ is open in \mathcal{V}, $i = 1, 2$, then $q^{-1}(G_1 \cap G_2) = q^{-1}(G_1) \cap q^{-1}(G_2)$ is open in \mathcal{V}, when $G_1 \cap G_2$ is open in \mathcal{V}/W.

- Clearly $\emptyset = q^{-1}(\emptyset)$ and $\mathcal{V} = q^{-1}(\mathcal{V}/W)$ are open in \mathcal{V}, so that $\emptyset, \mathcal{V}/W$ are open in \mathcal{V}/W and the latter is a topological space.

We refer to this topology on \mathcal{V}/W as the quotient topology. The quotient map is continuous with respect to the quotient topology, by design. In fact, the quotient topology is the largest topology on \mathcal{V}/W which makes q continuous.

We begin by proving that q is an open map. That is, if $G \subseteq \mathcal{V}$ is open, then $q(G)$ is open in \mathcal{V}/W.

Indeed, for each $w \in W$, the set $G + w$ is open in \mathcal{V}, being a translate of the open set G. Hence $G + W = \cup_{w \in W} G + w$ is open in \mathcal{V}, being the union of open sets. But

$$G + W = q^{-1}(q(G)),$$

so that $q(G)$ is open in \mathcal{V}/W by definition.

To see that addition is continuous in \mathcal{V}/W, let $x + W, y + W$ and let E be a nbhd of $(x + y) + W$ in \mathcal{V}/W. Then $q^{-1}(E)$ is open in \mathcal{V} and $(x + y) \in q^{-1}(E)$. Choose nbhds U_x of x and U_y of y in \mathcal{V} so that $r \in U_x, s \in U_y$ implies that $r + s \in q^{-1}(E)$. Note that $x + W \in q(U_x), y + W \in q(U_y)$ and that $q(U_x), q(U_y)$ are open in \mathcal{V}/W by the argument above. If $a + W \in q(U_x)$, $b + W \in q(U_y)$, then $a + W = g + W$ and $b + W = h + W$ for some $g \in U_x, h \in U_y$. Thus

$$(a + b) + W = (g + h) + W \in q(q^{-1}(E)) \subseteq E.$$

Hence addition is continuous.

That scalar multiplication is continuous follows from a similar argument which is left to the reader.

Finally, to see that the resulting quotient topology is Hausdorff, it suffices (by Proposition 4.12) to show that points in \mathcal{V}/W are closed. Let $x + W \in \mathcal{V}/W$. Then $q^{-1}(x + W) = \{x + w : w \in W\}$ is closed in \mathcal{V}, being a translation of the closed subspace W. Hence the complement $C = \mathcal{V}\setminus\{x + w : w \in W\}$ of $x + W$ is open in \mathcal{V}. But then $q(C)$ is open, since q is an open map, and $q(C)$ is the complement of $x + W$.

Finite-dimensional topological vector spaces. Our present goal is to prove that there is only one topology that one can impose upon a finite-dimensional vector space \mathcal{V} to make it into a TVS. We begin with the one dimensional case.
4.19. Lemma. Let \((V,T)\) be a one dimensional TVS over \(K\). Let \(\{e\}\) be a basis for \(V\). Then \(V\) is homeomorphic to \(K\) via the map
\[
\tau : \quad K \rightarrow V \quad \quad k \mapsto ke.
\]

Proof. The map \(\tau\) is clearly a bijection, and the continuity of scalar multiplication in a TVS makes it continuous as well. We shall demonstrate that the inverse map \(\tau^{-1}(ke) = k\) is also continuous. To do this, it suffices to show that if \(\lim \lambda k_\lambda e = 0\), then \(\lim \lambda k_\lambda = 0\). (Why?)

Let \(\delta > 0\). Then \(\delta e \neq 0\), and as \(V\) is Hausdorff, we can find a nbhd \(U\) of 0 so that \(\delta e \not\in U\). By Proposition 4.10, \(U\) contains a balanced nbhd \(V\) of 0. Obviously, \(\delta e \not\in V\). Since \(\lim \lambda k_\lambda e = 0\), there exists \(\lambda_0\) so that \(\lambda \geq \lambda_0\) implies that \(k_\lambda e \in V\).

Suppose that there exists \(\beta \geq \lambda_0\) with \(|k_\beta| \geq \delta\). Then \(\delta e = \left(\frac{\delta}{k_\beta}\right) k_\beta e \in V\), as \(V\) is balanced. This contradiction shows that \(\lambda \geq \lambda_0\) implies that \(|k_\lambda| < \delta\). Since \(\delta > 0\) was arbitrary, we have shown that \(\lim \lambda k_\lambda = 0\).

4.20. Proposition. Let \(n \geq 1\) be an integer, and let \((V,T)\) be an \(n\)-dimensional TVS over \(K\) with basis \(\{e_1, e_2, \ldots, e_n\}\). The map
\[
\tau : \quad K^n \rightarrow V \quad \quad (k_1, k_2, \ldots, k_n) \mapsto \sum_{j=1}^n k_j e_j
\]
is a homeomorphism.

Proof. Lemma 4.19 shows that the result is true for \(n = 1\). We shall argue by induction on the dimension of \(V\).

It is clear that \(\tau\) is a linear bijection, and furthermore, since \(V\) is a TVS, the continuity of addition and scalar multiplication in \(V\) implies that \(\tau\) is continuous. There remains to show that \(\tau^{-1}\) is continuous as well.

Suppose that the result is true for \(1 \leq n < m\). We shall prove that it holds for \(n = m\) as well. To that end, let \(F = \{e_{t_1}, e_{t_2}, \ldots, e_{t_r}\}\) for some \(1 \leq r < m\), and let \(E = \{e_1, e_2, \ldots, e_m\} \setminus F = \{e_{p_1}, e_{p_2}, \ldots, e_{p_s}\}\).

Now \(Y = \text{span}\{e_j : j \in E\}\) is an \(s\)-dimensional space with \(s < m\). By our induction hypothesis, the map \((k_1, k_2, \ldots, k_s) \mapsto \sum_{j=1}^s k_j e_{p_j}\) is a homeomorphism. It follows that \(Y\) is complete (check!) and therefore closed, by Lemma 4.17. By the arguments of paragraph 4.18, \(V/Y\) is a TVS and the canonical map \(q_Y : V \rightarrow V/Y\) is continuous. Moreover, \(\{q(e_{t_1}), q(e_{t_2}), \ldots, q(e_{t_r})\}\) is a basis for \(V/Y\). Since \(r < m\), our induction hypothesis once again shows that the map
\[
\rho_Y : \quad V/Y \rightarrow K^r \quad \quad \sum_{j=1}^r k_j q(e_{t_j}) \mapsto (k_1, k_2, \ldots, k_r)
\]
is continuous. Thus
\[\gamma := \rho_Y \circ q : \mathcal{V} \rightarrow \mathbb{K}^r \quad \sum_{i=1}^n k_i e_i \mapsto \rho_Y(\sum_{i=1}^n k_i q(e_i)) = (k_1, k_2, ..., k_r) \]
is also continuous, being the composition of continuous functions.

To complete the proof, we first apply the above argument with \(F = \{ e_m \} \) to get
\[\gamma_1 : \mathcal{V} \rightarrow \mathbb{K} \quad \sum_{i=1}^n k_i e_i \mapsto k_m \]
is continuous, and then to \(F = \{ e_1, e_2, ..., e_{m-1} \} \) to get that
\[\gamma_2 : \mathcal{V} \rightarrow \mathbb{K}^{m-1} \quad \sum_{i=1}^n k_i e_i \mapsto (k_1, k_2, ..., k_{m-1}) \]
is continuous. Since \(\tau^{-1} = (\gamma_1, \gamma_2) \), it too is continuous, and we are done.

\[\square \]

The previous result has a number of important corollaries:

4.21. Corollary. Let \(\mathcal{V} \) be a TVS and \(\mathcal{W} \) be a finite-dimensional subspace of \(\mathcal{V} \). Then \(\mathcal{W} \) is closed in \(\mathcal{V} \).

Proof. This argument is embedded in the proof of the previous result; \(\mathcal{W} \) is complete because of the nature of the homeomorphism between \(\mathcal{W} \) and \(\mathbb{K}^n \), where \(n \) is the dimension of \(\mathcal{W} \). Then Lemma 4.17 implies that \(\mathcal{W} \) is closed.

\[\square \]

4.22. Corollary. Let \(n \geq 1 \) be an integer and \(\mathcal{V} \) be an \(n \)-dimensional vector space. Then there is a unique topology \(\mathcal{T} \) which makes \(\mathcal{V} \) a TVS. In particular, therefore, all norms on a finite dimensional vector space are equivalent.

Proof. Since any topology on \(\mathcal{V} \) which makes it a TVS is determined completely by the product topology on \(\mathbb{K}^n \), it is unique. If \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are two norms on \(\mathcal{V} \), then they induce metric topologies which make \(\mathcal{V} \) into a TVS. But these topologies coincide, from the above argument. By Proposition 1.18, the norms are equivalent.

\[\square \]

4.23. Definition. Let \((\mathcal{V}, T_\mathcal{V}) \) and \((\mathcal{W}, T_\mathcal{W}) \) be topological vector spaces and suppose that \(f : \mathcal{V} \rightarrow \mathcal{W} \) is a (not necessarily linear) map. We say that \(f \) is **uniformly continuous** if, given \(U \in \mathcal{U}_0^\mathcal{W} \) there exists \(N \in \mathcal{U}_0^\mathcal{V} \) so that \(x - y \in N \) implies that \(f(x) - f(y) \in U \).

4.24. The definition of uniform continuity given here derives from the fact that the collection \(\mathcal{B} = \{ B(U) = \{(x, y) : x - y \in U \} : U \in \mathcal{U}_0^\mathcal{W} \} \) defines what is known as a **uniformity** on the TVS \((\mathcal{W}, T_\mathcal{W}) \) whose corresponding uniform topology coincides with the initial topology \(T \). The interested reader is referred to the book by Willard [Wil70] and to the books of Kadison and Ringrose [KR83] for a more complete development along these lines. We shall focus only upon that part of the theory which we require in this text.
4.25. Let us verify that in the case where $\mathcal{X}, \| \cdot \|_\mathcal{X}$ and $\mathcal{Y}, \| \cdot \|_\mathcal{Y}$ are normed linear spaces, our new notion of uniform continuity coincides with our metric space notion.

Observe first that if $(\mathcal{Z}, \| \cdot \|)$ is a general normed linear space and $\delta > 0$, then $x - y \in V^\mathcal{Z}_\delta(0)$ if and only if $\|x - y\| < \delta$.

Suppose $f : \mathcal{X} \to \mathcal{Y}$ is uniformly continuous in the sense of Definition 4.23. Given $\varepsilon > 0$, $V^\mathcal{Y}_\varepsilon(0) = \{ y \in \mathcal{Y} : \|y\|_\mathcal{Y} < \varepsilon \} \subseteq U^\mathcal{Y}_0$ and so there exists $N \in U^\mathcal{X}_0$ such that $x - y \in N$ implies $f(x) - f(y) \in V^\mathcal{Y}_\varepsilon(0)$. But $N \in U^\mathcal{X}_0$ implies that there exists $\delta > 0$ so that $V^\mathcal{X}_\delta(0) \subseteq N$. Thus $\|x - y\|_\mathcal{X} < \delta$ implies that $x - y \in N$, and thus $f(x) - f(y) \in V^\mathcal{Y}_\varepsilon(0)$, i.e. $\|f(x) - f(y)\|_\mathcal{Y} < \varepsilon$. Thus is the standard (metric) notion of uniform continuity in a normed space.

Conversely, suppose that $f : \mathcal{X} \to \mathcal{Y}$ is uniformly continuous in the standard metric sense. Let $U \in U^\mathcal{Y}_0$. Then there exists $\varepsilon > 0$ so that $V^\mathcal{Y}_\varepsilon(0) \subseteq U$. By hypothesis, there exists $\delta > 0$ so that $\|x - y\|_\mathcal{X} < \delta$ implies $\|f(x) - f(y)\|_\mathcal{Y} < \varepsilon$, and hence $x - y \in V^\mathcal{X}_\delta(0)$ implies that $f(x) - f(y) \in V^\mathcal{Y}_\varepsilon(0) \subseteq U$. That is, f is continuous in the sense of Definition 4.23.

It is useful to extend our notion of uniformly continuous functions between topological vectors spaces to functions defined only upon a subset (not necessarily a subspace) of the domain space \mathcal{V}.

4.26. Definition. If $(\mathcal{V}, T_\mathcal{V})$ and $(\mathcal{W}, T_\mathcal{W})$ are topological vector spaces and $C \subseteq \mathcal{V}$, then $f : C \to \mathcal{W}$ is uniformly continuous if for all $U \in U^\mathcal{W}_0$ there exists $N \in U^\mathcal{V}_0$ such that $x, y \in C$ and $x - y \in N$ implies $f(x) - f(y) \in U$.

4.27. Example. Now $(\mathbb{R}, | \cdot |)$ is a normed linear space, and so the comments of paragraph 4.25 apply. The function $f : (0, 1) \to \mathbb{R}$ defined by $f(x) = x^2$ is therefore uniformly continuous, whereas $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$ is not.

Another way in which uniform continuity in the TVS setting extends the notion of uniform continuity in the metric setting is evinced by the following:

4.28. Proposition. Let $(\mathcal{V}, T_\mathcal{V})$ and $(\mathcal{W}, T_\mathcal{W})$ be topological vector spaces and $f : \mathcal{V} \to \mathcal{W}$ be uniformly continuous. Then f is continuous on \mathcal{V}.

Proof. Let $x_0 \in \mathcal{V}$. Let $U \in U^\mathcal{W}_{f(x_0)}$. Then by paragraph 4.11, $U = f(x_0) + U_0$ where $U_0 \in U^\mathcal{V}_0$. By hypothesis, there exists $N_0 \in U^\mathcal{V}_0$ so that $x - x_0 \in N_0$ implies that $f(x) - f(x_0) \in U_0$. That is, $x \in x_0 + N_0$ implies $f(x) \in f(x_0) + N_0 = U$. Since $N := x_0 + N_0 \in U^\mathcal{V}_0$, we see that f is continuous at x_0. But $x_0 \in \mathcal{V}$ was arbitrary, and so f is continuous on \mathcal{V}.

4.29. Theorem. Let $(\mathcal{V}, T_\mathcal{V})$ and $(\mathcal{W}, T_\mathcal{W})$ be topological vector spaces over \mathbb{K}. Suppose that $T : \mathcal{V} \to \mathcal{W}$ is linear. The following are then equivalent:

(a) there exists $x_0 \in \mathcal{V}$ so that T is continuous at x_0; and
(b) T is uniformly continuous on \mathcal{V}.
It follows that T is continuous at 0. Let $N_0 \in \mathcal{U}_0^V$. By Theorem 4.29 and Proposition 4.28, it suffices to prove that

$$\lim_{x \to 0} T(x) = 0.$$

Proof. By Proposition 4.28, it suffices to prove that (a) implies (b). To that end, suppose that T is continuous at x_0 and let $U_0 \in \mathcal{U}_0^V$. Then $U := T(x_0) + U_0 \subseteq \mathcal{U}^V$. By continuity of T at x_0, there exists $N \in \mathcal{U}_{x_0}$ so that $T(N) \subseteq U$. But $N = x_0 + N_0$ for some $N_0 \in \mathcal{U}_0^V$. Now if $z \in N_0$, then $x_0 + z \in N$, and so $T(x_0 + z) = Tx_0 + Tz \in T(x_0) + U_0$. That is, $Tz \in U_0$.

In particular, if $x - y \in N_0$, then $T(x - y) = Tx - Ty \in U_0$, and so T is uniformly continuous on \mathcal{V}.

4.30. Given vector spaces \mathcal{V} and \mathcal{W} over \mathbb{C}, denote by \mathcal{V}_R and \mathcal{W}_R the same spaces of vectors, viewed as vector spaces over \mathbb{R}. Observe that if $(\mathcal{V}, T_\mathcal{V})$ and $(\mathcal{W}, T_\mathcal{W})$ are topological vector spaces over \mathbb{C} and $T : \mathcal{V} \to \mathcal{W}$ is conjugate-linear (i.e. $T(kx) = \overline{k}x$ for all $x \in \mathcal{V}$ and $k \in \mathbb{C}$), then $T : \mathcal{V}_R \to \mathcal{W}_R$ is linear (over \mathbb{R}). That is, $T(kx + y) = kTx + Ty$ for all $x, y \in \mathcal{V}_R$ and $k \in \mathbb{R}$. Moreover, the topologies $T_\mathcal{V}$ and $T_\mathcal{W}$ are real-vector space topologies for \mathcal{V}_R and \mathcal{W}_R respectively (as well as \mathbb{C}-vector space topologies for \mathcal{V} and \mathcal{W}).

From this it follows that $T : \mathcal{V} \to \mathcal{W}$ is continuous if and only if $T : (\mathcal{V}_R, T_\mathcal{V}) \to (\mathcal{W}_R, T_\mathcal{W})$ is continuous, and by the above Theorem, this happens precisely when T is uniformly continuous on \mathcal{V} (or equivalently on \mathcal{V}_R, since all scalars appearing in the definition of uniform continuity are real).

In other words, Theorem 4.29 holds for as conjugate-linear maps too.

4.31. Corollary. Let $(\mathcal{V}, T_\mathcal{V})$ and $(\mathcal{W}, T_\mathcal{W})$ be topological vector spaces over \mathbb{K} and suppose that $\dim \mathcal{V} = n < \infty$. If $T : \mathcal{V} \to \mathcal{W}$ is linear, then T is continuous.

Proof. By Theorem 4.29 and Proposition 4.28, it suffices to prove that T is continuous at 0. Let $\{e_1, e_2, \ldots, e_n\}$ be a basis for \mathcal{V}, and suppose that $(x_\lambda)_{\lambda \in \Lambda}$ is a net in \mathcal{V} which converges to 0. For each $\lambda \in \Lambda$ we may express x_λ as a unique linear combination of the e_j’s, say

$$x_\lambda = k_{\lambda,1}e_1 + k_{\lambda,2}e_2 + \cdots + k_{\lambda,n}e_n.$$

By Proposition 4.20, $\lim_{\lambda} x_\lambda = 0$ implies that for $1 \leq j \leq n$, $\lim_{\lambda} k_{\lambda,j} = 0$.

Now $Tx_\lambda = \sum_{j=1}^{n} k_{\lambda,j} Te_j$, $\lambda \in \Lambda$. But scalar multiplication in $(\mathcal{W}, T_\mathcal{W})$ is continuous, and $\lim_{\lambda} k_{\lambda,j} = 0$, so

$$\lim_{\lambda} Tx_\lambda = \sum_{j=1}^{n} \lim_{\lambda} k_{\lambda,j} Te_j = \sum_{j=1}^{n} 0 Te_j = 0 = T(\lim_{\lambda} x_\lambda).$$

It follows that T is continuous at 0, as was required.

If we restrict our attention to subsets of \mathcal{V} we get:
4.32. Proposition. Let \mathcal{V},\mathcal{W} be topological vector spaces and $T : \mathcal{V} \to \mathcal{W}$ be linear. Suppose that $0 \in C \subseteq \mathcal{V}$ is balanced and convex. If $T|_C$ is continuous at 0, then $T|_C$ is uniformly continuous.

Proof. Our assumption is that $T|_C$ is continuous at 0, and thus for all $U \in \mathcal{U}^0_0$, there exists $N \in \mathcal{U}^0_0$ such that $x \in C \cap N$ implies $Tx \in \frac{1}{2}U$.

By Proposition 4.10, every nbhd $N \in \mathcal{U}^0_0$ contains a balanced nbhd N_0, and so by replacing N by N_0 if necessary, we may assume that N is balanced. Note that $\frac{1}{2}N \in \mathcal{U}^0_0$.

Now suppose that $x, y \in C$ and that $x - y \in N$. Then C balanced implies that $-y \in C$, and C convex implies that $\frac{1}{2}x + \frac{1}{2}(-y) = \frac{1}{2}(x - y) \in C$. Since N is balanced, $\frac{1}{2}(x - y) \in N$ and so $T(\frac{1}{2}(x - y)) = \frac{1}{2}(Tx - Ty) \in \frac{1}{2}U$. Hence, $x, y \in C$, $x - y \in N$ implies $Tx - Ty \in U$. That is, T is uniformly continuous on C.

\[\square\]

If $A, B,$ and C are sets with $A \subseteq B$, and if $f : A \to C$ is a map, the we say that the map $g : B \to C$ extends f (or that g is an extension of f) if $g|_A = f$.

4.33. Proposition. Suppose that \mathcal{V} and \mathcal{W} are topological vector spaces and that \mathcal{W} is Cauchy complete. If $\mathcal{X} \subseteq \mathcal{V}$ is a linear manifold and $T_0 : \mathcal{X} \to \mathcal{W}$ is continuous and linear, then T_0 extends to a continuous linear map $T : \mathcal{X} \to \mathcal{W}$.

Proof. Let $x \in \mathcal{X}$ and choose $(x_\lambda)_{\lambda \in \Lambda_1}$ in \mathcal{X} so that $\lim_\lambda x_\lambda = x$. Clearly, if T is to be continuous, we shall need $Tx = \lim_\lambda Tx_\lambda$. The issue is whether or not this limit exists and is independent of the choice of $(x_\lambda)_{\lambda}$.

Now $(x_\lambda)_\lambda$ is a Cauchy net. Take $U \in \mathcal{U}^0_0$. Since T_0 is continuous, there exists $N \in \mathcal{U}^0_0$ such that $w \in N$ implies that $T_0w \in U$. Hence, there exists λ_0 such that $\lambda_1, \lambda_2 \geq \lambda_0$ implies that $x_\lambda_1 - x_\lambda_2 \in N$ and therefore that $T_0(x_\lambda_1 - x_\lambda_2) = T_0(x_\lambda_1) - T_0(x_\lambda_2) \in U$. Thus $(T_0x_\lambda)_\lambda$ is also a Cauchy net. Our assumption that \mathcal{W} is Cauchy complete implies that there exists z (depending \textit{a priori} upon $(x_\lambda)_\lambda$) such that $z = \lim_\lambda T_0x_\lambda$.

Suppose that $(y_\beta)_{\beta \in \Lambda_2} \in \mathcal{X}$ and that $\lim_\beta y_\beta = x$. Arguing as above, there exists $z_2 \in \mathcal{W}$ so that $z_2 = \lim_\beta T_0y_\beta$. If we set

\[y_{(\lambda, \beta)} := y_\beta, \quad \lambda \in \Lambda_1\]
\[x_{(\lambda, \beta)} := x_\lambda, \quad \beta \in \Lambda_2,\]

and $\Lambda = \Lambda_1 \times \Lambda_2$, then

\[\lim_{(\lambda, \beta) \in \Lambda} x_{(\lambda, \beta)} = \lim_{(\lambda, \beta)} y_{(\lambda, \beta)} = x.\]
Also, \(\lim_{(\lambda,\beta)} T_0 x_{(\lambda,\beta)} = z_1 \), \(\lim_{(\lambda,\beta)} T_0 y_{(\lambda,\beta)} = z_2 \). Thus \(\lim_{(\lambda,\beta)} x_{(\lambda,\beta)} - y_{(\lambda,\beta)} = 0 \in \mathcal{X} \) and so by the continuity of \(T_0 \) on \(\mathcal{X} \),

\[
0 = T_0 0 = T_0 \left(\lim_{(\lambda,\beta)} x_{(\lambda,\beta)} - y_{(\lambda,\beta)} \right) = \lim_{(\lambda,\beta)} T_0 \left(x_{(\lambda,\beta)} - y_{(\lambda,\beta)} \right) = z_1 - z_2.
\]

That is, we can set \(Tx = \lim_{\lambda} T_0 x_{\lambda} \) and this is well-defined.

That \(T \) is linear on \(\mathcal{X} \) is left as an exercise.

Finally, to see that \(T \) is continuous on \(\mathcal{X} \), let \(U \in \mathcal{U}_0^W \) and choose \(U_1 \in \mathcal{U}_0^W \) so that \(U_1 + U_1 \subseteq U \). Choose \(N \in \mathcal{U}_0^X \) so that \(x \in N \) implies \(Tx = T_0 x \in U_1 \). Then \(N = G \cap \mathcal{X} \) for some \(G \in \mathcal{U}_0^V \).

Let \(M = G \cap \mathcal{X} \) so that \(M \in \mathcal{U}_0^X \). If \(z \in M \), then \(z = \lim_{\lambda} x_{\lambda} \) for some \(x_{\lambda} \in N \), \(\lambda \in \Lambda \). Now \(Tz = \lim_{\lambda} T_0 x_{\lambda} \), so that there exists \(\lambda_0 \in \Lambda \) so that \(\lambda \geq \lambda_0 \) implies that \(Tz - T_0 x_{\lambda} \in U_1 \).

But \(T_0 x_{\lambda} \in U_1 \) for all \(\lambda \) and so \(Tz = (Tz - T_0 x_{\lambda}) + T_0 x_{\lambda} \in U_1 + U_1 \subseteq U \). That is, \(z \in M \) implies that \(Tz \in U \). Hence \(T \) is continuous at 0, and consequently \(T \) is uniformly continuous on \(\mathcal{X} \).

\[\square \]

4.34. Corollary. Suppose that \(\mathcal{X} \) and \(\mathcal{Y} \) are Banach spaces and that \(\mathcal{M} \subseteq \mathcal{X} \) is a linear manifold. If \(T_0 : \mathcal{M} \to \mathcal{Y} \) is bounded, then \(T_0 \) extends to a bounded linear map \(T : \overline{\mathcal{M}} \to \mathcal{Y} \), and \(\|T\| = \|T_0\| \).

Proof. Invoking Proposition 4.33, there remains only to show that \(\|T\| = \|T_0\| \).

That \(\|T\| \geq \|T_0\| \) is clear.

Conversely, given \(x \in \overline{\mathcal{M}} \) with \(\|x\| = 1 \) and \(\varepsilon > 0 \), there exists \(y \in \mathcal{M} \) so that \(\|y\| = 1 \) and \(\|x - y\| < \varepsilon \). Then

\[
\|T_0 y - Tx\| = \|Ty - Tx\| \leq \|T\| \|y - x\| < \|T\| \varepsilon.
\]

(Recall that \(T \) is bounded since \(T \) is continuous!) Since \(\varepsilon > 0 \) was arbitrary,

\[
\sup\{\|T_0 y\| : y \in \mathcal{M}, \|y\| = 1\} \geq \sup\{\|T x\| : \|x\| = 1\},
\]

so \(\|T_0\| \geq \|T\| \), completing the proof.

\[\square \]

Do you know what it means to come home at night to a woman who’ll give you a little love, a little affection, a little tenderness? It means you’re in the wrong house, that’s what it means.

Henny Youngman
5. Seminorms and locally convex spaces

The secret of life is honesty and fair dealing. If you can fake that, you’ve got it made.

Groucho Marx

5.1. Our main interest in topological vector spaces is to develop the theory of locally convex topological vector spaces, which appear naturally in defining certain weak topologies naturally associated with Banach spaces, including the Banach space of all bounded operators on a Hilbert space. Locally convex spaces are also the most general spaces for which (in our opinion) interesting versions of the Hahn-Banach Theorem will be shown to apply. As we shall see in this section, there is an intimate relation between locally convex topological vector spaces and separating families of seminorms on the underlying vector spaces, a phenomenon to which we now turn our attention.

5.2. Definition. Let V be a vector space over K. A seminorm on V is a map $p : V \to \mathbb{R}$ satisfying

(i) $p(x) \geq 0$ for all $x \in V$;
(ii) $p(\lambda x) = |\lambda| p(x)$ for all $x \in V$, $\lambda \in \mathbb{K}$;
(iii) $p(x + y) \leq p(x) + p(y)$ for all $x, y \in V$.

It follows from this definition that a norm on V is simply a seminorm which satisfies the additional property that $p(x) = 0$ if and only if $x = 0$.

5.3. Remark. A few remarks are in order. If p is a seminorm on a vector space V, then for all $x, y \in V$,

$$p(x + y) \leq p(x) + p(y)$$

implies that

$$p(x + y) - p(y) \leq p(x).$$

Equivalently, with $z = x + y$, $p(z) - p(x) \leq p(z - x)$. Thus $p(x) - p(z) \leq p(x - z) = p(z - x)$. Hence

$$|p(x) - p(z)| \leq p(z - x).$$

5.4. Example. Let $V = \mathcal{C}([0, 1], \mathbb{C})$. For each $x \in [0, 1]$, the map $p_x : V \to \mathbb{R}$ defined by setting $p_x(f) = |f(x)|$ is a seminorm on V which is not a norm.

5.5. Example. Let $n \geq 1$ and consider $V = \mathbb{M}_n = \mathbb{M}_n(\mathbb{C})$. Fix $1 \leq k, l \leq n$. The map $\gamma_{kl} : V \to \mathbb{R}$ defined by $\gamma_{kl}([x_{ij}]) = |x_{kl}|$ defines a seminorm on V which, once again, is not a norm.
5.6. Convexity. Recall that a subset E of a vector space V is said to be convex if $x, y \in E$ and $0 \leq t \leq 1$ imply $tx + (1-t)y \in E$. Geometrically, we are asking that the line segment between any two points in E must lie in E.

It is a simple but useful fact that any linear manifold of V is necessarily convex. Note also that if p_1, p_2, \ldots, p_m is a family of seminorms on a V, $x_0 \in V$, $\varepsilon > 0$ and $E = \{ x \in V : p_j(x - x_0) < \varepsilon, 1 \leq j \leq m \}$, then E is convex. Indeed, if $x, y \in E$ and $0 \leq t \leq 1$, then for all $1 \leq j \leq m$,

$$p_j(tx + (1-t)y - x_0) = tp_j(x - x_0) + (1-t)p_j(y - x_0) < t\varepsilon + (1-t)\varepsilon = \varepsilon.$$

Thus $tx + (1-t)y \in E$, and E is convex.

We leave it as an exercise for the reader to show that if V is a TVS and $E \subseteq V$ is convex, then so is E.

Another elementary but useful observation is that if $C \subseteq V$ is convex and $T : V \to W$ is a linear map (where W is a second vector space), then $T(C)$ is convex as well. Finally, if $E \subseteq V$ is convex, then for all $r, s > 0$, $rE + sE = (r+s)E$. Indeed, $\frac{r}{r+s}e_1 + \frac{s}{r+s}e_2 \in E$ for all $e_1, e_2 \in E$, from which the desired result easily follows.

5.7. The Minkowski functional. Let V be a TVS and suppose that $E \in U_0^V$ is convex. Now for any $x \in V$, $\lim_{r \to 0} rx = 0$ (by continuity of multiplication), and thus there exists $r_0 > 0$ so that $r_0x \in E$. This allows us to define the map

$$p_E : V \to \mathbb{R} \quad x \mapsto \inf \{ r \in (0, \infty) : x \in rE \},$$

which we call the gauge functional or the Minkowski functional for E.

Note: the name is misleading, since the map is clearly not linear - its range is contained in $[0, \infty)$. By convexity of E, if $x \in rE$ and $0 < r < s$, then $x = re$ for some $e \in E$, so $x = (1 - \frac{s}{r})0 + \frac{s}{r}(se) \in \text{co}(sE) = sE$. In particular, $x \in sE$ for all $s > p_E(x)$.

5.8. Definition. Let V be a vector space over \mathbb{K}. A function $p : V \to \mathbb{R}$ is called a sublinear functional if it satisfies:

(i) $p(x + y) \leq p(x) + p(y)$ for all $x, y \in V$, and

(ii) $p(rx) = rp(x)$ for all $0 < r \in \mathbb{R}$.

5.9. It is clear from the definition that every seminorm (and hence every norm) on a vector space is a sublinear functional on that space. The converse is false in general.

For example, the identity map $\kappa : \mathbb{R} \to \mathbb{R}$ is a sublinear functional on \mathbb{R}. It is not a seminorm since it is not even a non-negative valued function.
5.10. Proposition. Let \(W \) be a TVS and \(E \in \mathcal{U}_0 \) be convex. Then

(a) The Minkowski functional \(p_E \) is a sublinear functional on \(W \) for \(E \).

(b) If \(E \) is open, then

\[
E = \{ x \in W : p_E(x) < 1 \}.
\]

(c) If \(E \) is balanced, then \(p_E \) is a seminorm.

Proof.

(a) Suppose that \(x, y \in E \) and that \(r, s \in (0, \infty) \) with \(r > p(x), s > p(y) \). Then \(x \in rE, y \in sE \) and so \(x + y \in (r + s)E \). That is,

\[
p(x + y) \leq r + s \text{ for all } r > p(x), s > p(y).
\]

Thus \(p(x + y) \leq p(x) + p(y) \).

Also, if \(k > 0 \), then \(x \in rE \) if and only if \(kx \in krE \), so that

\[
p(kx) = \inf \{ s : kx \in sE \} = \inf \{ kr : kx \in krE \} = k \inf \{ r : x \in rE \} = kp(x).
\]

Thus \(p \) is a sublinear functional, as claimed.

(b) Suppose that \(x \in E \) and that \(E \) is open. Since the map \(f : \mathbb{R} \to W \) given by \(f(t) = tx \) is continuous, \(1 \in f^{-1}(E) \) is open in \(\mathbb{R} \) and therefore \((1 - \delta, 1 + \delta) \subseteq f^{-1}(E) \) for some \(\delta > 0 \). But then \((1 + \frac{\delta}{2})x \in E \), or equivalently, \(x \in \frac{2}{2+\delta}E \), implying that \(p(x) < \frac{2}{2+\delta} < 1 \).

Conversely, suppose that \(p(x) < 1 \). Then \(x = re \) for some \(p(x) < r < 1 \) and \(e \in E \). But then \(x = (1 - r)0 + re \in coE = E \).

(c) Suppose now that \(E \) is balanced. First observe that if \(k \neq 0 \), then \(\frac{k}{|k|}E = E \).

Note that \(p \) is subadditive since it is a sublinear functional by (a). Also, \(p(x) \geq 0 \) for all \(x \in W \) by definition of \(p \).

Finally, if \(k = 0 \), then \(p(kx) = p(0) \). But \(0 \in rE \) for all \(r > 0 \), and so

\[
p(0x) = p(0) = \inf \{ r > 0 : x \in rE \} = 0 = 0p(x).
\]

If \(k \neq 0 \), then

\[
p(kx) = \inf \{ r > 0 : kx \in rE \} = \inf \{ s|k| > 0 : kx \in s(|k|E) \} = \inf \{ s|k| > 0 : kx \in s(kE) \} = |k| \inf \{ s > 0 : x \in sE \} = |k|p(x).
\]

Thus \(p \) is a seminorm.
5.11. Proposition. Let \(W \) be a TVS and \(p \) be a seminorm on \(W \). The following are equivalent:

(a) \(p \) is continuous on \(W \);
(b) there exists a set \(U \in \mathcal{U}_0^W \) such that \(p \) is bounded above on \(U \).

Proof.

(a) implies (b): It follows from our observations in paragraph 5.6 that the set
\[
E := \{ x \in W : p(x) < 1 \}
\]
is convex. Since \(p \) is assumed to be continuous and \(E = p^{-1}(-\infty, 1) \), \(E \) is also open. Thus \(p \) is bounded above (by 1) on the open set \(E \in \mathcal{U}_0^W \).

(b) implies (a): Suppose that \(p \) is bounded above, say by \(M > 0 \) on an open set \(U \subset \mathcal{U}_0^W \). Let \(\varepsilon > 0 \). If \(x, y \in W \) and \(x - y \in (\varepsilon / M)U \), say \(x - y = \varepsilon / M u \) for some \(u \in U \), then
\[
|p(x) - p(y)| \leq p(x - y) = p(\varepsilon / M u) = \varepsilon / M p(u) < \varepsilon.
\]
Thus \(p \) is (uniformly) continuous on \(W \). \(\square \)

5.12. Example. Recall from Example 5.4 that for each \(x \in [0, 1] \),
\[
p_x : \mathcal{C}([0, 1], \mathbb{C}) \to \mathbb{R}
\]
is a seminorm. Now \(B_1(0) := \{ f \in \mathcal{C}([0, 1], \mathbb{C}) : \|f\|_\infty < 1 \} \) is open and \(f \in B_1(0) \) implies that \(p_x(f) = |f(x)| \leq \|f\|_\infty < 1 \).
Thus each such \(p_x \) is continuous on \(\mathcal{C}([0, 1], \mathbb{C}) \).

5.13. Definition. A topology \(T \) on a topological vector space \(W \) is said to be locally convex if it admits a base consisting of convex sets. We shall write LCS for locally convex topological vector spaces, and for the sake of brevity, we shall refer to them as locally convex spaces.

Since the topology on \(W \) is determined by the nbhds at a single point, it suffices to require that \(W \) admit a nbhd base at 0 consisting of convex sets; that is, given any nbhd \(U \in \mathcal{U}_0 \), there exists a convex nbhd \(N \in \mathcal{U}_0 \) so that \(N \subseteq U \). In verifying that a space is a LCS, we shall often only verify this condition.

5.14. Proposition. Let \(W \) be a TVS, and suppose that \(U \in \mathcal{U}_0 \) is convex. Then \(U \) contains a balanced, open, convex nbhd of 0.

Proof. By Proposition 4.10, \(U \) contains a balanced, open nbhd \(H \) of 0. Set \(N = \text{co}(H) \). Then \(U \) convex and \(H \subseteq U \) implies that \(N \subseteq U \). Since \(H \) is balanced, a routine calculation shows that \(N \) is also balanced. For any choice of \(t_1, t_2, ..., t_m \in [0, 1] \) with \(\sum_{k=1}^m t_k = 1 \), and for any \(h_1, h_2, ..., h_m \in H \) we have
\[
\left(\sum_{k=1}^{m-1} t_k h_k \right) + t_m H \subseteq N.
\]
Since H is open, so is $\left(\sum_{k=1}^{m-1} t_k h_k \right) + t_m H$. Since $N = \text{co}(H)$, it follows that N is a union of open sets of this form, and hence N is also open.

Thus N is an open, balanced, convex nbhd of 0 contained in U, the existence of which proves our claim.

As an immediate consequence we obtain:

\textbf{5.15. Corollary.} Let (\mathcal{V}, T) be a LCS. Then \mathcal{V} admits a nbhd base at 0 consisting of balanced, open, convex sets.

\textbf{5.16. Example.} Let $(\mathcal{X}, \| \cdot \|)$ be a normed linear space. For each $\varepsilon > 0$, the argument of paragraph 5.6 shows that $B_\varepsilon(0) = \{ x \in \mathcal{X} : \| x \| < \varepsilon \}$ is convex. Since $\{ B_\varepsilon(0) : \varepsilon > 0 \}$ is a nbhd base at 0 for the norm topology, $(\mathcal{X}, \| \cdot \|)$ is a LCS.

More concretely, $(\mathbb{R}^n, \| \cdot \|_2)$ is a LCS, as is any Hilbert space \mathcal{H}. So is $B(\mathcal{H})$.

We have already seen that the quotient of a TVS by one of its closed subspaces is a TVS. Let us first obtain the same result for locally convex spaces.

\textbf{5.17. Proposition.} Let (\mathcal{V}, T) be a LCS and $W \subseteq \mathcal{V}$ be a closed subspace. Then \mathcal{V}/W is a LCS in the quotient topology.

\textbf{Proof.} As mentioned above, that \mathcal{V}/W is a TVS follows from paragraph 4.18. There remains only to show that \mathcal{V}/W admits a nbhd base at 0 consisting of convex sets (see the remarks following Definition 5.13).

Let $q : \mathcal{V} \to \mathcal{V}/W$ denote the canonical quotient map, and let $U \in \mathcal{U}_0^{\mathcal{V}/W}$. Then $q^{-1}(U) \in \mathcal{U}_0^\mathcal{V}$, as q is continuous. Since \mathcal{V} is a LCS, we can find a convex nbhd $N \in \mathcal{U}_0^\mathcal{V}$ so that $0 \in N \subseteq q^{-1}(U)$. Let $M = q(N)$. Since q is an open map, we have $M \in \mathcal{U}_0^{\mathcal{V}/W}$. Since q is linear, M is convex.

Finally, since $N \subseteq q^{-1}(U)$, $M = q(N) \subseteq U$, and we are done.

\textbf{5.18. Definition.} A family Γ of seminorms on a vector space W is said to be \textbf{separating} if for all $0 \neq x \in W$ there exists $p \in \Gamma$ so that $p(x) \neq 0$.

\textbf{5.19. Example.} Let $\mathcal{W} = C([0,1], \mathbb{C})$ and consider $\Gamma = \{ p_x : x \in \mathbb{Q} \cap [0,1] \}$, where - as before - $p_x(f) = |f(x)|$ for all $f \in \mathcal{W}$.

If $0 \neq f \in \mathcal{W}$, then there exists $y \in [0,1]$ so that $f(y) \neq 0$. By continuity of f, there exists a nbhd N of y such that $f(y) \neq 0$ for all $y \in N$. Thus there exists a rational number $q \in N$ so that $0 \neq f(q)$ and hence $p_q(f) \neq 0$. Thus Γ is a separating family of seminorms.
Let \(\Gamma \) be a family of seminorms on a vector space \(\mathcal{W} \). For \(F \subseteq \Gamma \) finite, \(x \in \mathcal{W} \) and \(\varepsilon > 0 \), set
\[
N(x, F, \varepsilon) = \{ y \in \mathcal{W} : p(x - y) < \varepsilon, p \in F \}.
\]
Permitting ourselves a slight abuse of notation, we shall write \(N(x, p, \varepsilon) \) in the case where \(F = \{ p \} \).

5.21. Theorem. If \(\Gamma \) is a separating family of seminorms on a vector space \(\mathcal{W} \), then
\[
\mathcal{B} = \{ N(x, F, \varepsilon) : x \in \mathcal{W}, \varepsilon > 0, F \subseteq \Gamma \text{ finite} \}
\]
is a base for a locally convex topology \(\mathcal{T} \) on \(\mathcal{W} \). Moreover, each \(p \in \Gamma \) is \(\mathcal{T} \)-continuous.

Proof.

Step One: We begin by showing that \(\mathcal{B} \) is a base for a Hausdorff topology \(\mathcal{T} \) on \(\mathcal{W} \).

- Let \(x \in \mathcal{W} \) and choose \(0 \neq p \in \Gamma \). (Such a \(p \) exists since \(\Gamma \) is assumed to be separating.) Then \(x \in N(x, p, 1) \). Thus
\[
\bigcup \{ B : B \in \mathcal{B} \} \supseteq \bigcup \{ N(x, p, 1) : x \in \mathcal{W} \} = \mathcal{W}.
\]

- Next suppose that \(B_1 = N(x, F_1, \varepsilon_1) \) and \(B_2 = N(y, F_2, \varepsilon_2) \) lie in \(\mathcal{B} \) and that \(z \in B_1 \cap B_2 \). We must find \(B_3 \in \mathcal{B} \) so that \(z \in B_3 \subseteq B_1 \cap B_2 \).

To that end, let \(\varepsilon = \min \{ \varepsilon_1 - p(x - z), \varepsilon_2 - q(y - z) : p \in F_1, q \in F_2 \} \), so that \(\varepsilon > 0 \). If \(w \in N(z, F_1 \cup F_2, \varepsilon) \), then
\[
p(w - x) \leq p(w - z) + p(z - x) < \varepsilon + p(z - x) \leq \varepsilon_1
\]
for all \(p \in F_1 \), and so \(w \in B_1 \). An analogous argument proves that \(w \in B_2 \). That is, \(B_3 := N(z, F_1 \cup F_2, \varepsilon) \) satisfies the required condition.

It now follows from our work in the homework assignments that \(\mathcal{B} \) is a base for a topology on \(\mathcal{W} \).

- If \(x, y \in \mathcal{W} \) and \(x \neq y \), then our assumption that \(\Gamma \) is separating implies the existence of an element \(p \in \Gamma \) so that \(\delta := p(x - y) > 0 \). But then \(N(x, p, \delta) \) and \(N(y, p, \delta) \) are disjoint nbhds of \(x \) and \(y \) respectively in the \(\mathcal{T} \)-topology, proving that \(\mathcal{T} \) is Hausdorff.

Step Two: That \(\mathcal{T} \) is locally convex follows readily from the fact that \(\mathcal{B} \) is a base for \(\mathcal{T} \) and each \(N(x, F, \varepsilon) \) is itself convex, as is easily verified.

Step Three: Next we verify that \((\mathcal{W}, \mathcal{T}) \) is a TVS; namely, that the topology \(\mathcal{T} \) is compatible with the vector space operations.

- Suppose that \(x_0, y_0 \in \mathcal{W} \) and let \(U \) be a nbhd of \(x_0 + y_0 \) in the \(\mathcal{T} \)-topology. Then there exists a basic nbhd \(B = N(x_0 + y_0, F, \varepsilon) \) of \(x_0 + y_0 \) with \(B \subseteq U \).

Let \(B_1 = N(x_0, F, \varepsilon/2) \) and \(B_2 = N(y_0, F, \varepsilon/2) \). If \((x, y) \in B_1 \times B_2 \), then
\[
p((x + y) - (x_0 + y_0)) \leq p(x - x_0) + p(y - y_0) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]
for all \(p \in F \), and thus \(\sigma(B_1 \times B_2) \subseteq B \subseteq U \). This shows that addition is continuous relative to \(\mathcal{T} \).
• As for scalar multiplication, let \(\lambda_0 \in K, x_0 \in W \) and \(U \) be a nbhd of \(\lambda_0 x_0 \) in the \(T \)-topology. As before, choose a basic nbhd \(B = N(\lambda_0 x_0, F, \varepsilon) \subseteq U \). Let \(\delta > 0 \). If \(K := \{ \lambda \in C : |\lambda - \lambda_0| < \delta \} \) and \(B = N(x_0, F, \delta) \), then \((\lambda, x) \in K \times B \) implies that

\[
p(\lambda x - \lambda_0 x_0) \leq p(\lambda x - \lambda x_0) + p(\lambda x_0 - \lambda_0 x_0)
\leq |\lambda|p(x - x_0) + |\lambda - \lambda_0|p(x_0)
< (|\lambda_0| + \delta)\delta + \delta p(x_0)
\]

for all \(p \in F \). Since \(F \) is finite, it is clear that \(\delta \) can be chosen such that \(p(\lambda x - \lambda_0 x_0) < \varepsilon, p \in F \), which proves that scalar multiplication is also continuous relative to \(T \).

Together, these two observations prove that \((W, T)\) is a TVS.

Step Four: Finally, let us show that each \(p \) is continuous relative to \(T \).

If \(p = 0 \), then clearly \(p \) is continuous relative to \(T \).

Otherwise, let \(B = N(0, p, 1) \). Then \(B \in T \), and for \(x \in B \),

\[
p(x) = p(x - 0) < 1,
\]

so that \(p \) is bounded on some open set in \(W \). It now follows from Proposition 5.11 that \(p \) is (uniformly) continuous on \(W \).

\[\square\]

5.22. The above result says that a separating family of seminorms on a vector space \(W \) gives rise to a locally convex topology on \(W \). Our next goal is to show that all locally convex spaces arise in this manner.

5.23. **Theorem.** Suppose that \((V, T_V)\) is a LCS. Then there exists a separating family \(\Gamma \) of seminorms on \(V \) which generate the topology \(T_V \).

Proof. By Corollary 5.15, \((V, T_V)\) admits a nbhd base \(C_0 \) at 0 consisting of balanced, open, convex sets. By Proposition 5.10, for each \(E \in C_0 \), the Minkowski functional \(p_E \) is a seminorm and \(E = \{ x \in V : p_E(x) < 1 \} \).

Let \(\Gamma = \{ p_E : E \in C_0 \} \). We first show that \(\Gamma \) is separating. Indeed, suppose that \(0 \neq x \in V \). Since \(T_V \) is Hausdorff by hypothesis, there exists \(G \in C_0 \) so that \(x \notin G \) (this is actually a bit weaker than the statement that \(T_V \) is Hausdorff, but certainly implied by it). Since \(G \in C_0 \), \(p_G \in \Gamma \). But \(x \notin G \) implies that \(p_G(x) \geq 1 \), and hence \(p_G(x) \neq 0 \). Thus \(\Gamma \) is separating. This is required before passing to the next step.

By Theorem 5.21,

\[
B = \{ N(x, F, \varepsilon) : x \in V, \varepsilon > 0, F \subseteq \Gamma \text{ finite} \}
\]

is a base for a locally convex topology \(T_F \) on \(V \). Our goal, of course, is to prove that \(T_V = T_F \).

Let \(E \in C_0 \) be a \(T_V \)-open, balanced, convex nbhd of 0. Since \(E = N(0, p_E, 1) \in B \), it follows that \(T_F \) contains a nbhd base at 0 for the topology \(T_V \). Since both topologies
are TVS-topologies, they are determined by their nbhd bases at any point (for eg., at 0), and from this it follows that $T_T \supseteq T_V$.

On the other hand, each $p_E \in \Gamma$ is bounded above by 1 on E, and E is a T_V-open nbhd of 0. By Proposition 5.11, p_E is continuous on (\mathcal{V}, T_V). It follows that $N(0, p_E, \varepsilon) = p_E^{-1}(\varepsilon) \in T_V$ for all $\varepsilon > 0$. Thus T_V contains a nbhd subbase for T_T at 0, and arguing as before, we get that $T_T \subseteq T_V$.

Hence $T_V = T_T$, and the topology T_V is determined by the family Γ of seminorms.

5.24. Example. Let $\mathcal{X}, \| \cdot \|$ be a normed linear space. The norm topology on \mathcal{X} is the metric topology induced by the metric $d(x, y) = \|x - y\|$. That is, a nbhd base at $x_0 \in \mathcal{X}$ for the norm topology is

$$B_{x_0} = \{ V_\varepsilon(x_0) : \varepsilon > 0 \}$$

$$= \{ \{ y \in \mathcal{X} : \|x - x_0\| < \varepsilon \} : \varepsilon > 0 \}$$

$$= \{ N(x_0, \| \cdot \|, \varepsilon) : \varepsilon > 0 \}.$$

Thus we see that the norm topology on \mathcal{X} is exactly the locally convex topology generated by $\Gamma = \{ \| \cdot \| \}$. Observe that since $\| \cdot \|$ is a norm, $0 \neq x \in \mathcal{X}$ implies that $\|x\| \neq 0$, and thus Γ is indeed separating, as required.

5.25. In Corollary 5.15, we saw that any LCS (\mathcal{V}, T) admits a nbhd base at 0 consisting of open, balanced, convex sets.

In fact, each $N(0, \{p_1, p_2, ..., p_m\}, \varepsilon)$ is balanced, open and convex for all choices of $m \geq 1$, $p_1, p_2, ..., p_m \in \Gamma$ and $\varepsilon > 0$, where Γ is a separating family of seminorms which generate T. It is clear from Theorems 5.21 and 5.23 that the collection of such sets is a nbhd base at 0 for T.

Having generated a topology on a vector space using a separating family of seminorms, let us now examine what it means for a net to converge in this topology.

5.26. Proposition. Let \mathcal{V} be a vector space and Γ be a separating family of seminorms on \mathcal{V}. Let T denote the locally convex topology on \mathcal{V} generated by Γ.

A net $(x_\lambda)_\lambda$ in \mathcal{V} converges to a point $x \in \mathcal{V}$ if and only if

$$\lim_\lambda p(x - x_\lambda) = 0 \text{ for all } p \in \Gamma.$$

Proof.

- Suppose first that $(x_\lambda)_\lambda$ converges to x in the T-topology. Given $p \in \Gamma$ and $\varepsilon > 0$, the set $N(x, p, \varepsilon) \subseteq T$ and so there exists λ_0 so that $\lambda \geq \lambda_0$ implies that $x_\lambda \in N(x, p, \varepsilon)$. That is, $\lambda \geq \lambda_0$ implies that $p(x - x_\lambda) < \varepsilon$. Thus $\lim_\lambda p(x - x_\lambda) = 0$.

Alternatively, one may argue as follows: suppose that $(x_\lambda)_\lambda$ converges to x in the T-topology. Given $p \in \Gamma$, we know that p is continuous in the
\mathcal{T}-topology by Theorem 5.21. Since $\lim_{\lambda} x - x_\lambda = 0$,
\[\lim_{\lambda} p(x - x_\lambda) = p(\lim_{\lambda} (x - x_\lambda)) = p(0) = 0. \]

- Conversely, suppose that $\lim_{\lambda} p(x - x_\lambda) = 0$ for all $p \in \Gamma$. Let $U \in \mathcal{U}_x$ is the \mathcal{T}-topology. Then there exist $p_1, p_2, \ldots, p_m \in \Gamma$ and $\varepsilon > 0$ so that $N(x, \{p_1, p_2, \ldots, p_m\}, \varepsilon) \subseteq U$. For each $1 \leq j \leq m$, choose λ_j so that $\lambda \geq \lambda_j$ implies that $p_j(x_\lambda - x) < \varepsilon$. Choose $\lambda_0 \geq \lambda_1, \lambda_2, \ldots, \lambda_m$. If $\lambda \geq \lambda_0$, then $p_j(x_\lambda - x) < \varepsilon$ for all $1 \leq j \leq m$ so that $x_\lambda \in N(x, \{p_1, p_2, \ldots, p_m\}, \varepsilon) \subseteq U$. Hence $\lim_{\lambda} x_\lambda = x$ in $(\mathcal{V}, \mathcal{T})$.

\[\square \]

5.27. Remarks. Let \mathcal{V} be a vector space as above and let Γ be a separating family of seminorms on \mathcal{V}. Recall that if \mathcal{T}_w is the weak topology on \mathcal{V} induced by Γ, then \mathcal{T}_w is the weakest topology for which each of the functions $p \in \Gamma$ is continuous. By Theorem 5.21, the LCS topology \mathcal{T} generated by
\[\mathcal{B} = \{ N(x, F, \varepsilon) : x \in \mathcal{V}, \varepsilon > 0, F \subseteq \Gamma \text{ finite} \} \]
has the property that each $p \in \Gamma$ is continuous on $(\mathcal{V}, \mathcal{T})$. It follows, therefore, that $\mathcal{T}_w \subseteq \mathcal{T}$. In other words, if $(x_\lambda)_\lambda$ is a net in $(\mathcal{V}, \mathcal{T})$ which converges to $x \in \mathcal{V}$, then $(x_\lambda)_\lambda$ converges to x in $(\mathcal{V}, \mathcal{T}_w)$; i.e. $\lim_{\lambda} p(x_\lambda) = p(x)$ for all $p \in \Gamma$.

That these two topologies do not, in general, coincide can be seen by examining a simple example.

Let $\mathcal{V} = \mathbb{K}$ and let $\Gamma = \{p\}$, where $p(x) = |x|$ for each $x \in \mathbb{K}$. The LCS topology on \mathbb{K} generated by Γ is a TVS topology, and thus must agree with the usual topology on \mathbb{K}, since the latter admits a unique TVS topology, by Lemma 4.19. The weak topology \mathcal{T}_w on \mathbb{K} generated by Γ is the weakest topology for which p is continuous. In particular, a net $(x_\lambda)_\lambda$ converges to $x \in \mathbb{K}$ if and only if $\lim_{\lambda} |x_\lambda| = |x|$. For example, the sequence $(x_n)_n$, where $x_n = (-1)^n$, $n \geq 1$ converges to $x = 1$ in $(\mathbb{K}, \mathcal{T}_w)$. Since it clearly doesn’t converge in $(\mathbb{K}, \mathcal{T})$, the two topologies are necessarily different, and again – by Theorem 5.21 – it follows that $(\mathbb{K}, \mathcal{T}_w)$ is not a TVS.

There is, however, a situation where we can say a bit more than this. Let \mathcal{V} be a vector space and let $(\mathcal{X}_\alpha, \|\cdot\|_\alpha)_{\alpha \in A}$ be a collection of Banach spaces (in fact, normed linear spaces will do). For each such α, suppose that $\mathcal{T}_\alpha : \mathcal{V} \to \mathcal{X}_\alpha$ is a linear map. Suppose furthermore that the family $\{\mathcal{T}_\alpha\}_\alpha$ is separating in the sense that if $0 \neq x \in \mathcal{V}$, then there exists $\alpha \in A$ so that $0 \neq \mathcal{T}_\alpha x \in \mathcal{X}_\alpha$. Then each of the functions
\[p_\alpha : \mathcal{V} \to [0, \infty), \quad x \mapsto \|\mathcal{T}_\alpha x\|_\alpha \]
is easily seen to be a seminorm. It is routine to verify that the fact that $\{\mathcal{T}_\alpha\}_\alpha$ is separating implies that $\Gamma = \{p_\alpha\}_\alpha$ is a separating family of seminorms. Let \mathcal{T} denote the LCS topology on \mathcal{V} generated by Γ. By Proposition 5.26, a net $(x_\lambda)_\lambda$ converges to $x \in (\mathcal{V}, \mathcal{T})$ if and only if
\[\lim_{\lambda} p_\alpha(x - x_\lambda) = \lim_{\lambda} \|\mathcal{T}_\alpha(x - x_\lambda)\|_\alpha = 0 \text{ for all } \alpha \in A. \]
That is, \(\lim_{\lambda} x_\lambda = x \) if and only if
\[
\lim_{\lambda} T_\alpha x_\lambda = T_\alpha x \text{ for all } \alpha \in A.
\]
Since this is nothing more than the statement that each \(T_\alpha \) is continuous, we find that in this case, the \(T \) topology on \(V \) coincides with the weak topology generated by the family \(\{ T_\alpha \}_{\alpha \in A} \). This is still not the same as the weak topology generated by the family \(\Gamma \), however.

5.28. Example. Let \(\mathcal{H} = \ell^2(\mathbb{N}) \) and recall that \(\mathcal{H} \) is a Hilbert space when equipped with the inner product \(\langle (x_n), (y_n) \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n} \).

Recall also that \(\mathcal{B}(\mathcal{H}) \) is a normed linear space with the operator norm \(\| T \| := \sup \{ \| Tx \| : x \in \mathcal{H}, \| x \| \leq 1 \} \).

From above, we see that the norm topology on \(\mathcal{B}(\mathcal{H}) \) admits as a nbhd base at \(T \in \mathcal{B}(\mathcal{H}) \) the collection
\[
\{ N(T, \| \cdot \|, \varepsilon) : \varepsilon > 0 \} = \{ V_\varepsilon(T) : \varepsilon > 0 \},
\]
and that this is the locally convex topology generated by the separating family \(\Gamma = \{ \| \cdot \| \} \) of (semi)norms.

Convergence of a net of operators \((T_\lambda) \lambda \) in the norm topology is uniform convergence - i.e. \(\lim_{\lambda} \| T_\lambda - T \| = 0 \).

This is certainly not the only interesting topology one can impose upon \(\mathcal{B}(\mathcal{H}) \). Let us first consider the topology of “pointwise convergence”.

The strong operator topology (SOT) For each \(x \in \mathcal{H} \), consider
\[
p_x : \mathcal{B}(\mathcal{H}) \to \mathbb{R}, \quad T \mapsto \| Tx \|.
\]
Then
\[(i) \ p_x(T) \geq 0 \text{ for all } T \in \mathcal{B}(\mathcal{H}); \]
\[(ii) \ p_x(\lambda T) = \| \lambda Tx \| = \| T \| \| \lambda \| \| Tx \| = |\lambda| \ p_x(T) \text{ for all } \lambda \in \mathbb{K}; \]
\[(iii) \ p_x(T_1 + T_2) = \| T_1 x + T_2 x \| \leq \| T_1 x \| + \| T_2 x \| = p_x(T_1) + p_x(T_2), \]
so that \(p_x \) is a seminorm on \(\mathcal{B}(\mathcal{H}) \) for each \(x \in \mathcal{H} \).

In general, \(p_x \) is not a norm because we can always find \(T \in \mathcal{B}(\mathcal{H}) \) so that \(0 \neq T \) but \(p_x(T) = 0 \). Indeed, let \(y \in \mathcal{H} \) with \(0 \neq y \) and \(y \perp x \). Define \(T_y : \mathcal{H} \to \mathcal{H} \) via \(T_y(z) = \langle z, y \rangle y \). Then \(\| T_y(z) \| \leq \| z \| \| y \| ^2 \) by the Cauchy-Schwarz Inequality and in particular \(T_y(y) = \| y \| ^2 y \neq 0 \), but \(T_y(x) = \langle x, y \rangle y = 0y = 0 \). Thus \(0 \neq T_y \) but \(p_x(T_y) = 0 \).

On the other hand, if \(0 \neq T \in \mathcal{B}(\mathcal{H}) \), then there exists \(x \in \mathcal{H} \) so that \(Tx \neq 0 \). Thus \(p_x(T) = \| Tx \| \neq 0 \), proving that \(\Gamma_{\text{SOT}} := \{ p_x : x \in \mathcal{H} \} \) separates the points of \(\mathcal{B}(\mathcal{H}) \).

The locally convex topology on \(\mathcal{B}(\mathcal{H}) \) generated by \(\Gamma_{\text{SOT}} \) is called the strong operator topology and is denoted by SOT.
By Proposition 5.26 above, we see that a net \((T_\lambda)_{\lambda} \in \mathcal{B}(\mathcal{H})\) converges to \(T \in \mathcal{B}(\mathcal{H})\) in the SOT if and only if
\[
\lim_{\lambda} p_x(T_\lambda - T) = \lim_{\lambda} \|T_\lambda x - Tx\| = 0 \quad \text{for all } x \in \mathcal{H}.
\]
Thus the SOT is the topology of pointwise convergence. That is, it is the weakest topology that makes all of the evaluation maps \(T \mapsto Tx, \ x \in \mathcal{H}\) continuous.

A nbhd base for the SOT at the point \(T \in \mathcal{B}(\mathcal{H})\) is given by the collection
\[
\{N(T, \{x_1, x_2, ..., x_m\}, \varepsilon) : m \geq 1, x_j \in \mathcal{H}, 1 \leq j \leq m, \varepsilon > 0\} =
\{R \in \mathcal{B}(\mathcal{H}) : \|Rx_j - Tx_j\| < \varepsilon, 1 \leq j \leq m\}.
\]

The weak operator topology (WOT) Next, for each pair \((x, y) \in \mathcal{H} \times \mathcal{H}\), consider the map
\[
q_{x,y} : \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R}, \quad T \mapsto |\langle Tx, y \rangle|.
\]
Again, it is routine to verify that each \(q_{x,y}\) is a seminorm but not a norm on \(\mathcal{B}(\mathcal{H})\).

The locally convex topology on \(\mathcal{B}(\mathcal{H})\) generated by \(\Gamma_{\text{WOT}} := \{q_{x,y} : (x, y) \in \mathcal{H} \times \mathcal{H}\}\) is called the **weak operator topology** on \(\mathcal{B}(\mathcal{H})\) and is denoted by WOT.

A net \((T_\lambda)_{\lambda} \in \mathcal{B}(\mathcal{H})\) converges to \(T \in \mathcal{B}(\mathcal{H})\) in the WOT if and only if
\[
\lim_{\lambda} |\langle (T_\lambda - T)x, y \rangle| = |\langle T_\lambda x, y \rangle - \langle Tx, y \rangle| = 0
\]
for all \(x, y \in \mathcal{H}\). In other words, the WOT is the weakest topology that makes all of the functions \(T \mapsto \langle Tx, y \rangle, \ x, y \in \mathcal{H}\) continuous.

A nbhd base for the WOT at the point \(T \in \mathcal{B}(\mathcal{H})\) is given by the collection
\[
\{N(T, \{x_1, x_2, ..., x_m, y_1, y_2, ..., y_m\}, \varepsilon) : m \geq 1, x_j, y_j \in \mathcal{H}, 1 \leq j \leq m, \varepsilon > 0\} =
\{R \in \mathcal{B}(\mathcal{H}) : |\langle Rx_j - Tx_j, y_j \rangle| < \varepsilon, 1 \leq j \leq m\}.
\]

5.29. Proposition. Let \((\mathcal{V}, T)\) be a LCS, and let \(\Gamma\) be a separating family of seminorms on \(\mathcal{V}\) which generate the locally convex topology on \(\mathcal{V}\). Let \(p\) be a seminorm on \(\mathcal{V}\). The following are equivalent:

(a) \(p\) is continuous on \(\mathcal{V}\);

(b) there exists a constant \(\kappa > 0\) and \(p_1, p_2, ..., p_m \in \Gamma\) so that
\[
p(x) \leq \kappa \max(p_1(x), p_2(x), ..., p_m(x)) \quad \text{for all } x \in \mathcal{V}.
\]

Proof.

(a) implies (b) Suppose that \(p\) is continuous on \(\mathcal{V}\). Then \(M := p^{-1}((-1, 1)) = p^{-1}((0, 1))\) is a \(T\)-open nbhd of 0, and as such, it must contain a basic nbhd \(N := N(0, \{p_1, p_2, ..., p_m\}, \varepsilon)\) for some \(p_1, p_2, ..., p_m \in \Gamma\) and \(\varepsilon > 0\). It follows that if \(p_j(x) < \varepsilon\) for \(1 \leq j \leq m\), then \(x \in N \subseteq M\), and hence \(p(x) < 1\).

More generally, let \(y \in \mathcal{V}\) and let \(r = \max(p_1(y), p_2(y), ..., p_m(y))\).
• If \(r = 0 \), then for all \(k > 0 \), \(p_j(ky) = 0 < \varepsilon \), \(1 \leq j \leq m \), so that from above, \(p(ky) = kp(y) < 1 \). But then
\[
p(y) = 0 \leq 1 \max(p_1(y), p_2(y), ..., p_m(y)).
\]
• If \(r > 0 \), then \(x = \frac{\varepsilon}{2r}y \) satisfies \(p_j(x) < \varepsilon \), \(1 \leq j \leq m \), and so
\[
p(y) < \frac{2r}{\varepsilon} = \frac{2}{\varepsilon} \max(p_1(y), p_2(y), ..., p_m(y)).
\]

We conclude that with \(\kappa = \max(1, \frac{2}{\varepsilon}) \),
\[
p(y) \leq \kappa \max(p_1(y), p_2(y), ..., p_m(y))
\]
for all \(y \in \mathcal{V} \).

(b) implies [(a)] Suppose that (b) holds. Now \(\mathcal{N} = N(0, \{p_1, p_2, ..., p_m\}, 1) \) is an open nbhd of 0 in the \(T \)-topology. If \(x \in \mathcal{N} \), then \(p_j(x) < 1 \) for all \(1 \leq j \leq m \), and so \(p(x) \leq \kappa \). But then \(p \) is bounded above on the \(T \)-open nbhd \(\mathcal{N} \) of 0, and hence is continuous by Proposition 5.11.

\[\square \]

5.30. Proposition. Let \((\mathcal{V}, T_\mathcal{V}) \) and \((\mathcal{W}, T_\mathcal{W}) \) be locally convex spaces. Let \(\Gamma_\mathcal{V} \) and \(\Gamma_\mathcal{W} \) denote separating families of seminorms which generate the corresponding locally convex topologies on \(\mathcal{V} \) and \(\mathcal{W} \) respectively. Finally, let \(T : \mathcal{V} \to \mathcal{W} \) be a linear map.

The following are equivalent:

(a) \(T \) is continuous.

(b) For all \(q \in \Gamma_\mathcal{W} \) there exists \(\kappa > 0 \) and \(p_1, p_2, ..., p_m \in \Gamma_\mathcal{V} \) so that
\[
q(Tx) \leq \kappa \max(p_1(x), p_2(x), ..., p_m(x)) \quad \text{for all } x \in \mathcal{V}.
\]

Proof.

(a) implies (b): Suppose that \(T \) is continuous and that \(q \in \Gamma_\mathcal{W} \). Clearly \(q \) is continuous as well. It is routine to verify that \(q \circ T \) is a seminorm on \(\mathcal{V} \). Since the composition of continuous functions is continuous, \(q \circ T \) is a continuous seminorm on \(\mathcal{V} \), and the result now follows from Proposition 5.29.

(b) implies (a): Conversely, suppose that for all \(q \in \Gamma_\mathcal{W} \) there exists \(\kappa > 0 \) and \(p_1, p_2, ..., p_m \in \Gamma_\mathcal{V} \) so that
\[
q(Tx) \leq \kappa \max(p_1(x), p_2(x), ..., p_m(x)) \quad \text{for all } x \in \mathcal{V}.
\]

As before, we observe that \(q \circ T \) is a seminorm on \(\mathcal{V} \) for all \(q \in \mathcal{W} \). Moreover, by Proposition 5.29, each such \(q \circ T \) is continuous.

Let \(U \in \mathcal{U}_0^\mathcal{V} \) and choose \(q_1, q_2, ..., q_n \in \Gamma_\mathcal{W} \) so that \(N(0, \{q_1, q_2, ..., q_n\}, \varepsilon) \subseteq U \). Since each \(q_j \circ T \) is continuous on \(\mathcal{V} \), we have that \(N(0, \{q_1 \circ T, q_2 \circ T, ..., q_n \circ T\}, \varepsilon) \) is a nbhd of 0 in \(\mathcal{V} \). Moreover,
\[
x \in N(0, \{q_1 \circ T, q_2 \circ T, ..., q_n \circ T\}, \varepsilon)
\]
implies that
\[Tx \in N(0, \{q_1, q_2, ..., q_n\}, \varepsilon) \subseteq U. \]
It follows that \(T \) is continuous at 0.

By Theorem 4.29 and paragraph 4.30, \(T \) is continuous on \(V \).

We shall require the following special case of the above result.

5.31. Corollary. Let \((V, T)\) be a LCS. A linear functional \(f \) on \(V \) is continuous if and only if there exists a continuous seminorm \(q \) on \(V \) such that
\[|f(x)| \leq q(x) \quad \text{for all } x \in V. \]

Proof. Observe that if \(f \) is a continuous linear functional on \(V \), then \(q(x) := |f(x)|, x \in V \) defines a continuous seminorm on \(V \); indeed, that \(q \) is continuous follows from the fact that \(f \) is continuous on \(V \) and \(|\cdot|\) is continuous on \(K \) respectively. Obviously
\[|f(x)| \leq q(x) \quad \text{for all } x \in V. \]

Conversely – and more interestingly – suppose that there exists a continuous seminorm \(q \) on \(V \) such that \(|f(x)| \leq q(x) \) for all \(x \in V \). As before, we may choose a separating family \(\Gamma \) of seminorms on \(V \), and without loss of generality, we may assume that \(q \in \Gamma \). (Otherwise we replace \(\Gamma \) by \(\Gamma \cup \{q\} \).) The result now follows immediately from Proposition 5.30.

\[\square \]
Appendix to Section 5.

5.32. In the assignment questions we exhibited an example of a TVS which is not normable, i.e. it is not a normed linear space with respect to any norm. The technique for constructing that example can be extended to produce a large variety of such examples. The spaces we have in mind are called \textbf{Fréchet spaces}, and we define them now.

5.33. Definition. A metric d on a vector space V is said to be \textbf{translation invariant} if
\[d(x, y) = d(x + z, y + z) \]
for all $x, y, z \in V$.

We shall also say that a metric d on V is \textbf{complete} if (V, d) is a complete metric space.

Finally, let us say that a countable family $\{\rho_n\}_{n}$ of pseudo-metrics on V is \textbf{complete} if, whenever $(x_k)_k$ is a sequence in V which is Cauchy relative to each ρ_n (i.e. for all $n \geq 1$ and $\varepsilon > 0$ there exists $N = N(\varepsilon, n) > 0$ so that $j, k \geq N$ implies $\rho_n(x_j, x_k) < \varepsilon$), there exists $x \in V$ so that $\lim_{k \to \infty} \rho_n(x_k, x) = 0$ for each $n \geq 1$.

5.34. Example. Most, but certainly not all metrics we deal with are translation invariant. For example, if $d(x, y) = |x - y|$ for $x, y \in \mathbb{R}$, then d is obviously translation invariant.

On the other hand, the metric d on \mathbb{R} defined via:
\[d(x, y) = |x^3 - y^3| \]
for all $x, y \in \mathbb{R}$ is not translation invariant, since $d(0, 1) = 1 \neq 7 = d(1, 2)$.

5.35. Definition. Let (\mathcal{V}, T) be a LCS. If the topology T on \mathcal{V} is induced by a translation invariant, complete metric d, then we say that (\mathcal{V}, T) is a \textbf{Fréchet space}.

5.36. Constructing Fréchet spaces. We know from Theorem 5.21 that if Γ is a separating family of seminorms on a vector space \mathcal{V}, then Γ generates a LCS topology T on \mathcal{V}. Suppose now that the family Γ possesses the following two additional properties, namely:

- the set $\Gamma = \{p_n\}_n$ is countable, and
- the family $\{\rho_n\}_n$ of pseudo-metrics defined on \mathcal{V} via $\rho_n(x, y) = p_n(x - y)$ is a complete family.

Then the metric
\[d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(x - y)}{1 + p_n(x - y)} = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n(x, y)}{1 + \rho_n(x, y)} \]
is easily seen to be translation-invariant. It is not too difficult to verify that a sequence \((x_k)\) in \(V\) converges to \(x \in V\) relative to the metric topology induced by \(d\) if and only if \(\lim_{k \to \infty} p_n(x_k - x) = 0\) for all \(n \geq 1\). That is, the \(d\)-metric topology coincides with the LCS topology induced by \(\Gamma\). Furthermore, observe that \((x_k)\) is Cauchy in the \(d\)-metric topology if and only if \((x_k)\) is Cauchy relative to each pseudo-metric \(\rho_n\), \(n \geq 1\). By the second item above, it follows that \((V, d)\) is complete, and hence that \((V, T)\) is a Fréchet space.

5.37. Example.

(a) Let \(V = C^\infty(\mathbb{R})\) denote the vector space of all functions \(f : \mathbb{R} \to \mathbb{R}\) which are infinitely differentiable at each point \(x \in \mathbb{R}\). Let \(\Gamma = \{p_{n,k}\}_{n,k \geq 0}\), where for \(f \in V\),

\[p_{n,k}(f) := \sup \{|f^{(n)}(x)| : x \in [-k,k]\} \]

Let \(T\) denote the LCS topology on \(V\) generated by the separating family \(\Gamma\) of seminorms. Then \((V, T)\) is a Fréchet space.

A sequence \((f_k)\) in \(V\) converges to \(f \in V\) if and only if

\[\lim \sup_j \{ |f_j^{(n)}(x) - f^{(n)}(x)| : x \in [-k,k] \} = 0 \]

for all \(n \geq 0, k \geq 0\).

(b) If \((X, \|\cdot\|)\) is a normed linear space, then with \(\Gamma = \{\|\cdot\|\}\), \(X\) becomes a Fréchet space.

5.38. Many authors define a Fréchet space as a LCS with a translation-invariant metric which is complete as a uniform topological space. The definition of a uniform space is rather long, and instead we refer the interested reader to the book of Willard [Wil70] for a development of this concept.

*

I once spent a year in Philadelphia. I think it was on a Sunday.

W.C. Fields
6. The Hahn-Banach theorem

When I wake up in the morning, I just can’t get started until I’ve had that first, piping hot pot of coffee. Oh, I’ve tried other enemas...

Emo Philips

6.1. It is somewhat of a misnomer to refer to the Hahn-Banach Theorem. In fact, there is a large number of variations on this theme. These variations fall into two groups: the separation theorems, and the extension theorems. The crucial relation between these two classes of theorems is that they all refer to linear functionals. Having said this, when one wishes to apply a version of the Hahn-Banach Theorem, one tends to say only: “by the Hahn-Banach Theorem...”, usually leaving it to the reader to determine which version of the Theorem is being applied.

The importance of these theorems in Functional Analysis cannot be overstated.

6.2. Definition. Let W be a vector space over K. A linear functional on W is a linear map $f: W \rightarrow K$. The vector space of all linear functionals on W is denoted by W^* and is referred to as the algebraic dual of W.

If W is a TVS, the (vector) space of continuous linear functionals is denoted by W^*, and is referred to as the (topological) dual of W. Obviously $W^* \subseteq W^\#$.

6.3. Example. Let $n \geq 1$ be an integer and consider $W = K^n$ equipped with the norm $\|(x_1, x_2, ..., x_n)\|_{\infty} = \max |x_j|$. For any choice of $k_1, k_2, ..., k_n \in K$, the map

$$f: \quad W \rightarrow K$$

$$(x_1, x_2, ..., x_n) \mapsto \sum_{i=1}^{n} k_i x_i$$

is a continuous linear functional.

6.4. Remarks.

(a) Recall from basic linear algebra that every linear functional on K^n is of this form for some choice of $k_1, k_2, ..., k_n \in K$. As such, every linear functional on K^n is continuous.

(b) Recall from Proposition 4.20 that if V is an n-dimensional TVS with basis $\{e_1, e_2, ..., e_n\}$, then V is homeomorphic to K^n via the map $\sum_{i=1}^{n} k_i e_i \mapsto (k_1, k_2, ..., k_n)$. Since the product topology on K^n is in turn equivalent to the norm topology induced by the infinity norm, it follows from (a) above that every linear functional on a finite-dimensional TVS is continuous.
6.5. Example. Let us next consider \(c_{00}(\mathbb{K}) = \{(x_n)_{n=1}^\infty : x_n \in \mathbb{K} \text{ for all } n \geq 1 \text{ and } x_n = 0 \text{ for all but finitely many } n \text{'s}\}. \) Recall that this forms a normed linear space when equipped with the norm
\[
\|(x_n)_n\|_\infty = \sup_n |x_n|.
\]
Define
\[
f : c_{00}(\mathbb{K}) \to \mathbb{K}, \quad (x_n)_n \mapsto \sum_{n=1}^\infty x_n.
\]
Then \(f \) is a non-continuous linear functional on \(c_{00}(\mathbb{K}) \). Indeed, if \(y_n = (\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}, 0, 0, 0, ...) \) (where the \(\frac{1}{n} \) term is repeated \(n \) times), then \(\|y_n\|_\infty = \frac{1}{n} \), and so \(\lim_{n \to \infty} y_n = 0 \), while \(f(y_n) = 1 \) for all \(n \), and hence \(\lim_{n \to \infty} f(y_n) \neq 0 = f(0) \).

For a number of the results we shall obtain below, we shall assume that the underlying field is \(\mathbb{R} \). In order to translate the results to the case of complex vector spaces, the following Lemma will be useful.

6.6. Lemma. Let \(\mathcal{V} \) be a vector space over \(\mathbb{C} \).

(a) If \(f : \mathcal{V} \to \mathbb{R} \) is an \(\mathbb{R} \)-linear functional, then the map
\[
f_\mathbb{C}(x) := f(x) - if(ix)
\]
is a \(\mathbb{C} \)-linear functional on \(\mathcal{V} \), and \(f = \text{Re} f_\mathbb{C} \).
(b) If \(g : \mathcal{V} \to \mathbb{C} \) is \(\mathbb{C} \)-linear, \(f = \text{Re} g \) and \(f_\mathbb{C} \) is defined as in (a), then \(g = f_\mathbb{C} \).
(c) If \(p \) is a \(\mathbb{C} \)-seminorm on \(\mathcal{V} \) and \(f, f_\mathbb{C} \) are as in (a) above, then \(|f(x)| \leq p(x) \) for all \(x \in \mathcal{V} \) if and only if \(|f_\mathbb{C}(x)| \leq p(x) \) for all \(x \in \mathcal{V} \).
(d) If \(\mathcal{V} \) is a NLS and \(f, f_\mathbb{C} \) are as in (a), then \(\|f\| = \|f_\mathbb{C}\| \).

Proof.

(a) This is routine and is left to the reader.
(b) Let \(x \in \mathcal{V} \) and write \(g(x) = a + ib \), where \(a = \text{Re} g(x) = f(x) \) and \(b = \text{Im} g(x) \) are real. By \(\mathbb{C} \)-linearity of \(g \), \(g(ix) = -b + ia \), and so \(\text{Im} g(x) = b = -\text{Re} g(ix) = -f(ix) \).

That is, \(g(x) = f(x) + i(-f(ix)) = f(x) - if(ix) = f_\mathbb{C}(x) \).
(c) First suppose that \(|f_\mathbb{C}(x)| \leq p(x) \) for all \(x \in \mathcal{V} \). Then \(|f(x)| = |\text{Re} f_\mathbb{C}(x)| \leq |f_\mathbb{C}(x)| \leq p(x) \) for all \(x \in \mathcal{V} \).
Next suppose that $|f(x)| \leq p(x)$ for all $x \in \mathcal{V}$. Given $x \in \mathcal{V}$, choose $\theta \in \mathbb{C}$, $|\theta| = 1$ so that $|f_\mathbb{C}(x)| = \theta f_\mathbb{C}(x)$. Then

$$
|f_\mathbb{C}(x)| = \theta |f_\mathbb{C}(x)| \\
= f_\mathbb{C}(\theta x) \\
= \mathrm{Re} f_\mathbb{C}(\theta x) \quad \text{(as this quantity is non-negative)} \\
= f(\theta x) \\
\leq p(\theta x) \\
= |\theta| p(x) = p(x).
$$

(d) It is routine to verify that $\|f\| \leq \|f_\mathbb{C}\|$, and this step is left to the reader.

Conversely, given $x \in \mathcal{V}$ with $\|x\| = 1$, we can find θ_x so that $|f_\mathbb{C}(x)| = \theta_x f_\mathbb{C}(x) = f_\mathbb{C}(\theta_x x) = \mathrm{Re} f_\mathbb{C}(\theta_x x) = f(\theta_x x)$. Note that $\|\theta_x x\| = 1$ because \mathcal{V} is a \mathbb{C}-vector space and $\|\theta_x x\| = |\theta_x| \|x\| = \|x\| = 1$. Thus

$$
\|f_\mathbb{C}\| = \sup\{|f_\mathbb{C}(z)| : \|z\| = 1\} \\
= \sup\{|f(\theta_z z)| : \|z\| = 1\} \\
\leq \sup\{|f(y)| : \|y\| = 1\} \\
= \|f\|.
$$

\[\square \]

6.7. Proposition. Let \mathcal{V} be a vector space over \mathbb{K} and let $f \in \mathcal{V}^\#$.

(a) If $g \in \mathcal{V}^\#$ and $g|_{\ker f} = 0$, then $g = kf$ for some $k \in \mathbb{K}$.

(b) If $g, f_1, f_2, \ldots, f_N \in \mathcal{V}^\#$ and $g(x) = 0$ for all $x \in \cap_{j=1}^N \ker f_j$, then $g \in \mathrm{span}\{f_1, f_2, \ldots, f_N\}$.

Proof.

(a) If $g = 0$, then set $k = 0$ and we are done.

Otherwise, choose $z \in \mathcal{V}$ so that $g(z) \neq 0$. By hypothesis, $f(z) \neq 0$. Let $k = g(z)/f(z)$. Now $\ker f$ has codimension 1 in \mathcal{V}, and so if $x \in \mathcal{V}$, then $x = \alpha z + y$ for some $y \in \ker f$ and $\alpha \in \mathbb{K}$. Hence

$$
g(x) = \alpha g(z) + g(y) = \alpha g(z) + 0 \\
= \alpha kf(z) \\
= k(\alpha f(z) + f(y)) \\
= kf(x).
$$

Since $x \in \mathcal{V}$ was arbitrary, $g = kf$.

(b) We may assume that $\{f_1, f_2, \ldots, f_N\}$ are linearly independent. Let $\mathcal{N} = \cap_{j=1}^N \ker f_j$. Then $\dim (\mathcal{V}/\mathcal{N}) \leq N$. For $1 \leq j \leq N$, define $\overline{f}_j : \mathcal{V}/\mathcal{N} \to \mathbb{K}$ via $\overline{f}_j(x + \mathcal{N}) = f_j(x)$. Since $\mathcal{N} \subseteq \ker f_j$, each \overline{f}_j is well-defined, and $\overline{f}_j \in (\mathcal{V}/\mathcal{N})^\#$.

We claim that $\{\overline{f}_1, \overline{f}_2, \ldots, \overline{f}_N\}$ is also linearly independent. Otherwise, we can find $k_1, k_2, \ldots, k_N \in \mathbb{K}$ so that $\sum_{j=1}^N |k_j| \neq 0$, but $\sum_{j=1}^N k_j \overline{f}_j = 0$. But then $\sum_{j=1}^N k_j f_j(x) = 0$ for all $x \in \mathcal{V}$, contradicting the linear independence of $\{f_1, f_2, \ldots, f_N\}$.
But then $\sum_{j=1}^{N} k_j f_j \neq 0$, so we can find $z \in \mathcal{V}$ with $0 \neq \sum_{j=1}^{N} k_j f_j(z) = \sum_{j=1}^{N} k_j f_j(z + \mathcal{N})$, a contradiction.

Thus $\dim(\mathcal{V}/\mathcal{N}) \geq N$. Combining this with the fact that $\dim(\mathcal{V}/\mathcal{N}) \leq N$ yields $\dim(\mathcal{V}/\mathcal{N}) = \dim(\mathcal{V}/\mathcal{N})^\# = N$, and that $\{f_1, f_2, \ldots, f_N\}$ is a basis for $(\mathcal{V}/\mathcal{N})^\#$.

Now define $\overline{g} : \mathcal{V}/\mathcal{N} \to \mathbb{K}$ via $\overline{g}(x + \mathcal{N}) = g(x)$. Again, since $\mathcal{N} \subseteq \ker g$, \overline{g} is well-defined. Since $\overline{g} \in (\mathcal{V}/\mathcal{N})^\#$, we can write

$$\overline{g} = \sum_{j=1}^{N} k_j \overline{f}_j \quad \text{for some } k_1, k_2, \ldots, k_N \in \mathbb{K}.$$

For $x \in \mathcal{V}$,

$$0 = (\overline{g} - \sum_{j=1}^{N} k_j \overline{f}_j)(x + \mathcal{N}) = g(x) - \sum_{j=1}^{N} k_j f_j(x),$$

so that $g = \sum_{j=1}^{N} k_j f_j$.

The first part of the above Proposition shows that if f and g are distinct linear functionals on a vector space \mathcal{V}, then they have the same kernel if and only if one functional is a non-zero multiple of the other.

6.8. Definition. Let \mathcal{V} be a vector space over \mathbb{K}. A hyperplane \mathcal{M} in \mathcal{V} is a linear manifold for which $\dim(\mathcal{V}/\mathcal{M}) = 1$.

6.9. If $0 \neq \varphi \in \mathcal{V}^\#$, then from elementary linear algebra theory we see that $\mathcal{M} := \ker \varphi$ is a hyperplane in \mathcal{V} and that φ induces an (algebraic) isomorphism $\overline{\varphi}$ between \mathcal{V}/\mathcal{M} and \mathbb{K} via

$$\varphi(x + \mathcal{M}) = \varphi(x) \quad \text{for all } x + \mathcal{M} \in \mathcal{V}/\mathcal{M}.$$

Conversely, if $\mathcal{M} \subseteq \mathcal{V}$ is a hyperplane, then \mathcal{V}/\mathcal{M} is (algebraically) isomorphic to \mathbb{K}. Let $\kappa : \mathcal{V}/\mathcal{M} \to \mathbb{K}$ denote such an isomorphism. If $q : \mathcal{V} \to \mathcal{V}/\mathcal{M}$ is the canonical quotient map, then $\kappa \circ q : \mathcal{V} \to \mathbb{K}$ is a linear functional with $\ker(\kappa \circ q) = \mathcal{M}$.

Thus we have established a correspondence between linear functionals and hyperplanes. Proposition 6.7 implies that, up to a factor of a non-zero scalar multiple, this correspondence is bijective.
6.10. Proposition. If \((\mathcal{V}, \mathcal{T})\) is a TVS and \(M \subseteq \mathcal{V}\) is a hyperplane, then either \(M\) is closed in \(\mathcal{V}\), or \(M\) is dense.

Proof. Since \(M\) is a vector space satisfying \(M \subseteq \mathcal{V}\), and since \(\dim (\mathcal{V}/M) = 1\), we either have \(M = \mathcal{V}\), or \(M = 0\). It is worth noting that both possibilities can occur.

6.11. Example.

(a) Let \(X = (C([0, 1], \mathbb{C}), \| \cdot \|_{\infty})\), and let \(\delta_{1/2} : X \to \mathbb{C}\) be the map \(\delta_{1/2}(f) := f(1/2)\), \(f \in X\). Then \(\ker \delta_{1/2} = \{ f : [0, 1] \to \mathbb{C} | f \text{ is continuous and } f(1/2) = 0 \}\). This is clearly closed.

(b) Let \(V = c_0(\mathbb{C})\), and let \(e_k = (\delta_{1k}, \delta_{2k}, \delta_{3k}, ...)\), where \(\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}\).

Let \(z = (1, 1/2, 1/3, 1/4, ...)\). Then \(\{ z, e_1, e_2, e_3, ... \}\) is linearly independent in \(V\), and as such it can be extended to a Hamel basis (i.e. a vector space basis) for \(V\), say

\[B = \{ z, e_1, e_2, e_3, ... \} \cup \{ b_\lambda : \lambda \in \Lambda \} \].

Given \(v \in V\), say \(v = z + \sum_{k=1}^{\infty} \beta_k e_k + \sum_{\lambda \in \Lambda} \gamma_\lambda b_\lambda\) for some \(\alpha, \beta_k, \gamma_\lambda \in \mathbb{K}\) with only finitely many coefficients not equal to zero, define \(g(v) = \alpha\).

It is clear that this defines a linear functional on \(V\). Since \(\ker g\) is a subspace containing \(e_k, k \geq 1\), and since \(\operatorname{span} \{ e_k \}_{k=1}^{\infty}\) is dense in \(V\), \(\ker g\) is dense in \(V\). Since \(g \neq 0\), and since \(\ker g\) is dense in \(V\), we see that \(\ker g\) is not closed.

6.12. Proposition. Let \(V\) be a TVS and \(\rho \in V^\#\). Suppose that there exists an open nbhd \(U \in U_0\) of 0 and a constant \(\kappa > 0\) so that \(\Re \rho(x) < \kappa\) for all \(x \in U\). Then \(\rho\) is uniformly continuous on \(V\).

Proof. By Proposition 4.10, we can find a balanced, open nbhd \(N\) of 0 with \(N \subseteq U\). Observe that for \(x \in N \subseteq U\), there exists \(\theta_x \in \mathbb{K}\), \(|\theta_x| = 1\) so that

\[|\rho(x)| = \rho(\theta_x x) = \Re \rho(\theta_x x). \]

But \(\theta_x x \in N\) since \(N\) is balanced, and so \(|\rho(x)| < \kappa\) for \(x \in N\). Consider the function

\[p : V \to \mathbb{R} \]

\[x \mapsto |\rho(x)| \]

which is easily seen to be a seminorm. Since \(p\) is bounded above by \(\kappa\) on the open nbhd \(N\) of 0, we can invoke Proposition 5.11 to conclude that \(p\) is continuous on \(V\). By linearity, it follows that \(\rho\) is continuous at 0, and hence \(\rho\) is uniformly continuous on \(V\) by Theorem 4.29.
6.13. Corollary. Let \(V \) be a TVS and \(\rho \in V^\# \). The following are equivalent:

(a) \(\rho \) is continuous on \(V \) - i.e. \(\rho \in V^* \);

(b) ker \(\rho \) is closed.

Proof.

(a) implies (b): This is clear. If \(\rho \) is continuous, then ker \(\rho = \rho^{-1}(\{0\}) \) is closed in \(V \) because \(\{0\} \) is closed in \(K \).

(b) implies (a): Suppose next that ker \(\rho \) is closed. If \(\rho = 0 \), then \(\rho \) is obviously continuous. Suppose therefore that \(\rho \neq 0 \). Then \(W := V/\ker \rho \) is a one-dimensional TVS and

\[
\bar{\rho} : \quad W \to K
\]

\[
x + \ker \rho \mapsto \rho(x)
\]

is a linear functional on \(W \). By Remark 6.4 (b), \(\bar{\rho} \) is continuous. If \(q : V \to W \) is the canonical quotient map, then by Paragraph 4.18, \(q \) is also continuous, and thus \(\rho = \bar{\rho} \circ q \) is continuous as well.

Recall that \(X^* = B(X, K) \) is a Banach space whenever \(X \) is a NLS. Let us recall a couple of results from Measure Theory which provide us with interesting examples of classes of linear functionals.

6.14. Theorem. Let \((X, \Omega, \mu)\) be a measure space and \(1 < p < \infty \). If \(\frac{1}{p} + \frac{1}{q} = 1 \), and if \(g \in L^q(X, \Omega, \mu) \), then

\[
\beta_g(f) := \int_X fg \, d\mu
\]

defines a continuous linear functional on \(L^p(X, \Omega, \mu) \), and the map \(g \mapsto \beta_g \) is an isometric linear bijection of \(L^q(X, \Omega, \mu) \) onto \(L^p(X, \Omega, \mu)^* \).

If \((X, \Omega, \mu)\) is \(\sigma \)-finite, then the same conclusion holds in the case where \(p = 1 \) and \(q = \infty \).

Recall that if \(X \) is a locally compact space, then \(M_K(X) \) denotes the space of \(K \)-valued regular Borel measures on \(X \) with the total variation norm.

6.15. Theorem. If \(X \) is locally compact and \(\mu \in M_K(X) \), then

\[
\beta_\mu : \quad C_0(X, K) \to K
\]

\[
f \mapsto \int_X f \, d\mu
\]

defines an element of \(C_0(X, K) \), and the map \(\mu \mapsto \beta_\mu \) is an isometric linear isomorphism of \(M_K(X) \) onto \(C_0(X, K)^* \).
6.16. The Hahn-Banach Theorem is probably the most important result in Functional Analysis. It has a great many applications, and its usefulness cannot be overstated. There are two basic formulations of this result (each with a variety of consequences); the first in terms of extensions of linear functionals from linear submanifolds of a LCS to the entire LCS, and the second in terms of so-called “separation theorems”, which we shall examine later.

6.17. Proposition. Let V be a vector space over \mathbb{R} and $p : V \to \mathbb{R}$ be a sublinear functional. Suppose that M is a (proper) hyperplane and that $f : M \to \mathbb{R}$ is a linear functional for which $f(x) \leq p(x)$ for all $x \in M$. Then there exists a linear functional $g : V \to \mathbb{R}$ such that $g|_M = f$, and $g(x) \leq p(x)$ for all $x \in V$.

Proof. Let $z \in V/\mathbb{R}$, so that $V = \text{span}\{z, M\}$. Then $v \in V$ implies that $v = tz + m$ for some $t \in \mathbb{R}, m \in M$.

For each $r \in \mathbb{R}$ we may define $h_r : V \to \mathbb{R}$ by setting $h_r(z) = r$, setting $h_r(m) = f(m), m \in M$, and then extending h_r by linearity to all of V. Clearly $h_r \in V^#$ and h_r extends f. The problem is that we do not know that $h_r(x) \leq p(x)$ for all $x \in V$ - in fact, this is generally not true. The question of finding a g as in the statement of the Proposition amounts to showing that for some $s \in \mathbb{R}$, we will have $h_s(x) \leq p(x)$ for all $x \in V$. To find such an s, we first examine which properties it must satisfy. We then demonstrate that these properties are also sufficient. Finally, the existence of s is a byproduct of reconciling these necessary and sufficient conditions.

If $h_s(x) \leq p(x)$ for all $x \in V$, then for all $t \in \mathbb{R}, m \in M$ we must have

$$h_s(tz + m) = ts + f(m) \leq p(tz + m).$$

- If $t > 0$, then setting $m_1 = t^{-1}m$ yields:

$$s \leq -t^{-1}f(m) + t^{-1}p(tz + m)$$

$$\leq -f(t^{-1}m) + p(z + t^{-1}m) \quad \text{for all } m \in M$$

$$\leq -f(m_1) + p(z + m_1) \quad \text{for all } m_1 \in M. \quad (1)$$

- If $t < 0$, then setting $m_2 = -t^{-1}m$ yields:

$$s \geq -t^{-1}f(m) + t^{-1}p(tz + m)$$

$$= f(-t^{-1}m) - p(-z - t^{-1}m) \quad \text{for all } m \in M$$

$$= f(m_2) - p(-z + m_2) \quad \text{for all } m_2 \in M. \quad (2)$$

The key issue is that we can “reverse engineer” this process. Suppose that $s \in \mathbb{R}$ satisfies both (1) and (2), namely

$$f(m_2) - p(-z + m_2) \leq s \leq -f(m_1) + p(z + m_1) \quad \text{for all } m_1, m_2 \in M. \quad (3)$$
• If \(t > 0 \), then
\[
h_s(tz + m) = ts + f(m) \\
\leq t(-f(m/t) + p(z + (m/t))) + f(m) \\
= p(tz + m) \quad \text{for all } m \in \mathcal{M},
\]
while
• if \(t < 0 \), then
\[
h_s(tz + m) = ts + f(m) \\
\leq t(f(-m/t) - p(z - (m/t))) + f(m) \\
= -f(m) + (t)p(-z - (m/t)) + f(m) \\
= p(tz + m) \quad \text{for all } m \in \mathcal{M}.
\]
• If \(t = 0 \), then \(h_s(tz + m) = h_s(m) = f(m) \leq p(m) = p(tz + m) \) for all \(m \in \mathcal{M} \).

There remains to show, therefore, that we can find \(s \in \mathbb{R} \) which satisfies (3) (or equivalently, which satisfies both (1) and (2)). Now this can be done if
\[
f(m_2) + f(m_1) \leq p(-z + m_2) + p(z + m_1) \quad \text{for all } m_1, m_2 \in \mathcal{M}.
\]
But
\[
f(m_1) + f(m_2) = f(m_1 + m_2) \leq p(m_1 + m_2) \\
\leq p(m_2 - z) + p(z + m_1)
\]
for all \(m_1, m_2 \in \mathcal{M} \), and so we can choose
\[
s_0 := \sup\{f(m_2) - p(-z + m_2) : m_2 \in \mathcal{M}\}.
\]
Letting \(g = h_{s_0} \) completes the proof.

\(\square \)

6.18. Theorem. The Hahn-Banach Theorem 01

Let \(\mathcal{V} \) be a vector space over \(\mathbb{R} \) and let \(p \) be a sublinear functional on \(\mathcal{V} \). If \(\mathcal{M} \) is a linear manifold in \(\mathcal{V} \) and \(f : \mathcal{M} \to \mathbb{R} \) is a linear functional with \(f(m) \leq p(m) \) for all \(m \in \mathcal{M} \), then there exists a linear functional \(g : \mathcal{V} \to \mathbb{R} \) with \(g|_\mathcal{M} = f \), and \(g(x) \leq p(x) \) for all \(x \in \mathcal{V} \).

Proof. Let \(\mathcal{J} = \{(\mathcal{N}, h) : \mathcal{N} \text{ a linear manifold in } \mathcal{V}, \mathcal{M} \subseteq \mathcal{N}, h|_\mathcal{M} = f, \text{ and } h(n) \leq p(n) \text{ for all } n \in \mathcal{N}\} \). For \((\mathcal{N}_1, h_1), (\mathcal{N}_2, h_2) \in \mathcal{J} \), define \((\mathcal{N}_1, h_1) \leq (\mathcal{N}_2, h_2) \) if \(\mathcal{N}_1 \subseteq \mathcal{N}_2 \) and \(h_2|_{\mathcal{N}_1} = h_1 \). Then \((\mathcal{J}, \leq) \) is a partially ordered set with respect to \(\leq \). Moreover, \(\mathcal{J} \neq \emptyset \), since \((\mathcal{M}, f) \in \mathcal{J} \).

Let \(\mathcal{C} = \{(\mathcal{N}_\lambda, h_\lambda) : \lambda \in \Lambda\} \) be a chain in \(\mathcal{J} \), and let \(\mathcal{N} := \cup_{\lambda \in \Lambda} \mathcal{N}_\lambda \). Define \(h : \mathcal{N} \to \mathbb{R} \) by setting \(h(n) = h_\lambda(n) \) if \(n \in \mathcal{N}_\lambda \). Then \(h \) is well-defined because \(\mathcal{C} \) is a chain (check!). \(h \) is linear and \(h(n) \leq p(n) \) for all \(n \in \mathcal{N} \). Thus \((\mathcal{N}, h) \in \mathcal{J} \) and it is an upper bound for \(\mathcal{C} \). By Zorn’s Lemma, \((\mathcal{J}, \leq) \) has a maximal element \((\mathcal{Y}, g) \). Suppose that \(\mathcal{Y} \neq \mathcal{V} \). Choosing \(z \in \mathcal{V} \setminus \mathcal{Y} \) and letting \(\mathcal{Y}_0 = \text{span}\{z, \mathcal{Y}\} \), Proposition 6.17 implies the existence of a functional \(g_0 : \mathcal{Y}_0 \to \mathbb{R} \) which extends \(g \).
and satisfies $g_0(y) \leq p(y)$ for all $y \in Y_0$. This contradicts the maximality of (Y, g). Hence $Y = V$, and g has the required properties.

The complex version of this theorem can now be established.

6.19. Theorem. The Hahn-Banach Theorem 02

Let V be a vector space over \mathbb{K}. Let $M \subseteq V$ be a linear manifold and let $p : V \to \mathbb{R}$ be a seminorm on V. If $f : M \to \mathbb{K}$ is a linear functional and $|f(m)| \leq p(m)$ for all $m \in M$, then there exists a linear functional $g : V \to \mathbb{K}$ so that $g|_M = f$ and $|g(x)| \leq p(x)$ for all $x \in V$.

Proof. Suppose that $\mathbb{K} = \mathbb{R}$. Then $f(m) \leq |f(m)| \leq p(m)$ for all $m \in M$, and p is a sublinear functional (by virtue of the fact that it is a seminorm). By the Hahn-Banach Theorem 01, there exists $g : V \to \mathbb{R}$ linear so that $g|_M = f$ and $g(x) \leq p(x)$ for all $x \in V$. Thus $-g(x) = g(-x) \leq p(-x) = p(x)$ for all $x \in V$, so that $|g(x)| \leq p(x)$ for all $x \in V$.

Now suppose that $\mathbb{K} = \mathbb{C}$. Let $f_1 = \text{Re} f$. Then by Lemma 6.6, $|f_1(m)| \leq p(m)$ for all $m \in M$. By the argument of the first paragraph of this proof, there exists an \mathbb{R}-linear functional $g_1 : V \to \mathbb{R}$ so that $g_1|_M = f_1$ and $|g_1(m)| \leq p(m)$ for all $m \in M$. Let $g = (g_1)|_C$ denote the complexification of g_1, as obtained in Lemma 6.6. Then $g : V \to \mathbb{C}$ is \mathbb{C}-linear, $g|_M = f$, and by part (c) of that Lemma,

$$|g(x)| \leq p(x) \quad \text{for all } x \in V.$$

6.20. Corollary. Let (V, T) be a LCS and $W \subseteq V$ be a linear manifold. If $f \in W^*$, then there exists $g \in V^*$ so that $g|_W = f$.

Proof. Since (V, T) is a LCS, so is W. Let Γ be a separating family of seminorms which generate the LCS topology on V (see Theorem 5.23). Then it is routine to verify that $\Gamma_W := \{p|_W : p \in \Gamma\}$ is a separating family of seminorms on W which generates the relative LCS topology on W.

Suppose that $f \in W^*$. By Corollary 5.31, there exist $\kappa > 0$ and $p_1, p_2, ..., p_m \in \Gamma$ so that

$$|f(w)| \leq \kappa \max(p_1(w), p_2(w), ..., p_m(w)) \quad \text{for all } w \in W.$$

Let $q(x) := \kappa \max(p_1(x), p_2(x), ..., p_m(x))$ for all $x \in V$. Then, as is easily verified, q is a seminorm on V, and q is continuous by Proposition 5.29. Moreover,

$$|f(w)| \leq q(w) \quad \text{for all } w \in W.$$

By the Hahn-Banach Theorem 02, we can find a linear functional $g : V \to \mathbb{K}$ so that $g|_W = f$ and

$$|g(x)| \leq q(x) \quad \text{for all } x \in V.$$

Another application of Corollary 5.31 shows that g is continuous, as was required.
The following is simply an application of Corollary 6.20 to the context of normed linear spaces. It is often the version that comes to mind when the Hahn-Banach Theorem is quoted.

6.21. Theorem. The Hahn-Banach Theorem 03
Let \((X, \| \cdot \|)\) be a NLS, \(M \subseteq X\) be a linear manifold, and \(f \in M^*\) be a bounded linear functional. Then there exists \(g \in X^*\) such that \(g|_M = f\) and \(\|g\| = \|f\|\).
Proof. Consider the map
\[
p : X \to \mathbb{R}, \quad x \mapsto \|f\| \|x\|.
\]
It is easy to check that \(p\) is a seminorm on \(X\). (In fact, it is a norm unless \(f = 0\).)
Since \(|f(m)| \leq p(m)\) for all \(m \in M\), it follows from the Hahn-Banach Theorem 02 that there exists \(g : X \to \mathbb{K}\) so that \(g|_M = f\) and \(|g(x)| \leq p(x) = \|f\| \|x\|\) for all \(x \in X\). This last inequality shows that \(\|g\| \leq \|f\|\). That \(\|g\| \geq \|f\|\) is clear, and hence \(\|g\| = \|f\|\).

2

6.22. Corollary. Let \((V, T)\) be a LCS and \(\{x_j\}_{j=1}^m\) be a linearly independent set of vectors in \(V\). If \(\{k_j\}_{j=1}^m \in \mathbb{K}\) are arbitrary, then there exists \(g \in V^*\) so that \(g(x_j) = k_j, 1 \leq j \leq m\).
Proof. Let \(M = \text{span}\{x_j\}_{j=1}^m\), so that \(M\) is a finite-dimensional subspace of \(V\). Define \(f : M \to \mathbb{K}\) via
\[
f(\sum_{j=1}^m a_j x_j) = \sum_{j=1}^m a_j k_j.
\]
Then \(f\) is linear on \(M\), and thus, by Corollary 4.31, it is continuous. By Corollary 6.20, there exists \(g \in V^*\) so that \(g|_M \neq 0\). To show that \(g(x_j) = k_j, 1 \leq j \leq m\), suppose \(x = y + w\) for some \(y \in Y\) and \(w \in W\).

2

6.23. Corollary. Let \((V, T)\) be a LCS and \(0 \neq y \in V\). Then there exists \(g \in V^*\) so that \(g(y) \neq 0\).
Proof. Simply let \(x_1 = y\) and \(k_1 = 1\) in the previous Corollary.

As an application of these results, let us show that finite dimensional subspaces of locally convex spaces are topologically complemented.

6.24. Definition. A closed subspace \(W\) of a LCS \((V, T)\) is said to be **topologically complemented** if there exists a closed subspace \(Y\) of \(V\) so that \(V = Y \oplus W\). That is, \(x \in V\) implies that \(x = y + w\) for some \(y \in Y\) and \(w \in W\), while \(Y \cap W = \{0\}\).
6.25. Remark. Every vector subspace \(W \) of a vector space \(V \) over \(\mathbb{K} \) is algebraically complemented. If \(\{w_\lambda\}_{\lambda \in \Lambda} \) is a basis for \(W \), then it can be extended to a basis \(\{w_\lambda\}_{\lambda \in \Lambda} \cup \{y_\beta\}_{\beta \in \Gamma} \) for \(V \). Letting \(Y = \operatorname{span}\{y_\beta\}_{\beta \in \Gamma} \), we get \(V = Y \oplus W \).

The key issue in the above definition is that if \(W \) is a closed subspace in the LCS \(V \), then we are asking that the complement \(Y \) of \(W \) also be closed. This is not always possible. For example, \(c_0 \) is a closed subspace of \((\ell^\infty, \| \cdot \|_\infty) \). Nevertheless, it does not possess a topological complement. The proof is omitted.

When \(W \) is finite-dimensional, the situation is somewhat better.

6.26. Proposition. Let \(W \) be a finite-dimensional subspace of a LCS \((V, T) \). Then \(W \) is topologically complemented in \(V \).

Proof. First observe that \(W \) is closed in \(V \) by Corollary 4.21. Let \(\{w_1, w_2, ..., w_n\} \) be a basis for \(W \).

By Corollary 6.22, we can find continuous linear functionals \(\rho_1, \rho_2, ..., \rho_n \in V^* \) so that \(\rho_j(w_i) = \delta_{ij} \), where \(\delta_{ij} \) is the Kronecker delta function. Let \(Y = \cap_{j=1}^n \ker \rho_j \).

Since each \(\rho_j \) is continuous, \(\ker \rho_j \) is closed for all \(j \), and hence \(Y \) is also closed.

Suppose \(v \in V \). Let \(k_j = \rho_j(v), 1 \leq j \leq n \). Then \(w = \sum_{i=1}^n k_i w_i \in W \). If \(y := v - w \), then \(\rho_j(y) = \rho_j(v) - \rho_j(w) = k_j - k_j = 0, 1 \leq j \leq n \). Hence \(y \in Y \).

Finally, if \(z \in Y \cap W \), then \(z = \sum_{i=1}^n r_i w_i \) for some \(r_i \in \mathbb{K}, 1 \leq i \leq n \). But then \(z \in Y \), so for each \(1 \leq j \leq n \), \(0 = \rho_j(z) = r_j \). Hence \(z = 0 \) and \(V = Y \oplus W \).

6.27. Corollary. Let \((V, T) \) be a LCS and \(W \subseteq V \) be a closed subspace of \(V \). If \(x \in V \), \(x \not\in W \), then there exists \(g \in V^* \) so that \(g|_W = 0 \) but \(g(x) \neq 0 \).

Proof. By Proposition 5.17, \(V/W \) is a LCS. Also, \(x \not\in W \) implies that \(q(x) \neq 0 \) in \(V/W \), where \(q : V \to V/W \) is the canonical quotient map. We can therefore apply Corollary 6.23 to produce a functional \(f \in (V/W)^* \) so that \(f(q(x)) \neq 0 \). Since \(q \) is continuous, so is \(g := f \circ q \), and so \(g \in V^* \) satisfies \(g(w) = 0 \) for all \(w \in W \), while \(g(x) \neq 0 \).

6.28. Theorem. Let \((V, T) \) be a LCS and \(W \subseteq V \) be a linear manifold. Then

\[
\overline{W} = \cap \{ \ker f : f \in V^* \text{ and } W \subseteq \ker f \}.
\]

Proof. Clearly \(f \in V^* \) implies that \(\ker f \) is closed, so if \(W \subseteq \ker f \), then \(\overline{W} \subseteq \ker f \). Thus

\[
\overline{W} \subseteq \cap \{ \ker f : f \in V^* \text{ and } W \subseteq \ker f \}.
\]

Conversely, suppose that \(x \in V \), \(x \not\in \overline{W} \). By Corollary 6.27, there exists \(g \in V^* \) so that \(g|_W = 0 \) but \(g(x) \neq 0 \). This proves the reverse inclusion, and combining the two inclusions yields the desired result.
6.29. Corollary. Let \((V, T) \) be a LCS and \(W \subseteq V \) be a linear manifold. The following are equivalent:

(a) \(W \) is dense in \(V \).
(b) \(f \in V^* \) and \(f|_W = 0 \) implies that \(f = 0 \).

Let us now describe some quantitative versions of the above results, in the setting of normed linear spaces.

6.30. Corollary. Let \((X, \| \cdot \|) \) be a NLS and \(x \in X \). Then

\[
\|x\| = \max\{\|x^*(x)\|: x^* \in X^*, \|x^*\| \leq 1\}.
\]

Proof. For the rest of the proof, the vector \(x \in X \) is fixed.

Let \(\beta := \sup\{\|x^*(x)\|: x^* \in X^*, \|x^*\| \leq 1\} \). Then for any \(x^* \in X^* \) with \(\|x^*\| \leq 1 \),

\[
|x^*(x)| \leq \|x^*\| \|x\| \leq \|x\|,
\]

and so \(\beta \leq \|x\| \).

Define \(Y = X_\beta \), so that \(Y \) is a one-dimensional normed, linear subspace of \(X \).

Define \(f \in Y^* \) via \(f(kx) = k\|x\| \). Then \(|f(kx)| = |k| \|x\| = \|kx\| \), and so \(\|f\| = 1 \).

By the Hahn-Banach Theorem 03 (Theorem 6.21), there exists \(y^* \in X^* \) so that \(y^*|_Y = f \), and \(\|y^*\| = \|f\| = 1 \).

Thus

\[
|y^*(x)| = y^*(x) = f(x) = \|x\|,
\]

which proves that \(\beta \geq \|x\| \), and hence that \(\beta = \|x\| \). It also shows that the supremum is attained at \(y^* \).

\[\square\]

Recall from Proposition 2.18 that if \(X \) is a normed linear space, then the canonical embedding \(\hat{X} : X \to X^{**} \) which sends \(x \in X \) to \(\hat{x} \in X^{**} \), where \(\hat{x}(x^*) = x^*(x) \) for all \(x^* \in X^* \) is a contractive linear mapping.

As a simple consequence of Corollary 6.30, we obtain:

6.31. Corollary. The canonical embedding \(\hat{X} : X \to X^{**} \) is an isometry.

6.32. Corollary. Let \((X, \| \cdot \|) \) be a NLS and \(Y \subseteq X \) be a closed subspace, with \(z \in X \) but \(z \notin Y \). Let \(d := d(z, Y) = \|z + Y\| \). Then there exists \(x^* \in X^* \) so that \(\|x^*\| = 1 \), \(x^*|_Y = 0 \), and \(x^*(z) = d \).

Proof. Let \(q : X \to X/Y \) denote the canonical quotient map. Since \(X/Y \) is a NLS and \(\|q(z)\| = d \), Corollary 6.30 guarantees the existence of a linear functional \(\xi^* \in (X/Y)^* \) so that \(\|\xi^*\| = 1 \) and \(\xi^*(q(z)) = \|q(z)\| = d \).

Let \(x^* = \xi^* \circ q \). Obviously \(x^*(z) = d \). Since \(\|q\| \leq 1 \), \(\|x^*\| \leq \|\xi^*\| \|q\| \leq 1 \). Also, for \(y \in Y \), \(x^*(y) = \xi^*(q(y)) = \xi^*(0) = 0 \).

To see that \(\|x^*\| \geq 1 \), note that \(\|\xi^*\| = 1 \) and so we can find a sequence \((q(x_n))_{n=1}^\infty \) in \(X/Y \) with \(\|q(x_n)\| < 1 \) for all \(n \geq 1 \) and \(\lim_{n \to \infty} |\xi^*(q(x_n))| = 1 \).
Choose $y_n \in \mathcal{Y}$ so that $\|x_n + y_n\| < 1$ for all n. Then
\[
\lim_{n \to \infty} |x^*(x_n + y_n)| = \lim_{n \to \infty} |\xi^*(g(x_n + y_n))| = \lim_{n \to \infty} |\xi^*(g(x_n))| = 1.
\]
Hence $\|x^*\| \geq 1$, whence $\|x^*\| = 1$.

\[\square\]

THE SEPARATION THEOREMS

6.33. Proposition. Let (\mathcal{V}, T) be a LCS over the field \mathbb{K} and let $\varnothing \neq G \subset \mathcal{V}$ be an open, convex subset of \mathcal{V} with $0 \not\in G$. Then there exists a closed hyperplane \mathcal{M} in \mathcal{V} such that $G \cap \mathcal{M} = \varnothing$.

Proof. Let us first consider the case where $\mathbb{K} = \mathbb{R}$.

Fix $x_0 \in G$ and let $H = x_0 - G$. Then $H \in \mathcal{U}_{0}^{1}$ is open and convex. Let p_{H} denote the Minkowski functional on H. By Proposition 5.10, $H = \{ x \in \mathcal{V} : p_{H}(x) < 1 \}$.

Observe that $0 \not\in G$ implies that $x_0 \not\in H$. Thus $p_{H}(x_0) \geq 1$. Let $W = \mathbb{R}x_0$, and define $f : W \to \mathbb{R}$ via $f(kx_0) = kp_{H}(x_0)$. Clearly $f \in \mathcal{W}^{\#}$. Moreover,

- if $k \geq 0$, then $f(kx_0) = kp_{H}(x_0) = p_{H}(kx_0)$, while
- if $k < 0$, then $f(kx_0) = kp_{H}(x_0) < 0 \leq p_{H}(kx_0)$.

It follows from the Hahn-Banach Theorem 01 (Theorem 6.18) that there exists a linear functional $g : \mathcal{V} \to \mathbb{R}$ with $g|_{\mathcal{W}} = f$ and $g(x) \leq p_{H}(x)$ for all $x \in \mathcal{V}$. Suppose that $y \in H$. Then $\text{Re} \ g(y) = g(y) \leq p_{H}(y) < 1$.

By Proposition 6.12, g is continuous on \mathcal{V}. Thus $\mathcal{M} := \ker g$ is a closed hyperplane in \mathcal{V}. [Note: obviously $g \neq 0$ since $f \neq 0$.]

Suppose $z \in G$. Then $x_0 - z \in H$, so $g(x_0) - g(z) = g(x_0 - z) \leq p_{H}(x_0 - z) < 1$. On the other hand, $g(x_0) = f(x_0) = p_{H}(x_0) \geq 1$, and so
\[
g(z) > g(x_0) - 1 \geq 0, \text{ and } z \not\in \mathcal{M}.
\]
Thus $G \cap \mathcal{M} = \varnothing$.

Next, suppose that $\mathbb{K} = \mathbb{C}$.

Then \mathcal{V} is also an \mathbb{R}-linear space, and so as above we can find a continuous \mathbb{R}-linear functional $g_{\mathbb{R}} : \mathcal{V} \to \mathbb{R}$ so that $G \cap \ker g_{\mathbb{R}} = \varnothing$. Let $g_{\mathbb{C}}$ be the complexification of $g_{\mathbb{R}}$, $g_{\mathbb{C}}(x) = g_{\mathbb{R}}(x) - ig_{\mathbb{R}}(ix)$, $x \in \mathcal{V}$. By Lemma 6.6, $g_{\mathbb{C}}$ is a \mathbb{C}-linear functional and $g_{\mathbb{R}} = \text{Re} \ g_{\mathbb{C}}$.

Now $g_{\mathbb{C}}(x) = 0$ if and only if $g_{\mathbb{R}}(x) = g_{\mathbb{R}}(ix) = 0$. Let $\mathcal{M} = \ker g_{\mathbb{C}}$. Then $\mathcal{M} = \ker g_{\mathbb{R}} \cap [i \ker g_{\mathbb{R}}]$ is a closed \mathbb{C}-hyperplane in \mathcal{V} and $\mathcal{M} \cap G \subset \ker g_{\mathbb{R}} \cap G = \varnothing$.

6.34. Definition. An affine hyperplane \(M \) in a TVS \((V, T)\) is a translate of a hyperplane; that is, \(M \) is an affine hyperplane if there exists \(x \in M \) so that \(M - x \) is a hyperplane.

More generally, \(L \subseteq V \) is an affine manifold (resp. affine subspace) of \(V \) if there exists \(m \in L \) so that \(L - m \) is a manifold (resp. subspace) of \(V \).

We remark that if there exists \(m \in L \) so that \(L - m \) is a manifold in \(V \), then for all \(m \in L \) we must have \(L - m \) is a manifold. The verification of this is left to the reader.

6.35. Corollary. Let \((V, T)\) be a LCS and \(\varnothing \neq G \subseteq V \) be open and convex. If \(L \subseteq V \) is an affine subspace of \(V \) and \(L \cap G = \varnothing \), then there exists a closed, affine hyperplane \(Y \subseteq V \) so that \(L \subseteq Y \) and \(Y \cap G = \varnothing \).

Proof. Choose \(m \in L \) and let \(L_0 = L - m \), so that \(L_0 \) is a closed subspace of \(V \). Let \(G_0 = G - m \). Since \(L \cap G = \varnothing \), it follows that \(L_0 \cap G_0 = \varnothing \). Let \(q : V \rightarrow V/L_0 \) denote the canonical quotient map.

Since \(G \) is open, so is \(G_0 \). Since \(q \) is an open map (see paragraph 4.18), \(q(G_0) \) is open. Furthermore, \(G \) is convex and hence so are \(G_0 \) and \(q(G_0) \). Again, since \(L_0 \cap G_0 = \varnothing \), \(0 \notin q(G_0) \). By Proposition 6.33, there exists a closed hyperplane \(N_0 \) in \(V/L_0 \) so that \(N_0 \cap q(G_0) = \varnothing \). Let \(Y_0 = q^{-1}(N_0) \). It is routine to check that \(Y_0 \) is a linear manifold in \(V \), and \(Y_0 \) is closed since \(q \) is continuous. Moreover,

\[
\dim V/Y_0 = \dim(V/L_0)/(Y_0/L_0)
= \dim(V/L_0)/N_0
= 1,
\]

and so \(Y_0 \) is a closed hyperplane in \(V \) with \(L_0 \subseteq Y_0 \). Translating back, let \(Y = Y_0 + m \). Then \(Y \) is a closed affine hyperplane of \(V \), \(L \subseteq Y \) and if \(z \in Y \cap G \), then \(q(z - m) \in q(Y_0) \cap q(G_0) = N_0 \cap q(G_0) = \varnothing \), a contradiction.

6.36. Definition. Let \((V, T)\) be a TVS over the field \(\mathbb{R} \). By an open half-space (resp. closed half-space) we shall mean a subset \(S \subseteq V \) for which there exist a non-zero continuous linear functional \(f : V \rightarrow \mathbb{R} \) and \(k \in \mathbb{R} \) so that

\[
S = \{x \in V : f(x) > k\}
\]

(resp. \(S = \{x \in V : f(x) \geq k\} \)).

We say that two subsets \(A \) and \(B \) of \(V \) are separated if we can find closed half-spaces \(S_A \) and \(S_B \) so that \(A \subseteq S_A \), \(B \subseteq S_B \) and \(S_A \cap S_B \) is a closed affine hyperplane of \(V \). We say that \(A \) and \(B \) are strictly separated if we can find disjoint open half-spaces \(S_A \) and \(S_B \) with \(A \subseteq S_A \) and \(B \subseteq S_B \).

Note that if \(f \in V^\ast \) and \(k \in \mathbb{R} \), then \(S = \{x \in V : f(x) < k\} \) is also an open half-space, since \(g = -f \in V^\ast \) and \(S = \{x \in V : g(x) > -k\} \). A similar statement holds for closed half-spaces.
6.37. Example.

(a) Consider \mathbb{R}^2 equipped with the Euclidean norm. Let $A = \{(x, y) \in \mathbb{R}^2 : x < 0$ and $y \geq 1/x^2\}$, $B = \{(x, y) \in \mathbb{R}^2 : x > 0$ and $y \geq 1/x^2\}$. Then $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x$ defines a continuous linear functional on \mathbb{R}^2. Let $S_A = \{(x, y) \in \mathbb{R}^2 : f(x) < 0\}$ and $S_B = \{(x, y) \in \mathbb{R}^2 : f(x) > 0\}$. Then S_A, S_B are disjoint open half-spaces with $A \subseteq S_A$ and $B \subseteq S_B$. Hence A and B are strictly separated.

(b) With \mathbb{R}^2, f, S_A and S_B as above, set $C = \{(0, y) : y \in \mathbb{R}\}$. Then $A \subseteq \overline{S_A} = \{(x, y) \in \mathbb{R}^2 : f(x) \leq 0\}$, $C \subseteq \overline{S_B} = \{(x, y) \in \mathbb{R}^2 : f(x) \geq 0\}$ and $\overline{S_A}, \overline{S_B}$ are closed half-spaces for which $\overline{S_A} \cap \overline{S_B} = \{(x, y) \in \mathbb{R}^2 : x = 0\}$ is a closed (affine) hyperplane.

Thus A and C are separated. One can check that A and C are not strictly separated.

6.38. Theorem. The Hahn-Banach Theorem 04 - \mathbb{R}

Let (\mathcal{V}, T) be a LCS over \mathbb{R} and suppose that A and B are non-empty, disjoint, open, convex subsets of \mathcal{V}. Then A and B are strictly separated.

Proof. Let $G := A - B = \{a - b : a \in A, b \in B\}$. We claim that $\emptyset \neq G$ is open and convex. That $\emptyset \neq G$ is obvious as both A and B are non-empty. Since $G = \bigcup_{b \in B} A - b$, G is the union of open sets (each $A - b$ is a translate of the open set A), and thus G is open.

Suppose that $g_1 = a_1 - b_1$ and $g_2 = a_2 - b_2$ lie in G. Let $t \in [0, 1]$. Then

$$tg_1 + (1 - t)g_2 = [ta_1 + (1 - t)a_2] - [tb_1 + (1 - t)b_2].$$

Since A and B are convex, it follows that so is G. Observe that $A \cap B = \emptyset$ also implies that $0 \not\in G$.

It now follows from Proposition 6.33 that there exists a closed hyperplane \mathcal{M} in \mathcal{V} such that $\mathcal{M} \cap G = \emptyset$. Let f denote a continuous linear functional on \mathcal{V} such that $\ker f = \mathcal{M}$. (That a linear functional with this kernel exists was demonstrated in paragraph 6.9, and that it is continuous follows from Corollary 6.13.)

Now G is convex and f is linear, whence $f(G)$ is again convex. But $G \cap \ker f = \emptyset$, so $0 \not\in f(G)$ and hence either $f(x) > 0$ for all $x \in G$, or $f(x) < 0$ for all $x \in G$. By replacing f by $-f$ if necessary, we may assume that the first condition holds. If $a \in A, b \in B$, then $c = a - b \in G$, so $f(c) = f(a) - f(b) > 0$, i.e. $f(b) < f(a)$. We deduce that there exists $k \in \mathbb{R}$ so that

$$\sup\{f(b) : b \in B\} \leq k \leq \inf\{f(a) : a \in A\}.$$

Now A is open and hence $f(A)$ is open (check!). Similarly, $f(B)$ is open. Hence $f(b) < k < f(a)$ for all $a \in A, b \in B$. It follows that $S_A = \{x \in \mathcal{V} : f(x) > k\}$ and $S_B = \{x \in \mathcal{V} : f(x) < k\}$ are disjoint open half-spaces with $A \subseteq S_A$, $B \subseteq S_B$. Hence A and B are strictly separated.
6.39. Remark. If A were open but not B, then $G = \cup_{b \in B} A - b$ would still be a union of open sets and hence would still be open. The conclusion would be there there exist a continuous linear functional $g : \mathcal{V} \to \mathbb{R}$ and a constant $k \in \mathbb{R}$ such that $A \subseteq \{ x \in \mathcal{V} : g(x) > k \}$ and $B \subseteq \{ x \in \mathcal{V} : g(x) \leq k \}$.

6.40. Theorem. The Hahn-Banach Theorem 04 - \mathbb{C}

Let (\mathcal{V}, T) be a LCS over \mathbb{C} and suppose that $A, B \subseteq \mathcal{V}$ are non-empty, disjoint, open, convex subsets of \mathcal{V}. Then there exist a continuous \mathbb{C}-linear functional f on \mathcal{V} and $k \in \mathbb{R}$ so that

$$\mbox{Re} f(a) > k > \mbox{Re} f(b) \quad \text{for all } a \in A, b \in B.$$

Proof. Thinking of (\mathcal{V}, T) as a vector space over \mathbb{R}, we may apply Theorem 6.38 (i.e. the HB04-\mathbb{R}) above to obtain a continuous \mathbb{R}-linear functional $f_\mathbb{R} : \mathcal{V} \to \mathbb{R}$ and a constant $k \in \mathbb{R}$ so that

$$f_\mathbb{R}(a) > k > f_\mathbb{R}(b) \quad \text{for all } a \in A, b \in B.$$

Let $f_\mathbb{C}(x) = f_\mathbb{R}(x) - if_\mathbb{R}(ix)$ be the complexification of $f_\mathbb{R}$. By Lemma 6.6, $f_\mathbb{C}$ is continuous and

$$\mbox{Re} f(a) > k > \mbox{Re} f(b) \quad \text{for all } a \in A, b \in B.$$

Thus $f = f_\mathbb{C}$ is the desired \mathbb{C}-linear functional.

\[\square\]

6.41. Theorem. The Hahn-Banach Theorem 05

Let (\mathcal{V}, T) be a LCS and suppose that $A, B \subseteq \mathcal{V}$ are non-empty, disjoint, closed, convex subsets of \mathcal{V}. Suppose furthermore that B is compact. Then there are real numbers α, β and a continuous linear functional $f \in \mathcal{V}^*$ so that

$$\mbox{Re} f(a) \geq \alpha > \beta \geq \mbox{Re} f(b)$$

for all $a \in A, b \in B$. In particular, A and B are strictly separated.

Proof. Observe that $\mathcal{V} \setminus A$ is open and that $b \in B$ implies that $b \in \mathcal{V} \setminus A$. It follows from Corollary 5.15 that we can find a balanced, convex, open nbhd N_0 of 0 so that $b + N_0 \subseteq \mathcal{V} \setminus A$. The collection $\{ b + N_0 : b \in B \}$ is an open cover of B, and $\cup_{b \in B} b + N_0 \subseteq \mathcal{V} \setminus A$. Since B is compact, we can find a finite subcover $\{ b_j + N_{b_j} \}_{j=1}^n$ of B. Let $N_0 = \bigcap_{j=1}^n N_{b_j}$. Then $N_0 \in \mathcal{U}_0$, and $N := \frac{1}{3} N_0 \in \mathcal{U}_0$ is balanced, convex and open.

Let $A_0 = A + N = \{ a + n : a \in A, n \in N \}$ and $B_0 = B + N$. Clearly $A_0 \neq \emptyset \neq B_0$. Then $A_0 = \cup_{a \in A} a + N$ is open and similarly B_0 is open. If $a_1 + n_1, a_2 + n_2 \in A$ and $t \in [0, 1]$, then

$$t(a_1 + n_1) + (1-t)(a_2 + n_2) = (ta_1 + (1-t)a_2) + (tn_1 + (1-t)n_2) \in A + N,$$

since each of A and N is convex. Thus A_0, and similarly B_0, is convex.

Suppose $z \in A_0 \cap B_0$. Then there exists $a \in A, b \in B$ and $n_1, n_2 \in N$ so that $a + n_1 = b + n_2$. Thus $a = b + (n_2 - n_1)$. Now $n_1, n_2 \in N$ implies that $2n_2, -2n_1 \in N_0$.
since \(N = \frac{1}{3}N_0 \) and \(N_0 \) is balanced. Since \(N_0 \) is convex, \(\frac{1}{2}(2n_2) + \frac{1}{2}(-2n_1) = n_2 - n_1 \in N_0 \). Thus \(a \in b + N_0 \), contradicting the fact that \(b + N_0 \notin V \setminus A \). Hence \(A_0 \cap B_0 = \emptyset \).

By Theorem 6.40 (HB04-C), there exists \(f \in V^* \) and \(\alpha \in \mathbb{R} \) so that
\[
\Re f(a) > \alpha > \Re f(b)
\]
for all \(a \in A_0, b \in B_0 \).

But \(B \) is compact, and \(\Re f \) is continuous on \(B \), so that \(\beta = \sup \{ \Re f(b) : b \in B \} \) is attained at some point \(b_0 \in B \). Thus
\[
\Re f(a) > \alpha > \beta = \Re f(b_0) \geq \Re f(b)
\]
for all \(a \in A, b \in B \).

\[
\Box
\]

6.42. Corollary. Let \((V, T)\) be a LCS over \(\mathbb{R} \) and \(\emptyset \neq A \subseteq V \). Then the closed, convex hull of \(A \), \(\overline{\text{co}}(A) \), is the intersection of the closed half spaces that contain \(A \).

Proof. Let \(\Omega = \{ S : A \subseteq S, S \subseteq V \text{ is a closed half-space} \} \). Since each \(S \in \Omega \) is closed and convex, \(B = \cap_{S \in \Omega} S \) is again closed and convex. Clearly \(A \subseteq B \), and so the closed convex hull of \(A \) is also a subset of \(B \).

If \(z \notin \overline{\text{co}}(A) \), then \(\{ z \} \) and \(\overline{\text{co}}(A) \) are disjoint, non-empty, closed and convex subsets of \(V \). Since \(\{ z \} \) is compact, we can apply Theorem 6.41 (i.e. HB05) to obtain a linear functional \(f \in V^* \) and \(\alpha, \beta \in \mathbb{R} \) such that
\[
f(z) \geq \alpha > \beta \geq f(y)
\]
for all \(y \in \overline{\text{co}}(A) \). Thus if \(S_0 = \{ x \in V : f(x) \leq \beta \} \), then \(S_0 \) is a closed half-space of \(V \), \(A \subseteq \overline{\text{co}}(A) \subseteq S_0 \), and \(z \notin S_0 \). Thus \(\cap_{S \in \Omega} S \subseteq \overline{\text{co}}(A) \), proving that
\[
\overline{\text{co}}(A) = \cap_{S \in \Omega} S.
\]

\[
\Box
\]
Appendix to Section 6.

6.43. Corollary 6.30 admits an interesting interpretation. Given \((\mathcal{X}, \| \cdot \|)\) a NLS and \(x^* \in \mathcal{X}^*\), we do not in general expect \(x^*\) to achieve its norm. For example, if \(\mathcal{X} = c_0\), equipped with the supremum norm, and if
\[
x^*((x_n)_n) := \sum_n \frac{x_n}{2^n},
\]
then \(x^*\) has norm one, but there is no \(x = (x_n)_n \in c_0\) with \(\|x\| = 1\) and \(|x^*(x)| = \|x^*\| = 1\).

Nevertheless, Corollary 6.30 allows us to conclude that we may find \(x^{**} \in \mathcal{X}^{**}\) with \(\|x^{**}\| = 1\) for which \(|x^{**}(x^*)| = 1\). If \(\hat{\mathcal{J}} : \mathcal{X}^* \to \mathcal{X}^{**}\) is the canonical embedding of \(\mathcal{X}^*\) into its second dual, then \(\|\hat{x}^*\| = 1\) by Corollary 6.31 and
\[
|\hat{x}^*(x^{**})| = |x^{**}(x^*)| = 1 = \|\hat{x}^*\|.
\]

One can think of this as saying that the domain of \(x^*\) is not “large enough” to allow \(x^*\) to attain its norm, but that \(\mathcal{X}^{**}\) extends the domain of \(x^*\) enough to allow the extension \(\hat{x}^*\) of \(x^*\) to attain its norm. Of course, given an arbitrary \(z^{**} \in \mathcal{X}^{**}\), it need not attain its norm at an element of \(\mathcal{X}^{**}\) and so – unless \(\mathcal{X}^*\) is reflexive – the game is once again afoot.

6.44. The proof of Proposition 6.33 also gives us an indication of how one may try to interpret the Hahn-Banach Theorem 01, namely Theorem 6.18, geometrically.

Let \(\mathcal{V}\) be a vector space over \(\mathbb{R}\) and let \(p\) be a sublinear functional on \(\mathcal{V}\). Suppose that \(\mathcal{M}\) is a linear manifold in \(\mathcal{V}\) and \(f : \mathcal{M} \to \mathbb{R}\) is a linear functional with \(f(m) \leq p(m)\) for all \(m \in \mathcal{M}\).

Let \(H = \{x \in \mathcal{V} : p(x) < 1\}\). It is routine to verify that \(H\) is convex. Since \(0 \neq f\), there exists \(m_0 \in \mathcal{M}\) such that \(f(m_0) > 1\). This forces \(p(m_0) \geq f(m_0) > 1\), and so \(m_0 \not\in H\). Let \(K = m_0 - H = \{m_0 - h : h \in H\}\). Clearly \(K\) is also convex. Since \(m_0 \not\in H\), \(0 \not\in K\). In fact, we claim that \(K \cap \ker f = \emptyset\).

Suppose otherwise: let \(k \in K \cap \ker f\). Then \(k \in \mathcal{M}\) and \(k = m_0 - h\) for some \(h \in H\), which forces \(h \in H \cap \mathcal{M}\), since \(k, m_0 \in \mathcal{M}\). But
\[
0 = f(k) = f(m_0 - h) = f(m_0) - f(h) > 1 - p(h) > 0,
\]
a contradiction. Thus \(K \cap \ker f = \emptyset\). Theorem 6.18 then says that we can extend \(f\) to a linear functional \(g : \mathcal{V} \to \mathbb{R}\) with \(g|_{\mathcal{M}} = f\), such that
\[
g(x) \leq p(x)\text{ for all } x \in \mathcal{V}.
\]

A similar analysis to that above shows that \(K \cap \ker g = \emptyset\). In other words, one can translate the “unit ball” \(H\) of \(\mathcal{V}\) (as measured by the sublinear functional \(p\) – note, \(p\) doesn’t even have to be a non-negative-valued function, and hence the interpretation of \(H\) as a “unit ball” here is very, very loose) so that it doesn’t
intersect the linear manifold \(\ker f \) in such a way that the manifold may be extended to a hyperplane \((\ker g)\) which also doesn’t intersect the translation.

This is only intended as a heuristic. Proposition 6.33 shows how to correctly use HB01, i.e. Theorem 6.18, to obtain an interesting geometric result in locally convex spaces.

There is less in this than meets the eye.

Tallulah Bankhead
7. Weak topologies and dual spaces

Last week I stated that this woman was the ugliest woman I had ever seen. I have since been visited by her sister and now wish to withdraw that statement.

Mark Twain

7.1. In Remarks 5.27, we observed that if \(\mathcal{V} \) is a vector space over \(\mathbb{K} \), if \((\mathbb{X}_\alpha, \| \cdot \|_\alpha)_{\alpha \in A} \) is a family of normed linear spaces, and if for each \(\alpha \in A \) we have a linear map \(T_\alpha : \mathcal{V} \to \mathbb{X}_\alpha \), then each

\[
p_\alpha : \mathcal{V} \to \mathbb{R}, \quad x \mapsto \|T_\alpha x\|
\]

is a seminorm. Furthermore, if \(\{T_\alpha\}_{\alpha \in A} \) is separating – i.e. for each \(0 \neq x \in \mathcal{V} \), there exists \(\alpha_0 \in A \) so that \(T_{\alpha_0} x \neq 0 \) – then the family \(\Gamma = \{p_\alpha\}_{\alpha \in A} \) is a separating family of seminorms. Finally, we saw there that the LCS topology on \(\mathcal{V} \) generated by \(\Gamma \) was nothing more (nor was it anything less) than the weak topology generated by \(\{T_\alpha\}_{\alpha \in A} \).

Let us now consider the following special instance of this phenomenon. Again, we begin with a vector space \(\mathcal{V} \) over \(\mathbb{K} \), and we assume that we are given a separating family \(\Omega \subseteq \mathcal{V}^\# \). Of course, for each \(\varrho \in \Omega \), we have

\[
\varrho : \mathcal{V} \to \mathbb{K},
\]

and \((\mathbb{K}, |\cdot|) \) is a normed linear space. Since \(\Omega \) was assumed to be separating for \(\mathcal{V} \), the family \(\Gamma = \{\tau_\varrho : \varrho \in \Omega\} \) of functions defined by

\[
\tau_\varrho(x) = |\varrho(x)|, \quad x \in \mathcal{V},
\]

is a separating family of seminorms which generates a LCS topology on \(\mathcal{V} \). From above, this topology coincides with the weak topology generated by \(\Omega \), and we shall denote it by \(\sigma(\mathcal{V}, \Omega) \).

Thus a base for the \(\sigma(\mathcal{V}, \Omega) \) topology on \(\mathcal{V} \) is given by

\[
\mathcal{B} = \{N(x, F, \varepsilon) : x \in \mathcal{V}, \varepsilon > 0, F \subseteq \Omega \text{ finite}\},
\]

where for each \(x, F \) and \(\varepsilon > 0 \) as above,

\[
N(x, F, \varepsilon) = \{y \in \mathcal{V} : \tau_\varrho(x - y) = |\varrho(x) - \varrho(y)| < \varepsilon, \varrho \in F\}.
\]

In particular, a net \((x_\lambda)_{\lambda \in \Lambda} \) in \((\mathcal{V}, \sigma(\mathcal{V}, \Omega)) \) converges to \(x \in \mathcal{V} \) if and only if

\[
\lim_\lambda \tau_\varrho(x_\lambda - x) = \lim_\lambda |\varrho(x_\lambda) - \varrho(x)| = 0,
\]

or equivalently,

\[
\lim_\lambda \varrho(x_\lambda) = \varrho(x)
\]

for all \(\varrho \in \Omega \).
7.2. **Definition.** Let \mathcal{V} be a vector space over \mathbb{K}, and suppose that $\mathcal{L} \subseteq \mathcal{V}^*$ is both a linear manifold and a separating family of linear functionals. We say that $(\mathcal{V}, \mathcal{L})$ is a **dual pair**.

7.3. **Example.** Suppose that (\mathcal{V}, T) is a LCS and that $\mathcal{L} = \mathcal{V}^*$. By Corollary 6.23, \mathcal{L} separates points of \mathcal{V} and hence $(\mathcal{V}, \mathcal{V}^*)$ is a dual pair. The $\sigma(\mathcal{V}, \mathcal{V}^*)$ topology is sufficiently important to merit its own name, and we refer to it as the **weak topology** on \mathcal{V}. If $(x_\lambda)_\lambda$ is a net in \mathcal{V} which converges to some x in the weak topology, we say that $(x_\lambda)_\lambda$ **converges weakly** to x.

Suppose that $(x_\lambda)_\lambda$ is a net in \mathcal{V} which converges to $x \in \mathcal{V}$ in the initial topology T. For any $f \in \mathcal{V}^*$, the fact that f is continuous implies that

$$\lim_{\lambda} f(x_\lambda) = f(x).$$

Thus $(x_\lambda)_\lambda$ converges to x weakly. It follows that the weak topology on \mathcal{V} induced by \mathcal{V}^* is weaker than the initial topology: in other words, $\sigma(\mathcal{V}, \mathcal{V}^*) \subseteq T$.

Let (V, \mathcal{L}) be a dual pair. By Paragraph 7.1, each $\rho \in \mathcal{L}$ is continuous on V relative to the $\sigma(\mathcal{V}, \mathcal{L})$ topology. Our present goal is to show that these are the only $\sigma(\mathcal{V}, \mathcal{L})$-continuous linear functionals on V.

7.4. **Theorem.** Let (V, \mathcal{L}) be a dual pair. Then

$$\mathcal{L} = (V, \sigma(V, \mathcal{L}))^*.$$

Proof. That \mathcal{L} is contained in $(V, \sigma(V, \mathcal{L}))^*$ was shown in Paragraph 7.1.

Suppose now that $\mu \in V^*$ is $\sigma(V, \mathcal{L})$-continuous. Then the map $p_\mu : V \to \mathbb{R}$ satisfying $p_\mu(x) = |\mu(x)|$ defines a $\sigma(\mathcal{V}, \mathcal{L})$-continuous seminorm on \mathcal{V}. By Proposition 5.29, there exist $\rho_1, \rho_2, \ldots, \rho_n \in \mathcal{L}$ and $0 < \kappa \in \mathbb{R}$ so that

$$p_\mu(x) = |\mu(x)| \leq \kappa \max(|\rho_1(x)|, |\rho_2(x)|, \ldots, |\rho_n(x)|) \text{ for all } x \in \mathcal{V}.$$

It follows that $\ker \mu \supseteq \cap_{j=1}^n \ker \rho_j$. By Proposition 6.7, $\mu \in \text{span } \{\rho_j\}_{j=1}^n \subseteq \mathcal{L}$. \hfill \Box

7.5. **Remark.**

- We first remark that if $\Omega \subseteq \mathcal{V}^*$ is a separating family of linear functionals but is not a linear manifold, then after setting $\mathcal{L} = \text{span } \Omega$, one can verify that the $\sigma(\mathcal{V}, \mathcal{L})$-topology on \mathcal{V} agrees with the $\sigma(\mathcal{V}, \Omega)$-topology, and hence that

$$\mathcal{L} = (\mathcal{V}, \sigma(\mathcal{V}, \Omega))^*.$$

- It follows from Theorem 7.4 that the only weakly continuous linear functionals on a locally convex space (\mathcal{V}, T) are the elements of $(\mathcal{V}, T)^*$.
7.6. Definition. Suppose that \((V, T)\) is a LCS. Then \(V^* \subseteq V^\#\) is a vector space over \(\mathbb{K}\). For each \(x \in V\), define
\[
\widehat{x} : V^* \to \mathbb{K} \\
\rho \mapsto \widehat{x}(\rho) := \rho(x).
\]
Then \(\widehat{V} := \{\widehat{x} : x \in V\}\) is a linear manifold in \((V^*)^\#\). If \(0 \neq \rho \in V^*\), then obviously there exists \(x \in V\) such that \(\rho(x) \neq 0\). In other words, \(\widehat{V}\) is a separating family of linear functionals on \(V^*\). Hence \((V^*, \widehat{V})\) is a dual pair.

By convention, the weak topology on \(V^*\) induced by the family \(\widehat{V}\) is usually denoted by \(\sigma(V^*, V)\) (as opposed to \(\sigma(V^*, \widehat{V})\)), and is referred to as the \textbf{weak*-topology} on \(V^*\).

7.7. Remark. It follows that a base for the weak*-topology on \(V^*\) is given by
\[
\mathcal{B} = \{N(\varphi, F, \varepsilon) : \varphi \in V^*, \varepsilon > 0, F \subseteq V \text{ finite}\},
\]
where
\[
N(\varphi, F, \varepsilon) = \{\rho \in V^* : |\widehat{x}(\rho - \varphi)| = |\rho(x) - \varphi(x)| < \varepsilon, x \in F\}.
\]
Moreover, a net \((\rho_\lambda)_\lambda\) in \(V^*\) converges in the weak*-topology to a functional \(\rho \in V^*\) if and only if \(\lim_\lambda \rho_\lambda(x) = \rho(x)\) for all \(x \in V\). In other words, convergence in the weak*-topology on \(V^*\) is convergence at every point of \(V\).

By Theorem 7.4, a functional \(\varphi\) is weak*-continuous on \(V^*\) if and only if \(\varphi = \widehat{x}\) for some \(x \in V\).

7.8. Proposition. Let \((V, T_V)\) and \((W, T_W)\) be locally convex spaces, and suppose that \(T : (V, T_V) \to (W, T_W)\) is a continuous linear operator. Then \(T\) is continuous as a linear map between \(V\) and \(W\) when they are equipped with their respective weak topologies.

Proof. Suppose that \((x_\lambda)_\lambda\) is a net in \(V\) which converges weakly to \(x \in V\). We must show that the net \((Tx_\lambda)_\lambda\) converges weakly to \(Tx\) in \(W\). Now, if \(\rho \in W^*\), then \(\rho \circ T\) is continuous with respect to the \(T_V\) topology on \(V\), and hence \(\rho \circ T \in V^*\). But the weakly continuous linear maps on \(V\) coincide with \(V^*\), and therefore \(\rho \circ T\) is weakly continuous on \(V\), i.e. \(\lim_\lambda \rho \circ T(x_\lambda) = \rho \circ T(x)\), as was to be shown.

When \(V\) is a LCS and \(C \subseteq V\) is convex, we get a particularly nice result concerning the weak topology.

7.9. Theorem. Let \(C\) be a convex set in a LCS \((V, T)\). Then the closure of \(C\) in \((V, T)\) coincides with its weak closure in \((V, \sigma(V, V^*))\).

Proof. First observe that we can always view \((V, T)\) and \((V, \sigma(V, V^*))\) as locally convex spaces over \(\mathbb{R}\). Since \(C\) is assumed to be convex already, Corollary 6.42 implies that the closure of \(C\) in \((V, T)\) (resp. in \((V, \sigma(V, V^*))\)) is the intersection of the \(T\)-closed (resp. \(\sigma(V, V^*)\)-closed) half spaces which contain \(C\).

But a closed half space in a LCS corresponds to (a constant and) a continuous linear functional on that space. Since \((V, T)\) and \((V, \sigma(V, V^*))\) share the same dual
space, namely Y^*, it follows that they also share the same closed half-spaces, and hence the closure of C in these two topologies must coincide.

\[\square \]

7.10. Let $(X, \| \cdot \|)$ be a Banach space. Recall from Proposition 2.18 that the canonical embedding

\[J : X \rightarrow X^{**} \]

where $\hat{x}(x^*) := x^*(x)$ for all $x^* \in X^*$, is a contractive map. In Corollary 6.31 we saw that – as a consequence of the Hahn-Banach Theorem – J is in fact an isometry.

By Theorem 7.4 and Remark 7.5, $J(X)$ corresponds exactly to the weak* continuous linear functionals on X^*.

7.11. Proposition. Let X be a finite-dimensional Banach space. Then the norm, weak and weak* topologies on X all coincide.

Proof. First we must decide what we mean by the weak* topology on X. Observe that if $\dim X = n < \infty$, then $\dim X^* = n$ as well, and thus $\dim X^{**} = n = \dim X$. Since $J : X \rightarrow X^{**}$ is a linear isometry, it must be a bijection in this case and therefore we can identify X with $X^{**} = (X^*)^*$. In this sense $X \simeq J(X)$ comes equipped with a weak*-topology induced by X^*, namely the $\sigma(J(X), X^*)$-topology. But since we are identifying X with $J(X) = X^{**}$, this is really just the $\sigma(X, X^*)$-topology, namely the weak topology on X.

Since the weak and the norm topologies on X are both TVS topologies, and since finite-dimensional vector spaces admit a unique TVS topology, we see that all three topologies cited above must coincide.

\[\square \]

We now wish to examine some of the properties of the weak and weak* topologies in the context of normed linear spaces. We shall first require a result from Real Analysis, which we shall then adapt to the setting of normed linear spaces.

7.12. Theorem. The Uniform Boundedness Principle

Let (X, d) be a complete metric space and let $H \subseteq C(X, \mathbb{K})$ be a non-empty family of continuous functions on X such that for each $x \in X$,

\[M_x := \sup_{h \in H} |h(x)| < \infty. \]

Then there exists an open set $G \subseteq X$ and a constant $M > 0$ so that \[|h(x)| \leq M \text{ for all } h \in H, x \in G. \]

Proof. For each $m \geq 1$, let $E_{m,h} = \{ x \in X : |h(x)| \leq m \}$, and let $E_m = \cap_{h \in H} E_{m,h}$. Since each $E_{m,h}$ is closed (as $h \in H$ implies that h is continuous), so is E_m. Also, for any $x \in X$, there exists $m > M_x$, and so $x \in E_m$. Thus

\[X = \bigcup_{m=1}^{\infty} E_m. \]
Since X is complete, the Baire Category Theorem implies the existence of $k \geq 1$ so that the interior $\text{int} (E_k)$ of E_k is non-empty. This clearly leads to the desired conclusion.

7.13. Corollary. The Uniform Boundedness Principle - Banach space version

Let $(\mathcal{X}, \| \cdot \|_{\mathcal{X}})$ and $(\mathcal{Y}, \| \cdot \|_{\mathcal{Y}})$ be Banach spaces and let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X}, \mathcal{Y})$ denote a family of continuous linear operators from \mathcal{X} to \mathcal{Y}. Suppose that for each $x \in \mathcal{X}$, we have

$$M_x := \sup \{ \|Tx\| : T \in \mathcal{A} \} < \infty.$$

Then

$$\sup \{ \|T\| : T \in \mathcal{A} \} < \infty.$$

Proof. For each $T \in \mathcal{A}$, let $p_T : \mathcal{X} \rightarrow \mathbb{R}$ be the continuous seminorm given by $p_T(x) = \|Tx\|$. Since \mathcal{X} is complete, the metric space version of the Uniform Boundedness Principle (Theorem 7.12) implies that there exists an open set $\emptyset \neq G \subseteq \mathcal{X}$ and a constant $M > 0$ so that

$$\|Tx\| \leq M \quad \text{for all } T \in \mathcal{A}, x \in G.$$

Now $\emptyset \neq G$ open implies that there exists $z \in G$ and $\delta > 0$ so that $V_\delta(z) = \{x \in \mathcal{X} : \|x - z\| < \delta \} \subseteq G$. Consider $y \in V_\delta(0)$ and $T \in \mathcal{A}$.

Then

$$\|Ty\| \leq \|T(y + z)\| + \| - Tz\|$$
$$\leq M + \|Tz\|$$
$$\leq 2M,$$

as z and $y + z \in G$. It follows that if $x \in \mathcal{X}, \|x\| \leq 1$, then

$$\frac{\delta}{2} \|Tx\| = \|T(\frac{\delta}{2}x)\| \leq M + \|Tz\| \leq 2M,$$

and hence that

$$\|Tx\| \leq \frac{2}{\delta} (2M), \quad T \in \mathcal{A}.$$

That is,

$$\sup \{ \|T\| : T \in \mathcal{A} \} \leq \frac{4M}{\delta}.$$

□
7.14. **Corollary.** Let X be a Banach space and $S \subseteq X$. Then S is bounded if and only if for all $x^* \in X^*$,

$$\sup\{|x^*(s)| : s \in S\} < \infty.$$

Proof. Suppose that S is bounded by $M > 0$. If $x^* \in X^*$, then $|x^*(s)| \leq \|x^*\| \|s\| \leq M \|x^*\| < \infty$.

Conversely, if $\sup\{|x^*(s)| : s \in S\} < \infty$, then $\sup\{|\hat{s}(x^*)| : s \in S\} < \infty$ for all $x^* \in X^*$. By the Uniform Boundedness Principle,

$$\sup\{\|\hat{s}\| : s \in S\} = \sup\{\|s\| : s \in S\} < \infty.$$

\[\Box\]

7.15. **Corollary.** Let X be a Banach space and $S \subseteq X^*$. Then S is bounded if and only if for all $x \in X$,

$$\sup\{|s^*(x)| : s^* \in S\} < \infty.$$

Proof. This is an immediate consequence of the Uniform Boundedness Principle, Theorem 7.13.

\[\Box\]

7.16. **Theorem. The Banach-Steinhaus Theorem**

Let X and Y be Banach spaces and suppose that $\{T_n\}_{n=1}^\infty \subseteq B(X, Y)$ is a sequence which satisfies the property that for each $x \in X$, there exists $y_x \in Y$ so that

$$\lim_{n \to \infty} T_n x = y_x.$$

Then the map $T : X \to Y$ defined by $Tx = y_x$ is a bounded linear map, and $\sup_n \|T_n\| < \infty$.

Proof. For each $x \in X$, we have that $\{T_n x\}_{n=1}^\infty$ converges to some y_x, and therefore it is bounded. That is, $\sup_{n \geq 1} \|T_n x\| < \infty$ for each $x \in X$. By the Uniform Boundedness Principle, $M := \sup_{n \geq 1} \|T_n\| < \infty$.

Let $Tx := \lim_n T_n x$, for each $x \in X$. Linearity of T is readily checked. Also,

$$\|T\| \leq \sup_{n \geq 1} \|T_n\| \leq \left(\sup_{n \geq 1} \|T_n\|\right) \|x\| \leq M \|x\|, \quad x \in X.$$

Hence $\|T\| \leq M < \infty$, and T is bounded.

\[\Box\]

In general, we do not expect weak topologies to be determined by sequential convergence. If we do have weak convergence of a sequence, therefore, something strong is implied.
7.17. Proposition. Let X be a Banach space.

(a) If $(x_n)_{n=1}^\infty$ is a sequence which converges weakly to $x \in X$, then

\begin{enumerate}[(i)]
 \item $\sup \|x_n\| < \infty$; and
 \item $\|x\| \leq \liminf \|x_n\|$.
\end{enumerate}

(b) If $(y_n^*)_{n=1}^\infty$ is a sequence which converges in the weak*-topology to $y^* \in X^*$, then

\begin{enumerate}[(i)]
 \item $\sup \|y_n^*\| < \infty$; and
 \item $\|y^*\| \leq \liminf \|y_n^*\|$.
\end{enumerate}

Proof.

(a) (i) For each $x^* \in X^*$, $\lim_{n \to \infty} x^*(x_n) = x^*(x)$. It follows that the sequence $(x^*(x_n))_{n=1}^\infty$ is bounded for each $x^* \in X^*$. By Corollary 7.14, $(x_n)_{n=1}^\infty$ is bounded.

(ii) If we choose $x^* \in X^*$ with $\|x^*\| = 1$ so that $|x^*(x)| = \|x\|$, then $\|x\| = |x^*(x)| = |\lim_{n \to \infty} x^*(x_n)| \leq \liminf \|x^*\| \|x_n\| = \liminf \|x_n\|$.

(b) (iii) For each $x \in X$, $\lim_{n \to \infty} y_n^*(x) = \lim_{n \to \infty} \tilde{x}(y_n^*) = \tilde{x}(y^*) = y^*(x)$, so that $(y_n^*(x))_{n=1}^\infty$ is bounded. By the Uniform Boundedness Principle, $\sup_{n \geq 1} \|y_n^*\| < \infty$.

(iv) Fix $\varepsilon > 0$. Choose $y \in X$ such that $\|y\| = 1$, and $|y^*(y)| \geq \|y^*\| - \varepsilon$. Then

\begin{align*}
\|y^*\| - \varepsilon &\leq |y^*(y)| \\
&= |\tilde{y}(y^*)| \\
&\leq \lim_{n \to \infty} |\tilde{y}(y_n^*)| \\
&\leq \liminf \|\tilde{y}\| \|y_n^*\| \\
&= \liminf \|y_n^*\|
\end{align*}

for all $\varepsilon > 0$. Hence

$$\|y^*\| \leq \liminf \|y_n^*\|.$$

\hfill \Box

It is worth pointing out that by Theorem 7.9, if $(x_n)_{n=1}^\infty$ converges weakly to x, then $x \in \overline{\text{co}}\{x_n\}_{n=1}^\infty$, since the latter is a convex set in X, closed in the norm (and hence in the weak) topology.

Before considering our next example, let us first recall a result from Measure Theory, alternately referred to as the Riesz Representation Theorem or the Riesz-Markov Theorem.

7.18. Theorem. Let X be a locally compact, Hausdorff topological space, and denote by $\mathcal{M}(X)$ the space of \mathbb{K}-valued, finite, regular, Borel measures on X, equipped with the total variation norm: $\|\mu\| = |\mu|(X)$.
If $\mu \in \mathcal{M}(X)$, then $\beta_\mu : C_0(X, \mathbb{K}) \to \mathbb{K}$ given by $\beta_\mu(f) = \int_X f \, d\mu$ is an element of $C_0(X, \mathbb{K})^*$, and the map $\Theta : \mathcal{M}(X) \to C_0(X, \mathbb{K})^*$ is an isometric linear isomorphism.

For example, if $X = \mathbb{N}$ with counting measure, then $C_0(X, \mathbb{K}) = c_0(\mathbb{N}, \mathbb{K})$ and $\mathcal{M}(X) = \ell^1(\mathbb{N}, \mathbb{K})$.

When $X = [0, 1]$, we can in turn identify $\mathcal{M}([0, 1]) = C([0, 1], \mathbb{K})^*$ with the space $BV[0, 1]$ of left-continuous functions of bounded variation on $[0, 1]$.

7.19. Proposition. Let X be a compact, Hausdorff space. Then a sequence $\{f_n\}_{n=1}^\infty$ in $C(X)$ converges weakly to $f \in C(X)$ if and only if

(i) $\sup_n \|f_n\| < \infty$; and

(ii) For each $x \in X$, $(f_n(x))_{n=1}^\infty$ converges to $f(x)$.

Proof. Suppose first that $\{f_n\}_{n=1}^\infty$ converges weakly to f. By Proposition 7.17, $\sup_n \|f_n\| < \infty$. Let $\delta_x : C(X) \to \mathbb{K}$ be the evaluation functional, $\delta_x(f) = f(x)$ for all $x \in X$. Then δ_x is linear and for $f \in C(X)$, $|\delta_x(f)| = |f(x)| \leq \|f\|$, so that $\|\delta_x\| \leq 1$ and $\delta_x \in C(X)^*$. (In fact, δ_x corresponds to the point mass measure at x.)

Thus $\lim_{n \to \infty} \delta_x(f_n) = \delta_x(f)$, i.e. $\lim_{n \to \infty} f_n(x) = f(x)$.

Conversely, suppose that (i) and (ii) hold. If $\rho \in C(X)^*$, then by the Riesz Representation Theorem above, there exists $\mu \in \mathcal{M}(X)$ with $\|\mu\| = \|\rho\|$ so that

$$\rho(f) = \int_X f \, d\mu,$$

for all $f \in C(X)$. By the Lebesgue Dominated Convergence Theorem,

$$\rho(f) = \int_X f \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu = \lim_{n \to \infty} \rho(f_n).$$

In other words, $(f_n)_n$ converges weakly to f.

\[\Box\]

7.20. Theorem. Tychonoff’s Theorem

Suppose that (X_λ, T_λ) is a non-empty collection of compact, topological spaces. Then $X = \prod_\lambda X_\lambda$ is compact in the product topology.

Proof. Recall from Real Analysis that it suffices to prove that if \mathcal{F} is a collection of closed subsets of X with the Finite Intersection Property (FIP), then $\cap \{F : F \in \mathcal{F}\} \neq \emptyset$. To that end, let \mathcal{F} be a collection of closed subsets of X with the FIP.

Let $\mathcal{J} = \{J \subseteq \mathcal{P}(X) : \mathcal{F} \subseteq J$ and J has the FIP\}$, partially ordered by inclusion, so that $J_1 \subseteq J_2$ if $J_1 \subseteq J_2$. Since $\mathcal{F} \in \mathcal{J}$, $\mathcal{J} \neq \emptyset$. Suppose that $\mathcal{C} = \{J_\lambda\}_\lambda$ is a chain in \mathcal{J}. Clearly $\mathcal{F} \subseteq \mathcal{K} := \bigcup_\lambda J_\lambda$, and if $H_1, H_2, ..., H_m \in \mathcal{K}$, then the fact that \mathcal{C} is totally ordered implies that there exists λ_0 so that $H_1, H_2, ..., H_m \in \mathcal{J}_{\lambda_0}$. Since \mathcal{J}_{λ_0} has the FIP, $\bigcap_{i=1}^\infty H_i \neq \emptyset$. Thus \mathcal{K} has the FIP, and so $\mathcal{K} \in \mathcal{J}$ is an upper bound for \mathcal{C}. By Zorn’s Lemma, \mathcal{J} admits a maximal element, say \mathcal{M}.

We make two observations: first, if we set $\mathcal{M}_0 = \{\bigcap_{k=1}^r M_k : M_k \in \mathcal{M}, 1 \leq k \leq r, r \geq 1\}$, then the elements of \mathcal{M}_0 are finite intersections of elements of \mathcal{M}. It
follows that \mathcal{M}_0 has the FIP. Moreover, $\mathcal{F} \subseteq \mathcal{M}_0$. Since $\mathcal{M} \subseteq \mathcal{M}_0$, the maximality of \mathcal{M} implies that $\mathcal{M} = \mathcal{M}_0$. In other words, finite intersections of elements of \mathcal{M} lie in \mathcal{M}.

Second, if $R \subseteq X$ and $R \cap M \neq \emptyset$ for all $M \in \mathcal{M}$, then $\mathcal{F} \subseteq \mathcal{M} \subseteq \mathcal{M} \cup \{R\}$ and $\mathcal{M} \cup \{R\}$ has the FIP. Again, the maximality of \mathcal{M} implies that $R \in \mathcal{M}$.

Our goal now is to prove that $\cap \{\overline{M} : M \in \mathcal{M}\} \neq \emptyset$. Since $\cap \{F : F \in \mathcal{F}\} \supseteq \cap \{\overline{M} : M \in \mathcal{M}\}$, this will suffice to prove the Theorem.

For each λ, let $\pi : X \to X_{\lambda}$ denote the canonical projection map. Then $\emptyset \neq \mathcal{M}_{\lambda} := \{\pi_{\lambda}(M) : M \in \mathcal{M}\}$ is a family of subsets of X_{λ} with the FIP. Since X_{λ} is compact, $\cap \{\overline{\pi_{\lambda}(M)} : M \in \mathcal{M}\} \neq \emptyset$. Choose $x_{\lambda} \in \cap \{\overline{\pi_{\lambda}(M)} : M \in \mathcal{M}\}$, and let $x = (x_{\lambda})_{\lambda}$. We want to show that $x \in \cap \{\overline{M} : M \in \mathcal{M}\}$.

To do this, we must show that $G \in U^X_x$ implies $G \cap M \neq \emptyset$ for all $M \in \mathcal{M}$. Clearly it suffices to do this when G is a basic nbhd of x, say

$$G = \cap_{j=1}^n \pi^{-1}_{\lambda_j}(U_j),$$

where $U_j \subseteq X_j$ is open, $1 \leq j \leq n$. Now for any $\lambda_0 \in \Lambda$ and $x_{\lambda_0} \in U_{\lambda_0} \subseteq T_{\lambda_0}$, $x_{\lambda_0} \in \pi^{-1}_{\lambda_0}(\overline{M})$ for all $M \in \mathcal{M}$ implies that $U_{\lambda_0} \cap \pi^{-1}_{\lambda_0}(M) \neq \emptyset$ for all $M \in \mathcal{M}$.

But then $\pi^{-1}_{\lambda_0}(U_{\lambda_0}) \cap M \neq \emptyset$ whenever $x_{\lambda_0} \in U_{\lambda_0} \subseteq X_{\lambda_0}$ is open. By maximality of \mathcal{M} and the second observation above, $\pi^{-1}_{\lambda_0}(U_{\lambda_0}) \in \mathcal{M}$. Since \mathcal{M} is closed under finite intersections by the first observation,

$$G = \cap_{j=1}^n \pi^{-1}_{\lambda_j}(U_j) \in \mathcal{M}$$

whenever G is a basic nbhd of x.

Thus $x \in \cap \{\overline{M} : M \in \mathcal{M}\}$, and we are done.

\[\square\]

7.21. Theorem. The Banach-Alaoglu Theorem

Let X be a Banach space. Then the closed unit ball $X^*_1 := \{x^* \in X^* : \|x^*\| \leq 1\}$ of X^* is weak*-compact.

Proof. For each $x \in X$, $x^* \in X^*_1$, we have

$$|\hat{x}(x^*)| = |x^*(x)| \leq \|x^*\| \|x\| \leq \|x\|.$$

Thus $\hat{x}(X^*_1) \subseteq D_x := \{z \in \mathbb{K} : |z| \leq \|x\|\}$. Now each such D_x is compact, and so by Tychonoff’s Theorem above,

$$D := \prod_{x \in \mathcal{X}} D_x$$

is also compact in the product topology. To complete the proof, we shall show that X^*_1 is homeomorphic to a closed, and therefore compact, subset of D.

Define

$$\Phi : X^*_1 \to D$$

$$f \mapsto (\hat{\phi}(f))_{x \in \mathcal{X}} = (\hat{x}(f))_{x \in \mathcal{X}}.$$

Clear Φ is injective. Now a net $(f_\lambda)_{\lambda \in \Lambda}$ converges weak* to f if and only if

$$\lim_{\lambda} f_\lambda(x) = \lim_{\lambda} \hat{x}(f_\lambda) = \hat{x}(f) = f(x) \text{ for all } x \in \mathcal{X},$$

and so

$$\lim_{\lambda} \phi(f_\lambda) = \lim_{\lambda} (\hat{x}(f_\lambda))_{x \in \mathcal{X}} = (\hat{x}(f))_{x \in \mathcal{X}}.$$

This completes the proof. \[\square\]
that is, if and only if \(\lim\lambda \Phi(f_\lambda) = \Phi(f) \).

Thus \(X_1^* \) is homeomorphic to \(\Phi(X_1^*) \). There remains to show that \(\Phi(X_1^*) \) is closed in \(D \).

Suppose that \((f_\lambda) \) is a net in \(X_1^* \), and that \((\Phi(f_\lambda))_\lambda \) converges to \(d = (d_x)_{x \in X} \in D \). Then
\[
\lim\limits_\lambda f_\lambda(x) = d_x \quad \text{for all} \quad x \in X.
\]
Define \(f(x) := d_x, \ x \in X \). Then \(f \) is linear since each \(f_\lambda \) is, and
\[
|f(x)| = |d_x| \leq \|x\| \quad \text{for all} \quad x \in X,
\]
so that \(f \in X_1^* \). Clearly \(\Phi(f) = \lim\lambda(\Phi(f_\lambda)) \), so that \(\text{ran} \Phi \) is closed, and we are done.

\[
\square
\]

7.22. Corollary. Every Banach space \(X \) is isometrically isomorphic to a subspace of \((C(L, K), \| \cdot \|_\infty)\) for some compact, Hausdorff space \(L \).

Proof. Let \(L := X_1^* \). Then \(L \) is weak*-compact, by the Banach-Alaoglu Theorem, and is Hausdorff since \(X \) separates the points of \(X_1^* \). Define
\[
\Delta : X \rightarrow C(L, K) \quad x \mapsto \hat{x}|_L.
\]
Then \(\Delta \) is easily seen to be linear, and \(\| \hat{x}|_L \| \leq \| \hat{x} \| \leq \|x\| \).

By the Hahn-Banach Theorem [Corollary 6.30], there exists \(x^* \in X_1^* \) such that \(|x^*(x)| = \|x\| \), and so \(\| \hat{x}|_L \| \geq |\hat{x}(x^*)| = |x^*(x)| = \|x\| \); that is, \(\Delta \) is an isometry.

\[
\square
\]

7.23. Corollary. Let \(X \) be a Banach space and suppose that \(A \subseteq X^* \) is weak*-closed and bounded. Then \(A \) is weak*-compact.

7.24. Theorem. Goldstine's Theorem

Let \(X \) be a Banach space and \(\mathfrak{J} : X \rightarrow X^{**} \) denote the canonical embedding. Then \(\mathfrak{J}(X_1) \) is weak*-dense in \(X_1^{**} \). Thus \(\mathfrak{J}(X) \) is weak*-dense in \(X^{**} \).

Proof. Clearly \(\mathfrak{J}(X_1) = \tilde{X}_1 \) is convex, since \(X_1 \) is. Observe that the closure of \(\mathfrak{J}(X_1) \) in the weak*-topology, namely \(\overline{\mathfrak{J}(X_1)}^{w^*} \), is weak*-closed and convex. Being weak*-closed in the weak*-compact set \(X_1^{**} \), it is also weak*-compact. Suppose that \(\varphi \in X_1^{**} \) and \(\varphi \not\in \overline{\mathfrak{J}(X_1)}^{w^*} \). Then, by the Hahn-Banach Theorem 6.41 (HB05), we can find a weak*-continuous linear functional \(\hat{x}^* \in \mathfrak{J}(X^*) \subseteq X^{***} \) so that
\[
\text{Re} \hat{x}^*(\varphi) = b
\]
\[
> a := \sup\{\text{Re} \hat{x}^*(\xi) : \xi \in \overline{\mathfrak{J}(X_1)}^{w^*} \}
= \sup\{|\hat{x}^*(\xi)| : \xi \in \overline{\mathfrak{J}(X_1)}^{w^*} \}.
\]
(The last equality follows from the fact that \(X_1 \) and hence \(\mathfrak{J}(X_1) \) and \(\overline{\mathfrak{J}(X_1)}^{w^*} \) are balanced.)
But
\[\sup\{ |\hat{x}^*(\xi)| : \xi \in \mathfrak{J}(X_1)^{w^*} \} = \sup\{ |\xi(x^*)| : \xi \in \mathfrak{J}(X_1)^{w^*} \} \]
\[\geq \sup\{ |\hat{x}(x^*)| : x \in X_1 \} \]
\[= \sup\{ |x^*(x)| : x \in X_1 \} \]
\[= \|x^*\|, \]
while
\[|\text{Re} \hat{x}^*(\varphi)| \leq |\hat{x}^*(\varphi)| = |\varphi(x^*)| \leq \|\varphi\| \|x^*\| \leq \|x^*\|. \]

This contradicts our choice of \(\hat{x}^* \), and thus \(\mathfrak{J}(X_1)^{w^*} = X_1^{**} \), as claimed.

Since \(X_1^{**} = \bigcup_{n \geq 1} X_n^{**} \), and since each \(\mathfrak{J}(X_n) \) is weak*-dense in \(X_n^{**} \) by a routine modification of the above proof, \(\mathfrak{J}(X) \) is weak*-dense in \(X^{**} \).

\(\square \)

7.25. Example. Since \(c_0(K)^* = \ell^1(K) \) and \(\ell^1(K)^* = \ell^\infty(K)^* \), the unit ball \((c_0(K))_1 \) of \(c_0(K) \) is weak*-dense in the closed unit ball of \(\ell^\infty(K) \), and thus \(c_0(K) \) is weak*-dense in \(\ell^\infty(K) \).

Of course, \(c_{00}(K) \) is norm dense in \(c_0(K) \), and so \(c_{00}(K) \) is also weak*-dense in \(\ell^\infty(K) \).

CULTURE: Although we shall not have time to prove this, the non-commutative analogue of the above statement is that the set of finite rank operators \(\mathcal{F}(\mathcal{H}) \) on an infinite-dimensional Hilbert space is weak*-dense in \(\mathcal{B}(\mathcal{H}) \).

Let us now establish a relation between compactness and reflexivity of a Banach space.

7.26. Proposition. Let \(X \) be a Banach space. The following are equivalent.
(a) \(X \) is reflexive.
(b) \(X_1 \) is weakly compact.

Proof.
(a) implies (b): First suppose that \(X \) is reflexive. Then \(\hat{X} = X^{**} \) and \(\hat{X}_1 = X_1^{**} \) is weak*-compact the Banach-Alaoglu Theorem 7.21. But then the weak*-topology on \(\hat{X}_1 \) is just the weak topology on \(X_1 \), so \(X_1 \) is weakly compact.
(b) implies (a): Next suppose that \(X_1 \) is weakly compact. Then \(\hat{X}_1 \) is weak*-compact, and since the weak*-topology is Hausdorff, \(\hat{X}_1 \) is weak*-closed. But by Goldstine’s Theorem, \(\hat{X}_1 \) is weak*-dense in \(X_1^{**} \). Thus \(\hat{X}_1 = \Gamma(X_1) = \Gamma(\mathfrak{J}(X_1))^{w^*} = X_1^{**} \). This in turn implies that \(\hat{X} = X^{**} \), or in other words, that \(X \) is reflexive.

\(\square \)

Although in general, weak topologies are not metrizable, sometimes their restrictions to bounded sets can be:
7.27. Theorem. Let \(\mathcal{X} \) be a Banach space. Then \(\mathcal{X}^* \) is weak*-metrizable if and only if \(\mathcal{X} \) is separable.

Proof. First assume that \(\mathcal{X} \) is separable, and let \(\{x_n\}_{n=1}^\infty \) be a dense subset of \(\mathcal{X} \). Define a metric \(d \) on \(\mathcal{X}^*_1 \) via

\[
d(x^*, y^*) = \sum_{n=1}^{\infty} \frac{|x^*(x_n) - y^*(x_n)|}{2^n \|x_n\|}.
\]

Then a net \((x^*_\lambda)^\lambda \) in \(\mathcal{X}^*_1 \) converges in the metric topology to \(x^* \in \mathcal{X}^*_1 \) if and only if \((x^*_\lambda(x_n))_\lambda \) converges to \(x^*(x_n) \) for all \(n \geq 1 \) (exercise). If \(x \in \mathcal{X} \) and \(\varepsilon > 0 \), we can choose \(n \geq 1 \) so that \(\|x_n - x\| < \varepsilon/3 \). Choose \(\lambda_0 \in \Lambda \) so that \(\lambda \geq \lambda_0 \) implies that \(|x^*_\lambda(x_n) - x^*(x_n)| < \varepsilon/3 \). Then \(\lambda \geq \lambda_0 \) implies that

\[
|x^*_\lambda(x) - x^*(x)| \leq |x^*_\lambda(x) - x^*_\lambda(x_n)| + |x^*_\lambda(x_n) - x^*(x_n)| + |x^*(x_n) - x^*(x)| \\
\leq \|x^*_\lambda\| \|x - x_n\| + \varepsilon/3 + \|x^*\| \|x_n - x\| \\
< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

Thus \(x^*_\lambda(x_n) \) converges to \(x^*(x_n) \) for all \(n \geq 1 \) if and only if \((x^*_\lambda)_{\lambda} \) converges in the weak*-topology to \(x^* \). Hence the weak*-topology on \(\mathcal{X}^*_1 \) is metrizable.

Next, assume that \(\mathcal{X}^*_1 \) is weak*-metrizable. Then we can find a countable sequence \(\{G_n^*\}_{n=1}^{\infty} \) of weak*-open nbhds of 0 in \(\mathcal{X}^*_1 \) so that \(\bigcap_{n=1}^{\infty} G^*_n = \{0\} \). There is no harm in assuming that each \(G^*_n \) is a basic weak*-open nbhd, so for each \(n \geq 1 \) there exists \(\varepsilon_n > 0 \) and a finite set \(F_n \subseteq \mathcal{X} \) so that

\[
G^*_n = \{x^* \in \mathcal{X}^*_1 : |x^*(x)| < \varepsilon_n, x \in F_n\}.
\]

Let \(F = \bigcup_{n=1}^{\infty} F_n \). If \(x^* \in \mathcal{X}^*_1 \), \(x^*(F) = 0 \), then \(x^* \in G^*_n \) for all \(n \geq 1 \), and therefore \(x^* = 0 \). That is, if \(\mathcal{Y} = \text{span}\|F \), then \(\mathcal{Y} \) is separable and \(x^* \in \mathcal{X}^*_1 \), \(x^*|_{\mathcal{Y}} = 0 \) implies that \(x^* = 0 \). By the Hahn-Banach Theorem [Corollary 6.29], \(\mathcal{Y} = \mathcal{X} \).

\[\square\]

7.28. Corollary. Let \(\mathcal{X} \) be a separable Banach space. Then \(\mathcal{X}^*_1 \) is separable in the weak*-topology.

Proof. By the Banach-Alaoglu Theorem, \(\mathcal{X}^*_1 \) is weak*-compact. By Theorem 7.27 above, \(\mathcal{X}^*_1 \) is weak*-metrizable.

Since a compact metric space is always separable – see Proposition 10.10 – we see that \(\langle \mathcal{X}^*_1, \sigma(\mathcal{X}^*, \mathcal{X}) \rangle \) is separable.

\[\square\]

In a similar vein, we have

7.29. Theorem. Let \(\mathcal{X} \) be a Banach space. Then \(\mathcal{X}^*_1 \) is weakly metrizable if and only if \(\mathcal{X}^* \) is separable.

Proof. Assignment.

\[\square\]
7.30. Definition. Let X be a Banach space and $M \subseteq X$, $N \subseteq X^*$. Then the annihilator of M is the set
\[M^\perp = \{ x^* \in X^* : x^*(m) = 0 \text{ for all } m \in M \}, \]
while the pre-annihilator of N is the set
\[^\perp N = \{ x \in X : n^*(x) = 0 \text{ for all } n^* \in N \}. \]
Observe that M^\perp and $^\perp N$ are linear manifolds in their respective spaces. Moreover, both are norm-closed and hence Banach spaces in their own right.

7.31. Theorem. Let X be a Banach space, and let $M \subseteq X$ be a closed subspace. Let $q : X \to X/M$ denote the canonical quotient map. Then
\[\Theta : (X/M)^* \to M^\perp, \quad \xi \mapsto \xi \circ q \]
is an isometric isomorphism of Banach spaces.

Proof. Clearly Θ is linear. Let us show that Θ is injective.
If $\Theta(\xi_1) = \xi_1 \circ q = \xi_2 \circ q = \Theta(\xi_2)$, then
\[\xi_1(q(x)) = \xi_2(q(x)) \text{ for all } x \in X, \]
and so $\xi_1 = \xi_2$.

Next we show that Θ is surjective.
Let $z^* \in M^\perp$ and define $\xi_{z^*} : X/M \to \mathbb{K}$ via $\xi_{z^*}(q(x)) = z^*(x)$. Since $M \subseteq \ker z^*$, the map is well-defined. Furthermore, if $x \in X$ and $\|q(x)\| < 1$, then there exists $m \in M$ so that $\|x + m\| < 1$, and
\[|\xi_{z^*}(q(x))| = |z^*(x)| = |z^*(x + m)| \leq \|z^*\|, \]
so that $\|\xi_{z^*}\| \leq \|z^*\| < \infty$. Hence $\xi_{z^*} \in (X/M)^*$. Clearly $\Theta(\xi_{z^*}) = z^*$.

Thus Θ is bijective, and $\|\Theta(\xi)\| = \|\xi \circ q\| \leq \|\xi\| \|q\| \leq \|\xi\|$, so that $\|\Theta\| \leq 1$. Conversely, let $\varepsilon > 0$ and choose $q(x) \in X/M$ with $\|q(x)\| < 1$ so that $|\xi(q(x))| \geq \|\xi\| - \varepsilon$. Choose $m \in M$ so that $\|x + m\| < 1$. Then
\[\|\xi \circ q\| \geq \|\xi \circ q(x + m)\| = |\xi(q(x))| \geq \|\xi\| - \varepsilon, \]
so that $\|\Theta(\xi)\| = \|\xi \circ q\| \geq \|\xi\|$, implying that Θ is in fact isometric.
\[\square \]
7.32. **Theorem.** Let X be a normed linear space and $M \subseteq X$ be a closed linear subspace. Then the map

$$
\Theta : \frac{X^*}{M^\perp} \to M^*
$$

$$
x^* + M^\perp \mapsto x^*|_{M^\perp}
$$

is an isometric isomorphism.

Proof. Note that M^\perp closed implies that X^*/M^\perp is a Banach space. We check that Θ is well-defined.

If $x^* + M^\perp = y^* + M^\perp$, then $x^* - y^* \in M^\perp$, so that $(x^* - y^*)|_{M^\perp} = 0$. That is, $\Theta(x^* + M^\perp) = \Theta(y^* + M^\perp)$. Working our way backwards through this argument proves that Θ is injective. That Θ is linear is easily verified.

Next suppose that $m^* \in M^\perp$. By the Hahn-Banach Theorem, we can find $x^* \in X^*$, $\|x^*\| = \|m^*\|$ so that $x^*|_{M^\perp} = m^*$. Then $\Theta(x^* + M^\perp) = x^*|_{M^\perp} = m^*$, so that Θ is onto. Thus Θ is bijective.

Suppose that $\|x^* + M^\perp\| < 1$. Then there exists $n^* \in M^\perp$ so that $\|x^* + n^*\| < 1$. Thus

$$
\|\Theta(x^* + M^\perp)\| = \|x^*|_{M^\perp}\| = \|(x^* + n^*)|_{M^\perp}\| \leq \|x^* + n^*\| < 1.
$$

It follows that $\|\Theta\| \leq 1$.

From above, given $m^* \in M^\perp$, there exists $x^* \in X^*$ with $\|x^*\| = \|m^*\|$ so that $\Theta^{-1}(m^*) = x^* + M^\perp$. Now

$$
\|\Theta^{-1}(m^*)\| = \|x^* + M^\perp\| \leq \|x^*\| = \|m^*\|,
$$

so that Θ^{-1} is also contractive. But then Θ is isometric, and we are done.

\[\square\]

7.33. It is a worthwhile exercise to think about the relationship between the annihilator M^\perp of a subspace M of a Hilbert space H and the orthogonal complement of M in H, for which we used the same notation.

In particular, one should interpret what Theorem 7.32 says in the Hilbert space setting, where M^\perp refers to the orthogonal complement of M.

If you had a face like mine, you’d punch me right on the nose, and I’m just the fella to do it.

Stan Laurel
Appendix to Section 6.

The following result characterizes weak convergence of sequences in ℓ^p. We leave its proof as an exercise for the reader.

7.34. Proposition. Suppose that $1 < p < \infty$. A sequence $(x_n)^\infty_{n=1}$ in $\ell^p(N)$ (i.e. each $x_n = (x_{n1}, x_{n2}, x_{n3}, ...)$ $\in \ell^p(N)$) converges weakly to $z = (z_1, z_2, z_3, ...)$ $\in \ell^p(N)$ if and only if

(i) $\sup_{n \geq 1} \|x_n\| < \infty$, and

(ii) $\lim_{n \to \infty} x_{nk} = z_k$ for all $k \in \mathbb{N}$.
8. Local compactness and extremal points

Somewhere on this globe, every ten seconds, there is a woman giving birth to a child. She must be found and stopped.

Sam Levenson

8.1. The main result of this section is the Krein-Milman Theorem, which asserts that a non-empty, compact, convex subset of a LCS has extreme points; so many, in fact, that we can generate the compact, convex set as the closed, convex hull of these extreme points.

Extreme points of convex sets appear in many different contexts in Functional Analysis. For example, it is an interesting exercise (so interesting that it may appear as an Assignment question) to calculate the extreme points of the closed unit ball $B(C^n)_1$ of the locally convex space $B(C^n)$, where C^n is endowed with the Euclidean norm $\| \cdot \|_2$ and $B(C^n)$ is given the operator norm.

Recall that a linear map $T \in B(C^n)$ is said to be positive and we write $T \geq 0$ if $\langle Tx, x \rangle \geq 0$ for all $x \in C^n$. An equivalent formulation of this property says that T is positive if there exists an orthonormal basis for C^n with respect to which the matrix $[T]$ of T is diagonal, and all eigenvalues of T are non-negative real numbers.

A linear functional $\varphi \in B(C^n)^*$ is said to be positive if $\varphi(T) \geq 0$ whenever $T \geq 0$. For example, if $\{e_1, e_2, \ldots, e_n\}$ is an orthonormal basis for C^n, then the so-called normalized trace functional

$$\tau(T) := \frac{1}{n} \sum_{k=1}^{n} \langle Te_k, e_k \rangle$$

for $T \in B(C^n)$ can be shown to be a positive linear functional of norm one.

The state space $S(B(C^n))$ of $B(C^n)$, consisting of all positive, norm-one linear functionals on $B(C^n)$ – called states – forms a non-empty, compact, convex subset of $B(C^n)^*$. The extreme points of the state space are called pure states. For example, if $x \in C^n$, then the map

$$\varphi_x : B(C^n) \rightarrow \mathbb{C} \quad T \mapsto \langle Tx, x \rangle$$

defines a pure state. States on $B(C^n)$ (and more generally states on so-called C*-algebras) are of extreme importance in determining the representation theory of these algebras. This, however, is beyond the scope of the present manuscript.

8.2. Definition. A topological space (X, T) is said to be locally compact if each point in X has a nbhd base consisting of compact sets.

Suppose that X is locally compact and Hausdorff, and that $x_0 \in X$. Then for all $U \in \mathcal{U}_{x_0}$, there exists $K \in \mathcal{U}_{x_0}$ so that K is compact and $K \subseteq U$. Choose $G \in T$ so that $x_0 \in G \subseteq K$. Then $\overline{G} \subseteq K = K \subseteq U$, and so \overline{G} is compact. That is, if X is
Hausdorff and locally compact, then for any \(U \in \mathcal{U}_{x_0} \), there exists \(G \in \mathcal{T} \) so that \(\overline{G} \) is compact and \(x_0 \in G \subseteq \overline{G} \subseteq U \).

8.3. Example

Let \(n \geq 1 \) be an integer and consider \((K^n, \| \cdot \|_2)\). Then for each \(x \in K^n \), the collection

\[
\{ B_\varepsilon(x) := \{ y \in K^n : \| y - x \|_2 \leq \varepsilon \} : \varepsilon > 0 \}
\]

is a nbhd base at \(x \) consisting of compact sets, so \((K^n, \| \cdot \|_2)\) is locally compact.

Our next result says that this is essentially the only example amongst locally convex spaces.

8.4. Theorem

A LCS \((V, \mathcal{T})\) is locally compact if and only if \(V \) is finite-dimensional.

Proof. If \(\dim V < \infty \), then \(V \) is homeomorphic to \((K^n, \| \cdot \|_2)\) by Proposition 4.20. Since \((K^n, \| \cdot \|_2)\) is locally compact from above, so is \(V \).

Conversely, suppose that \(V \) is locally compact. Choose \(N \in \mathcal{T} \cap \mathcal{U}_0 \) so that \(N \) is compact. Now \(\frac{1}{2}N \in \mathcal{T} \cap \mathcal{U}_0 \) and \(\overline{N} \subseteq \bigcup_{x \in \overline{N}} x + \frac{1}{2}N \). Since the latter is an open cover of \(\overline{N} \), we can find \(x_1, x_2, ..., x_r \in \overline{N} \) so that

\[
\overline{N} \subseteq \bigcup_{i=1}^r x_i + \frac{1}{2}N = \{ x_1, x_2, ..., x_r \} + \frac{1}{2}N.
\]

Let \(\mathcal{M} = \text{span}\{ x_1, x_2, ..., x_r \} \). Then \(\overline{N} \subseteq \mathcal{M} + \frac{1}{2}N \). Moreover,

\[
\frac{1}{2}N \subseteq \frac{1}{2} \overline{N} \subseteq \frac{1}{2} \mathcal{M} + \frac{1}{4}N,
\]

so that \(\overline{N} \subseteq \mathcal{M} + (\frac{1}{2} \mathcal{M} + \frac{1}{4}N) = \mathcal{M} + \frac{1}{4}N \).

Repeating this argument *ad nauseum* shows that

\[
\overline{N} \subseteq \mathcal{M} + \frac{1}{2^k}N \quad \text{for all} \ k \geq 1.
\]

We claim that \(\overline{N} \subseteq \mathcal{M} \).

If we can prove this, then the fact that \(\mathcal{M} \) is finite-dimensional implies that \(\mathcal{M} \) is closed, and so \(\overline{N} \subseteq \mathcal{M} = \mathcal{M} \). But then \(V = \bigcup_{i=1}^\infty rN \subseteq \mathcal{M} \), proving that \(V \) is also finite-dimensional, as required.

Let \(\{ w_1, w_2, ..., w_s \} \) be a basis for \(\mathcal{M} \) (here \(s \leq r \)). Since \(\dim \mathcal{M} < \infty \), \(\mathcal{M} \) is topologically complemented in \(V \), so we can find a closed subspace \(\mathcal{Y} \) of \(V \) with \(\mathcal{M} \oplus \mathcal{Y} = V \). It is routine to verify that \(\{ w_1 + \mathcal{Y}, w_2 + \mathcal{Y}, ..., w_s + \mathcal{Y} \} \) is a basis for \(V/\mathcal{Y} \simeq \mathcal{M} \).

As such, we can choose \(\overline{p}_1, \overline{p}_2, ..., \overline{p}_s \in (V/\mathcal{Y})^* \) so that

\[
\overline{p}_j(w_k + \mathcal{Y}) = \delta_{jk}, \quad 1 \leq j, k \leq s.
\]

Define \(\rho_j := \overline{p}_j \circ q \), where \(q : V \to V/\mathcal{Y} \) is the canonical quotient map. Then \(\rho_j \in V^* \), \(1 \leq j \leq s \), \(\rho_j(w_k) = \delta_{jk} \) for all \(1 \leq j, k \leq s \), and \(\cap_{j=1}^s \ker \rho_j = \mathcal{Y} \).
8. LOCAL COMPACTNESS AND EXTREMAL POINTS 107

Since \mathcal{N} is compact, given any $\rho \in \mathcal{V}^*$, $\rho(\mathcal{N})$ is again compact. Thus there exists $\kappa_\rho > 0$ so that
\[|\rho(n)| \leq \kappa_\rho \quad \text{for all } n \in \mathcal{N}. \]

Since $\mathcal{N} \subseteq \mathcal{M} + \frac{1}{2^k} \mathcal{N}$ for all $k \geq 1$, given $z \in \mathcal{N}$, we can find $m_k \in \mathcal{M}$ and $u_k \in \frac{1}{2^k} \mathcal{N}$ so that $z = m_k + u_k$. Also, since $\mathcal{V} = \mathcal{M} \oplus \mathcal{Y}$, we can find a unique $m \in \mathcal{M}$ and $u \in \mathcal{Y}$ so that $z = m + y$.

For each $1 \leq j \leq s$ and $k \geq 1$,
\[\rho_j(z) = \rho_j(m_k) + \rho_j(u_k). \]

But $|\rho_j(u_k)| \leq \frac{1}{2^k} \kappa_{\rho_j}$ for all $k \geq 1$ by linearity of ρ_j, and so $\rho_j(z) = \lim_k \rho_j(m_k)$. Of course, $y \in \mathcal{Y} = \bigcap_{j=1}^s \ker \rho_j$ implies that $\rho_j(z) = \rho_j(m)$, $1 \leq j \leq s$ and thus
\[\rho_j(m) = \rho_j(z) = \lim_k \rho_j(m_k), \quad 1 \leq j \leq s. \]

Now $m = \sum_{j=1}^s \rho_j(m)y_j$ and $m_k = \sum_{j=1}^s \rho_j(m_k)y_j$ for each $k \geq 1$. Hence
\[m = \lim_k m_k. \]

Also, $u_k \in \frac{1}{2^k} \mathcal{N}$ for all $k \geq 1$ implies that
\[\lim_k u_k = 0. \]

Since $z = m_k + u_k$ for all $k \geq 1$,
\[z = \lim_k m_k = m \in \mathcal{M}. \]

This completes the proof.

An interesting and useful consequence of this result is the following.

8.5. Corollary. Let $(\mathcal{X}, \| \cdot \|)$ be a NLS. Then the closed unit ball \mathcal{X}_1 of \mathcal{X} is compact if and only if \mathcal{X} is finite-dimensional.

Proof. First suppose that \mathcal{X}_1 is compact. If $U \in \mathcal{U}_0^\mathcal{X}$ is any nbhd of 0, then there exists $\delta > 0$ so that $\|x\| < 2\delta$ implies that $x \in U$. But then $\mathcal{X}_\delta \subseteq U$, and $\mathcal{X}_\delta = \delta \mathcal{X}_1$ is compact, being a homeomorphic image of \mathcal{X}_1. By definition, \mathcal{X} is locally compact, hence finite-dimensional, by Theorem 8.4.

Conversely, suppose that \mathcal{X} is finite-dimensional. By Theorem 8.4, \mathcal{X} is locally compact. By hypothesis, there exists a compact nbhd K of 0. As above, there exists $\delta > 0$ so that $\mathcal{X}_\delta \subseteq K$. Since \mathcal{X}_δ is a closed subset of a compact set, it is compact. Since $\mathcal{X}_1 = (\delta^{-1})\mathcal{X}_\delta$ is a homeomorphic image of a compact set, it too is compact.

\square
8.6. Definition. Let V be a vector space and $C \subseteq V$ be a convex set. A point $e \in C$ is called an **extreme point** of C if whenever there exist $x, y \in C$ and $t \in (0, 1)$ for which

$$e = tx + (1 - t)y,$$

it follows that $x = y = e$. We denote by $\text{Ext}(C)$ the (possibly empty) set of all extreme points of C.

8.7. Example.

(a) Let $V = \mathbb{C}$. Let $D = \{w \in \mathbb{C} : |w| < 1\}$ denote the open disk. It is easy to see that D is convex. However D has no extreme points. If $w \in D$, then $|w| < 1$, so there exists $\delta > 0$ so that $(1 + \delta)|w| < 1$. Let $x = (1 + \delta)w$, $y = (1 - \delta)w$. Then $x, y \in D$ and $w = \frac{1}{2}x + \frac{1}{2}y$.

(b) With $V = \mathbb{C}$ again, let $\overline{D} = \{w \in \mathbb{C} : |w| \leq 1\}$. Then every $z \in T := \{z \in \mathbb{C} : |z| = 1\}$ is an extreme point of \overline{D}. The proof of this is left as an exercise.

(c) Let $V = \mathbb{R}^2$, and let p_1, p_2, p_3 be three non-collinear points in V. The triangle T whose vertices are p_1, p_2, p_3 has exactly $\{p_1, p_2, p_3\}$ as its set of extreme points.

The following generalizes the concept of an extreme point.

8.8. Definition. Let V be a vector space and let $\emptyset \neq C \subseteq V$ be convex. A non-empty convex set $F \subseteq C$ is called a **face** of C if whenever $x, y \in C$ and $t \in (0, 1)$ satisfy $tx + (1 - t)y \in F$, then $x, y \in F$.

We emphasize the fact that F is convex is part of the definition of a face.

8.9. Remarks. Let V be a vector space and $C \subseteq V$ be convex.

(a) If e is an extreme point of C, then $F = \{e\}$ is a face of C. Conversely, if $F = \{z\}$ is a face of C, then $z \in \text{Ext}(C)$.

(b) Let F be a face of C, and let D be a face of F. Then D is a face of C.

Indeed, let $x, y \in C$ and $t \in (0, 1)$, and suppose that $tx + (1 - t)y \in D$. Then $D \subseteq F$ implies that $tx + (1 - t)y \in F$. Since F is a face of C, we must have $x, y \in F$. But then D is a face of F, and so it follows from $tx + (1 - t)y \in D$ that $x, y \in D$.

(c) From (b), it follows that if e is an extreme point of a face F of C, then e is an extreme point of C.

8.10. Example.

(a) Let $V = \mathbb{R}^2$ and let p_1, p_2, p_3 be three non-collinear points in V. Denote by T the triangle whose vertices are p_1, p_2, p_3. Then T is a face of itself. Also, each line segment p_ip_j is a face of T. Finally, each extreme point p_j is a face of T.
(b) Let \(V = \mathbb{R}^3 \) and \(C \) be a cube in \(V \), for e.g.,
\[
C = \{(x, y, z) \in \mathbb{R}^3 : 0 \leq x, y, z \leq 1\}.
\]
Then \(C \) has itself as a face. Also, the 6 (square) sides of the cube are faces. The 12 edges of the cube are also faces, as are the 8 corners. The corners are extreme points of the cube.

The definition of a face currently requires us to consider convex combinations of two elements of \(C \). In fact, we may consider arbitrary finite convex combinations of elements of \(C \).

8.11. Lemma. Let \((\mathcal{V}, T)\) be a LCS, \(\emptyset \neq C \subseteq \mathcal{V} \) be convex and \(\emptyset \neq F \subseteq C \) be a face of \(C \). Suppose that \(\{x_j\}_{j=1}^n \subseteq C \) and that \(x = \sum_{j=1}^n t_j x_j \) is a convex combination of the \(x_j \)'s. If \(x \in F \) and \(t_j \in (0, 1) \) for all \(1 \leq j \leq n \), then \(x_j \in F \) for all \(1 \leq j \leq n \).

Proof. We argue by induction on \(n \). If \(n = 1 \), there is nothing to prove, and the case \(n = 2 \) is nothing more than the definition of a face. Let \(k \geq 3 \), and suppose that the result is true for \(n < k \).

Suppose that \(x = \sum_{j=1}^k t_j x_j \in F \), where \(t_j \in (0, 1) \) for all \(1 \leq j \leq k \) and \(\sum_{j=1}^k t_j = 1 \). Then
\[
x = (1 - t_k) \left(\sum_{j=1}^{k-1} \frac{t_j}{1 - t_k} x_j \right) + t_k x_k.
\]
Since \(C \) is convex, \(y := \sum_{j=1}^{k-1} \frac{t_j}{1 - t_k} x_j \in C \). But then \(x = (1 - t_k)y + t_k x_k \in F \), and \(F \) is a face, so that \(y \) and \(x_k \) must lie in \(F \). Since \(y \in F \), our induction hypothesis next implies that \(x_j \in F \) for all \(1 \leq j \leq k - 1 \), which completes the proof.

8.12. Lemma. Let \((\mathcal{V}, T)\) be a LCS and \(\emptyset \neq K \subseteq \mathcal{V} \) be a compact, convex set. Let \(\rho \in \mathcal{V}^* \), and set
\[
r = \sup \{ \text{Re} \rho(w) : w \in K \}.
\]
Then \(F = \{ x \in K : \text{Re} \rho(x) = r \} \) is a non-empty, compact face of \(K \).

Proof. Since \(\text{Re} \rho : K \to \mathbb{R} \) is continuous and \(K \) is compact, \(r = \max \{ \text{Re} \rho(w) : w \in K \} \), and so \(F \) is non-empty. Moreover, \(F = (\text{Re} \circ \rho)^{-1}(\{r\}) \) and \(\{r\} \subseteq \mathbb{R} \) is closed, so \(F \) is closed in \(K \), and hence \(F \) is compact.

Next, observe that if \(x, y \in F \subseteq K \) and \(t \in (0, 1) \), then \(tx + (1 - t)y \in K \) as \(K \) is convex. But \(\text{Re} \rho(tx + (1 - t)y) = t \text{Re} \rho(x) + (1 - t)\text{Re} \rho(y) = tr + (1 - t)r = r \), so that \(tx + (1 - t)y \in F \) and \(F \) is convex.

Suppose that \(x, y \in K \), \(t \in (0, 1) \), and \(tx + (1 - t)y \in F \). As before,
\[
r = \text{Re} \rho(tx + (1 - t)y)
= t \text{Re} \rho(x) + (1 - t)\text{Re} \rho(y).
\]
But $\Re \rho(x) \leq r$, $\Re \rho(y) \leq r$, so the only way that equality can hold is if $x, y \in F$. Hence F is a face of K.

The following result is a crucial step in the proof of the Krein-Milman Theorem.

8.13. Lemma. Let (V, T) be a LCS and $\emptyset \neq K \subseteq V$ be a compact, convex set. Then $\text{Ext}(K) \neq \emptyset$.

Proof. Let $J = \{ F \subseteq K : \emptyset \neq F \text{ is a closed face of } K \}$, and partially order J by reverse inclusion: i.e. $F_1 \leq F_2$ if $F_2 \subseteq F_1$. Observe that $K \in J$ and so $J \neq \emptyset$.

Suppose that $C = \{ F_\lambda \}_{\lambda \in \Lambda}$ is a chain in J. We claim that $F = \bigcap_{\lambda \in \Lambda} F_\lambda$ is an upper bound for C. Since $\{ F_\lambda \}_{\lambda \in \Lambda}$ has the Finite Intersection Property and K is compact, $F \neq \emptyset$. Moreover, each F_λ is assumed to be closed and convex, and thus so is F. Suppose that $x, y \in K$, $t \in (0, 1)$, and $tx + (1 - t)y \in F$. Then $tx + (1 - t)y \in F_\lambda$ for each λ. But F_λ is a face of K, so $x, y \in F_\lambda$ for all λ, whence $x, y \in F$ and F is face of K. Clearly it is an upper bound for C.

By Zorn’s Lemma, J contains a maximal element, say E. Since $E \in J$, it is non-empty, convex, and closed in K, hence compact. We claim that E is a singleton set, and therefore corresponds to an extreme point of K.

Suppose to the contrary that there exist $x, y \in E$ with $x \neq y$. By the Hahn-Banach Theorem 05 (Theorem 6.41), there exists a continuous linear functional $\varphi \in V^*$ so that

$$\Re \varphi(x) > \Re \varphi(y).$$

Since E is non-empty, convex and compact, we can apply Lemma 8.12. Let $r = \sup \{ \Re \varphi(w) : w \in E \}$, and set $H = \{ x \in E : \Re \varphi(x) = r \}$. Then H is a non-empty, compact face of E, and hence of K.

But at least one of x and y does not belong to H, and so $E < H$, contradicting the maximality of E. Thus $E = \{ e \}$ is a singleton set, and $e \in \text{Ext}(E) \subseteq \text{Ext}(K)$, proving that the latter is non-empty.

8.14. Theorem. The Krein-Milman Theorem

Let (V, T) be a LCS and $\emptyset \neq K \subseteq V$ be a compact, convex set. Then

$$K = \overline{\text{co}}(\text{Ext}(K)),$$

the closed, convex hull of the extreme points of K.

Proof. By Lemma 8.13, $\text{Ext}(K) \neq \emptyset$. Thus $\emptyset \neq \overline{\text{co}}(\text{Ext}(K)) \subseteq K$, as K is closed and convex.

Suppose that $m \in K \setminus \overline{\text{co}}(\text{Ext}(K))$. By the Hahn-Banach Theorem (Theorem 6.41), there exists $\tau \in V^*$ and real numbers $\alpha > \beta$ so that

$$\Re \tau(m) \geq \alpha > \beta \geq \Re \tau(b) \quad \text{for all } b \in \overline{\text{co}}(\text{Ext}(K)).$$
Let $s := \sup\{\text{Re} \tau(w) : w \in K\}$. Then $s \geq \text{Re} \tau(m) \geq \alpha$, and $L := \{z \in K : \text{Re} \tau(z) = s\}$ is a non-empty, compact face of K, by Lemma 8.12. But then $\emptyset \neq L$ is a compact, convex set in \mathcal{V}, and so by Lemma 8.13, $\text{Ext}(L) \neq \emptyset$. Furthermore, $\text{Ext}(L) \subseteq \text{Ext}(K)$, by virtue of the fact that L is a face of K (see Remark 8.9 (c)).

Hence there exists $e \in \text{Ext}(L) \subseteq \text{co}(\text{Ext}(K))$ so that

$$\text{Re} \tau(e) = s \geq \alpha > \text{Re} \tau(b) \quad \text{for all } b \in \text{co}(\text{Ext}(K)),$$

an obvious contradiction.

It follows that $K \setminus \text{co}(\text{Ext}(K)) = \emptyset$, and thus $K = \text{co}(\text{Ext}(K))$.

\[\square\]

8.15. Corollary. Let (\mathcal{V}, T) be a LCS and $\emptyset \neq K \subseteq \mathcal{V}$ be a compact, convex set. If $\rho \in \mathcal{V}^*$, then there exists $e \in \text{Ext}(K)$ so that

$$\text{Re} \rho(w) \leq \text{Re} \rho(e) \quad \text{for all } w \in K.$$

Proof. Let $r := \sup\{\text{Re} \rho(w) : w \in K\}$. By Lemma 8.11, $F = \{x \in K : \text{Re} \rho(x) = r\}$ is a non-empty, compact face of K. By the Krein-Milman Theorem, Theorem 8.14, $\text{Ext}(F) \neq \emptyset$. Let $e \in \text{Ext}(F)$. Then $e \in \text{Ext}(K)$, and

$$\text{Re} \rho(w) \leq r = \text{Re} \rho(e) \quad \text{for all } w \in K.$$

\[\square\]

Equipped with the Krein-Milman Theorem 8.14 above, we are able to extend Corollary 7.23.

8.16. Corollary. Let \mathfrak{X} be a Banach space and suppose that $\mathcal{A} \subseteq \mathfrak{X}^*$ is weak*-closed and bounded. Then \mathcal{A} is weak*-compact. If \mathcal{A} is also convex, then $\mathcal{A} = \text{co}^{w^*}(\text{Ext} \mathcal{A})$.

*

I want to go back to Brazil, get married, have lots of kids, and just be a couch tomato.

Ana Beatriz Barros
9. The chapter of named theorems

I believe that sex is one of the most beautiful, natural, wholesome things that money can buy.

Steve Martin

9.1. In general, if \(f : X \to Y \) is a continuous map between topological spaces \(X \) and \(Y \), one does not expect \(f \) to take open sets to open sets. Despite this, we have seen that if \(V \) is TVS and \(W \) is a closed subspace of \(V \), then the quotient map does just this.

The Open Mapping Theorem extends this result to surjections of Banach spaces. Many of the theorems in this Chapter are a consequence - either direct or indirect - of the Open Mapping Theorem. We begin with a Lemma which will prove crucial in the proof of the Open Mapping Theorem.

9.2. Lemma. Let \(X \) and \(Y \) be Banach spaces and suppose that \(T \in B(X, Y) \).
If \(Y_1 \subseteq T(X_m) \) for some \(m \geq 1 \), then \(Y_1 \subseteq T(X_{2m}) \).

Proof. First observe that \(Y_1 \subseteq T(X_m) \) implies that \(Y_r \subseteq T(X_{rm}) \) for all \(r > 0 \).

Choose \(y \in Y_1 \). Then there exists \(x_1 \in X_m \) so that \(\| y - Tx_1 \| < 1/2 \). Since \(y - Tx_1 \in Y_{1/2} \subseteq T(X_{m/2}) \), there exists \(x_2 \in X_{m/2} \) so that \(\| (y - Tx_1) - Tx_2 \| < 1/4 \).
More generally, for each \(n \geq 1 \), we can find \(x_n \in X_{m/2^{n-1}} \) so that
\[
\| y - \sum_{j=1}^{n} Tx_j \| < \frac{1}{2^n}.
\]

Since \(X \) is complete and \(\sum_{n=1}^{\infty} \| x_n \| \leq \sum_{n=1}^{\infty} \frac{m}{2^n} = 2m \), we have \(x = \sum_{n=1}^{\infty} x_n \in X_{2m} \). By the continuity of \(T \),
\[
Tx = T \left(\sum_{n=1}^{\infty} x_n \right) = \lim_{N \to \infty} T \left(\sum_{n=1}^{N} x_n \right) = y.
\]

9.3. Theorem. The Open Mapping Theorem
Let \(X \) and \(Y \) be Banach spaces and suppose that \(T \in B(X, Y) \) is a surjection. Then \(T \) is an open map - i.e. if \(G \subseteq X \) is open, then \(TG \subseteq Y \) is open.

Proof. Since \(T \) is surjective, \(Y = TX = \cup_{n=1}^{\infty} T(X_n) \subseteq \cup_{n=1}^{\infty} \overline{T(X_n)} \). Now \(Y \) is a complete metric space, and so by the Baire Category Theorem, there exists \(m \geq 1 \) so that the interior \(\text{int}(\overline{T(X_m)}) \neq \emptyset \). As \(TX_m \) is dense in \(\overline{T(X_m)} \), we can choose \(y \in \text{int}(\overline{T(X_m)}) \cap T(X_m) \).

Let \(\delta > 0 \) be such that \(y + V_{\overline{Y}}(\delta) \subseteq \text{int}(\overline{T(X_m)}) \subseteq (\overline{T(X_m)}) \). Then \(V_{\overline{Y}}(\delta)(0) \subseteq -y + \overline{T(X_m)} \subseteq T(X_m) + \overline{T(X_m)} \subseteq \overline{T(X_{2m})} \). (This last step uses the linearity of \(T \).)
Thus $\mathcal{Y}_{\delta/2} \subseteq V_\delta^X(0) \subseteq \overline{T\mathcal{X}_{2m}}$. By Lemma 9.2 above,
$$\mathcal{Y}_{\delta/2} \subseteq T\mathcal{X}_{4m},$$
or equivalently,
$$T\mathcal{X}_r \supset \mathcal{Y}_{\delta/8m}$$
for all $r > 0$.

Suppose that $G \subseteq \mathcal{X}$ is open and that $y \in TG$, say $y = Tx$ for some $x \in G$. Since G is open, we can find $\varepsilon > 0$ so that $x + V_\varepsilon^X(0) \subseteq G$. Thus
$$TG \supseteq Tx + T(V_\varepsilon^X(0))$$
$$\supseteq y + T\mathcal{X}_{\varepsilon/2}$$
$$\supseteq y + \mathcal{Y}_{\varepsilon/16m}$$
$$\supseteq y + V_\varepsilon^Y(0).$$
Thus $y \in TG$ implies that $y \in \text{int} TG$, and so TG is open.

\[\square \]

9.4. Corollary. **The Inverse Mapping Theorem**

Let \mathcal{X} and \mathcal{Y} be Banach spaces and suppose that $T \in B(\mathcal{X}, \mathcal{Y})$ is a bijection. Then T^{-1} is continuous, and so T is a homeomorphism.

Proof. If $G \subseteq \mathcal{X}$ is open, then $(T^{-1})^{-1}(G) = TG$ is open in \mathcal{Y} by the Open Mapping Theorem above. Hence T^{-1} is continuous.

\[\square \]

9.5. Corollary. **The Closed Graph Theorem**

Let \mathcal{X} and \mathcal{Y} be Banach spaces and suppose that $T : \mathcal{X} \to \mathcal{Y}$ is linear. If the graph
$$\mathcal{G}(T) := \{(x, Tx) : x \in \mathcal{X}\}$$
is closed in $\mathcal{X} \oplus \mathcal{Y}$, then T is continuous.

Proof. The ℓ^1 norm on $\mathcal{X} \oplus \mathcal{Y}$ was chosen only so as to induce the product topology on $\mathcal{X} \oplus \mathcal{Y}$. We could have used any equivalent norm (for example, the ℓ^2 or ℓ^∞ norms).

Let $\pi_1 : \mathcal{X} \oplus \mathcal{Y} \to \mathcal{X}$ be the canonical projection $\pi_1(x, y) = x, (x, y) \in \mathcal{X} \oplus \mathcal{Y}$. Then π_1 is clearly linear, and
$$\|x\|_X = \|\pi_1(x, y)\|_X \leq \|x\|_X + \|y\|_Y = \|(x, y)\|_1,$$
so that $\|\pi_1\| \leq 1$. Moreover, $\mathcal{G}(T)$ is easily seen to be a linear manifold in $\mathcal{X} \oplus \mathcal{Y}$, and by hypothesis, it is closed and hence a Banach space.

The map
$$\pi_\mathcal{G} : \mathcal{G}(T) \to \mathcal{X}
(x, Tx) \mapsto x$$
is a linear bijection with $\|\pi_\mathcal{G}\| = \|\pi_1|_{\mathcal{G}(T)}\| \leq \|\pi_1\| \leq 1$.

By the Inverse Mapping Theorem 9.4 above, $\pi_\mathcal{G}^{-1}$ is also continuous, hence bounded.
Thus
\[\|Tx\|_Y \leq \|x\|_X + \|Tx\|_Y = \|\pi^{-1}_G(x)\| \leq \|\pi^{-1}_G\| \|x\| \]
for all \(x \in X \), and therefore \(\|T\| \leq \|\pi^{-1}_G\| < \infty \). That is, \(T \) is continuous.

Let \(X \) and \(Y \) be Banach spaces. A linear map \(T : X \rightarrow Y \) is continuous if and only if for all sequences \((x_n)\) in \(X \) converging to \(x \in X \), we have \(\lim_{n \to \infty} Tx_n = Tx \). Of course, given a linear map \(T : X \rightarrow Y \), and given a sequence \((x_n)\) converging to \(x \), there is no reason \(a \) \(p \) \(r \) \(i \) \(o \) \(r \) \(i \) to assume that \((Tx_n) \) converges to anything at all in \(Y \). The following Corollary is interesting in that part \((c) \) tells us that it in checking to see whether or not \(T \) is continuous, it suffices to assume that \(\lim_{n \to \infty} Tx_n \) exists, and that we need only verify that the limit is the expected one, namely \(Tx \). Linearity of \(T \) further reduces the problem to checking this condition for \(x = 0 \).

9.6. Corollary. Let \(X \) and \(Y \) be Banach spaces and \(T : X \rightarrow Y \) be linear. The following are equivalent:

(a) The graph \(G(T) \) is closed.

(b) \(T \) is continuous.

(c) If \(\lim_{n \to \infty} x_n = 0 \) and \(\lim_{n \to \infty} Tx_n = y \), then \(y = 0 \).

Proof.

(a) implies (b): This is just the Closed Graph Theorem above.

(b) implies (c): This is clear.

(c) implies (a): Suppose that \(((x_n,Tx_n))_{n=1}^\infty \) is a sequence in \(G(T) \) which converges to some point \((x,y) \in X \oplus_1 Y \). Then, in particular, \(\lim_{n \to \infty} x_n = x \), and so \(\lim_{n \to \infty} (x_n-x) = 0 \). Also, \(\lim_{n \to \infty} Tx_n = y \), so \(\lim_{n \to \infty} T(x_n-x) = y-Tx \) exists. By our hypothesis, \(y-Tx = 0 \), or equivalently \(y = Tx \). This in turn says that \((x,y) = (x,Tx) \in G(T) \), and so the latter is closed.

Recall that a two closed subspaces \(Y \) and \(Z \) of a Banach space \(X \) are said to topologically complement each other if \(X = Y \oplus Z \).

9.7. Lemma. Two closed subspaces \(Y \) and \(Z \) of a Banach space \(X \) topologically complement each other if and only if the map

\[\iota : Y \oplus_1 Z \rightarrow X \\
(y,z) \mapsto y + z \]
is a homeomorphism of Banach spaces.

Proof. First note that the norms on \(Y \) and on \(Z \) are nothing more than the restrictions to these spaces of the norm on \(X \).

Suppose that \(Y \) and \(Z \) are topologically complementary subspaces of \(X \). That \(\iota \) is linear is clear. Moreover, since \(Y \) and \(Z \) are complementary subspaces, it is easy
to see that \(\iota \) is a bijection. Hence
\[
\|\iota(y, z)\| = \|y + z\|
\leq \|y\| + \|z\|
= \|(y, z)\|,
\]
so that \(\iota \) is a contraction. By the Inverse Mapping Theorem 9.4, \(\iota^{-1} \) is continuous, and so \(\iota \) is a homeomorphism.

Conversely, suppose that \(\iota \) is a homeomorphism. Now \(\text{ran} \ \iota = \mathcal{Y} + \mathcal{Z} = \mathcal{X} \), since \(\iota \) is surjective, and if \(w \in \mathcal{Y} \cap \mathcal{Z} \), then \((w, -w) \in \ker \iota = (0, 0) \), so \(w = 0 \). Hence \(\mathcal{X} \) is the algebraic direct sum of \(\mathcal{Y} \) and \(\mathcal{Z} \). Since \(\mathcal{Y} \) and \(\mathcal{Z} \) are closed in \(\mathcal{X} \), they are also topologically complemented.

The next result extends our results from Section 3, where we showed that for a closed subspace \(\mathcal{M} \) of a Hilbert space \(\mathcal{H} \), there exists an orthogonal projection \(P \in B(\mathcal{H}) \) whose range is \(\mathcal{M} \) (see Remarks 3.7).

9.8. Proposition. Let \(\mathcal{X} \) a Banach space and let \(\mathcal{Y} \) and \(\mathcal{Z} \) be topologically complementary subspaces of \(\mathcal{X} \). For each \(x \in \mathcal{X} \), denote by \(y_x \) and \(z_x \) the unique elements of \(\mathcal{Y} \) and \(\mathcal{Z} \) respectively such that \(x = y_x + z_x \). Define \(E : \mathcal{X} \to \mathcal{Y} \) via \(Ex = E(y_x + z_x) = y_x \) for all \(x \in \mathcal{X} \). Then
(a) \(E \) is a continuous linear map. Moreover, \(E = E^2 \), \(\text{ran} \ E = \mathcal{Y} \), and \(\ker E = \mathcal{Z} \).
(b) Conversely, if \(E \in B(\mathcal{X}) \) and \(E = E^2 \), then \(\mathcal{M} = \text{ran} \ E \) and \(\mathcal{N} = \ker E \) are topologically complementary subspaces of \(\mathcal{X} \).

Proof.

(a) From Lemma 9.7 above, we know that there exists a linear homeomorphism \(\iota : \mathcal{Y} \oplus \mathcal{Z} \to \mathcal{X} \). Consider the map
\[
\pi_{\mathcal{Y}} : \mathcal{Y} \oplus \mathcal{Z} \to \mathcal{Y}
\]
\[
(y, z) \mapsto y.
\]
It is clear that \(\pi_{\mathcal{Y}} \) is linear and contractive, and so \(\pi_{\mathcal{Y}} \) is continuous. As such, the map
\[
E := \pi_{\mathcal{Y}} \circ \iota^{-1} : \mathcal{X} \to \mathcal{Y}
\]
\[
x \mapsto y_x
\]
is clearly linear (being the composition of linear functions), and
\[
\|Ex\| = \|\pi_{\mathcal{Y}} \circ \iota^{-1}\| \leq \|\pi_{\mathcal{Y}}\| \|\iota^{-1}\| < \infty,
\]
so that \(E \) is bounded - i.e. \(E \) is continuous. That \(\text{ran} \ E = \mathcal{Y} \) and \(\ker E = \mathcal{Z} \) are left as exercises.
(b) Since E is assumed to be continuous, \mathcal{N} is closed. Now $I - E$ is also continuous, and $\text{ran } E = \ker(I - E)$, so $\text{ran } E$ is also closed. If $z \in \text{ran } E \cap \ker E$, then $z = Ew$ for some $w \in X$, so $z = E^2w = Ez = 0$. Furthermore, for any $x \in X$, $x = Ex + (I - E)x \in \text{ran } E + \ker E$. Hence \mathcal{M} and \mathcal{N} are algebraically complemented closed subspaces of X; i.e. they are topologically complemented.

\[\square \]

9.9. Remark. A linear map $E \in \mathcal{B}(X)$ is said to be **idempotent** if $E = E^2$. We point out that the term **projection** is often used in this context, although in the Hilbert space setting, the meaning of projection is slightly different.

The above Proposition says that a subspace Y of a Banach space X is complemented if and only if it is the range of a bounded idempotent in $\mathcal{B}(X)$.

* Nobody in the game of football should be called a genius. A genius is somebody like Norman Einstein.

Joe Theismann
10. Appendix – topological background

A child of five could understand this. Fetch me a child of five.

Groucho Marx

10.1. At the heart of analysis is topology. A thorough study of topology is beyond the scope of this course, and we refer the reader to the excellent book [Wil70] General Topology, written by my former colleague Stephen Willard. The treatment of topology in this section borrows heavily from his book.

We shall only give the briefest of overviews of this theory - assuming that the student has some background in metric and norm topologies. We shall only cover the notions of weak topologies and nets, which are vital to the study of Functional Analysis.

10.2. Definition. A topology τ on a set X is a collection of subsets of X, called open sets, which satisfy the following:

(i) $X, \emptyset \in \tau$ - i.e. the entire space and the empty set are open;
(ii) If $\{G_\alpha\}_\alpha \subseteq \tau$, then $\bigcup \alpha G_\alpha \in \tau$ - i.e. arbitrary unions of open sets are open;
(iii) If $n \geq 1$ and $\{G_k\}_{k=1}^n \subseteq \tau$, then $\bigcap_{k=1}^n G_k \in \tau$ - i.e. finite intersections of open sets are open.

A set F is called closed if $X \setminus F$ is open. We call (X, τ) (or more informally, we call X) a topological space.

It is useful to observe that the intersection of a collection $\{\tau_\alpha\}_\alpha$ of topologies on X is once again a topology on X.

10.3. Example.

(i) Let X be any set. Then $\tau = \{\emptyset, X\}$ is a topology on X, called the trivial topology on X.

(ii) At the other extreme of the topological spectrum, if X is any non-empty set, then $\tau = \mathcal{P}(X)$, the power set of X, is a topology on X, called the discrete topology on X.

(iii) Let $X = \{a,b\}$, and set $\tau = \{\emptyset, \{a\}, \{a,b\}\}$. Then τ is a topology on X.

(iv) Let (X, d) be a metric space. Let

$$\tau = \{G \subseteq X : \text{for all } g \in G \text{ there exists } \delta > 0 \text{ such that } b_\delta(g) := \{y \in X : d(x,y) < \delta\} \subseteq G\}.$$

Then τ is a topology, called the metric topology on X induced by d. This is the usual topology one thinks of when dealing with metric spaces, but as we shall see, there can be many more.
(v) Let X be any non-empty set. Then
\[\tau_{cf} = \{ \emptyset \} \cup \{ Y \subseteq X : X \setminus Y \text{ is finite} \} \]
is a topology on X, called the co-finite topology on X.

10.4. Definition. Let (X, τ) be a topological space, and $x \in X$. A set U is called a neighbourhood (abbreviated nbhd) of x if there exists $G \in \tau$ so that $x \in G \subseteq U$. The reader is cautioned that some authors require nbhds to be open - we do not. The neighbourhood system at x is $U_x := \{ U \subseteq X : U \text{ is a nbhd of } x \}$.

The following result from [Wil70] illustrates the importance of nbhd systems.

10.5. Theorem. Let (X, τ) be a topological space, and $x \in X$. Then:

(a) If $U \in U_x$, then $x \in U$.
(b) If $U, V \in U_x$, then $U \cap V \in U_x$.
(c) If $U \in U_x$, there exists $V \in U_x$ such that $U \in U_y$ for each $y \in V$.
(d) If $U \in U_x$ and $U \subseteq V$, then $V \subseteq U_x$.
(e) $G \subseteq X$ is open if and only if G contains a nbhd of each of its points.

Conversely, if in a set X a non-empty collections U_x of subsets of X is assigned to each $x \in X$ so as to satisfy conditions (a) through (d), and if we use (e) to define the notion of an open set, the result is a topology on X in which the nbhd system at x is precisely U_x.

Because of this, it is clear that if we know the nbhd system of each point in X, then we know the topology of X.

There are a number of natural separation axioms that a topological space might satisfy.

10.6. Definition. Let (X, τ) be a topological space.

(i) (X, τ) is said to be T_0 if for every $x, y \in X$ such that $x \neq y$, either there is a neighbourhood U_x of x with $y \notin U_x$ or there is a neighbourhood U_y of y with $x \notin U_y$.
(ii) (X, τ) is said to be T_1 if for every $x, y \in X$ such that $x \neq y$, there are neighbourhoods U_x of x and U_y of y with $y \notin U_x$ and $x \notin U_y$.
(iii) (X, τ) is said to be T_2 (or Hausdorff) if for every $x, y \in X$ such that $x \neq y$, there are neighbourhoods U_x of x and U_y of y with $U_x \cap U_y = \emptyset$.

We say that two subsets A and B of X can be separated by τ if there exist $U, V \in \tau$ with $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

(iv) (X, τ) is said to be regular if whenever $F \subseteq X$ is closed and $x \notin F$, F and $\{x\}$ can be separated.
(v) (X, τ) is said to be normal if whenever $F_1, F_2 \subseteq X$ are closed and disjoint, then F_1 and F_2 can be separated.
(vi) (X, τ) is said to be T_3 if it is T_1 and regular.
(vii) (X, τ) is said to be T_4 if it is T_1 and normal.
We are assuming that the next definition is a familiar one.

10.7. Definition. Let (X, τ) be a topological space. An open cover of X is a collection $\mathcal{G} \subseteq \tau$ such that $X = \bigcup_{G \in \mathcal{G}} G$. A finite subcover of X relative to \mathcal{G} is a finite subset $\{G_1, G_2, \ldots, G_n\} \subseteq \mathcal{G}$ which is again an open cover of X.

A topological space (X, τ) is said to be compact if every open cover of X admits a finite subcover.

10.8. Theorem. Let (X, d) be a metric space. Then X, equipped with the metric topology, is T_4.

10.9. Theorem. Let (X, τ) be a compact, Hausdorff space. Then (X, τ) is T_4.

Recall that a topological space (X, τ) is said to be separable if it admits a countable dense subset.

The following result will be needed in Section 7.

10.10. Proposition. Let (X, d) be a compact metric space. Then (X, d) is separable.

Proof. For each $n \geq 1$, the collection $\mathcal{G}_n := \{b_{1/n}(x) : x \in X\}$ is an open cover of X. Since X is compact, we can find a finite subcover $\{b_{1/n}(x_{j,n}) : 1 \leq j \leq k_n\}$ of X. It is then clear that if $x \in X$, there exists $1 \leq j \leq k_n$ so that $d(x, x_{j,n}) < 1/n$.

As such, the collection

$$\mathcal{D} := \{x_{j,n} : 1 \leq j \leq k_n, 1 \leq n\}$$

is a countable, dense set in X, proving that (X, d) is separable.

\square

10.11. Definition. Let (X, τ) be a topological space. A neighbourhood base \mathcal{B}_x at a point $x \in X$ is a collection $\mathcal{B}_x \subseteq \mathcal{U}_x$ so that $U \in \mathcal{U}_x$ implies that there exists $B \in \mathcal{B}_x$ so that $B \subseteq U$. We refer to the elements of \mathcal{B}_x as basic nbhds of the point x.

The importance of neighbourhood bases is that all open sets can be constructed from them, as we shall soon see.

10.12. Example. Consider (X, d) be a metric space equipped with the metric topology τ. For each $x \in X$, fix a sequence $\{r_n(x)\}_{n=1}^\infty$ of positive real numbers such that $\lim_{n \to \infty} r_n(x) = 0$ and consider $\mathcal{B}_x = \{V_{r_n}(x) : n \geq 1\}$. Then \mathcal{B}_x is a nbhd base at x for each $x \in X$.

10.13. Definition. Let \((X, \tau)\) be a topological space. A base for the topology is a collection \(B \subseteq \tau\) so that for every \(G \in \tau\) there exists \(C \subseteq B\) so that \(G = \bigcup \{B : B \in C\}\). That is, every open set is a union of elements of \(B\). Note that if \(C\) is empty, then \(\bigcup \{B : B \in C\}\) is also empty, so we do not need to include the empty set in our base. A subbase for the topology is a collection \(S \subseteq \tau\) such that the collection \(B\) of all finite intersections of elements of \(S\) forms a base for \(\tau\).

As we shall see in the Assignments, any collection \(C\) of subsets of \(X\) serves as a subbase for some topology on \(X\), called the topology generated by \(C\).

10.14. Example. Let \((X, \tau)\) be a topological space, and for each \(x \in X\), suppose that \(B_x\) is a neighbourhood base at \(x\). Then \(B := \bigcup_{x \in X} B_x\) is a base for the topology \(\tau\) on \(X\).

10.15. Example. Consider \(\mathbb{R}\) with the usual topology \(\tau\). The collection \(B = \{(a, b) : a, b \in \mathbb{R}, a < b\}\) is a base for \(\tau\). (You might remember from Real Analysis that every open set in \(\mathbb{R}\) is a disjoint union of open intervals - although the fact the union is disjoint in this setting is a luxury item which we have not built into the definition of a base in general.)

The collection \(S = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}\) is a subbase for the usual topology, but is not a base for \(\tau\).

10.16. Definition. Let \((X, \tau)\) be a topological space. A directed set is a set \(\Lambda\) with a relation \(\leq\) that satisfies:

(i) \(\lambda \leq \lambda\) for all \(\lambda \in \Lambda\);
(ii) if \(\lambda_1 \leq \lambda_2\) and \(\lambda_2 \leq \lambda_3\), then \(\lambda_1 \leq \lambda_3\); and
(iii) if \(\lambda_1, \lambda_2 \in \Lambda\), then there exists \(\lambda_3\) so that \(\lambda_1 \leq \lambda_3\) and \(\lambda_2 \leq \lambda_3\).

The relation \(\leq\) is sometimes called a direction on \(\Lambda\).

A net in \(X\) is a function \(P : \Lambda \to X\), where \(\Lambda\) is a directed set. The point \(P(\lambda)\) is usually denoted by \(x_\lambda\), and we often write \((x_\lambda)_{\lambda \in \Lambda}\) to denote the net.

A subnet of a net \(P : \Lambda \to X\) is the composition \(P \circ \varphi\), where \(\varphi : M \to \Lambda\) is a increasing cofinal function from a directed set to \(\Lambda\); that is,

(a) \(\varphi(\mu_1) \leq \varphi(\mu_2)\) if \(\mu_1 \leq \mu_2\) (increasing), and
(b) for each \(\lambda \in \Lambda\), there exists \(\mu \in M\) so that \(\lambda \leq \varphi(\mu)\) (cofinal).

For \(\mu \in M\), we often write \(x_{\lambda\mu}\) for \(P \circ \varphi(\mu)\), and speak of the subnet \((x_{\lambda\mu})_\mu\).

10.17. Definition. Let \((X, \tau)\) be a topological space. The net \((x_\lambda)_\lambda\) is said to converge to \(x \in X\) if for every \(U \in \mathcal{U}_x\) there exists \(\lambda_0 \in \Lambda\) so that \(\lambda \geq \lambda_0\) implies \(x_\lambda \in U\).

We write \(\lim_{\lambda} x_\lambda = x\), or \(\lim_{\lambda \in \Lambda} x_\lambda = x\).

This mimics the definition of convergence of a sequence in a metric space.
10.18. Example.

(a) Since \(\mathbb{N} \) is a directed set under the usual order \(\leq \), every sequence is a net. Any subsequence of a sequence is also a subnet. The converse to this is false, however. A subnet of a sequence need not be a subsequence, since its domain need not be \(\mathbb{N} \) (or any countable set, for that matter).

(b) Let \(A \) be a non-empty set and \(\Lambda \) denote the power set of all subsets of \(A \), partially ordered with respect to inclusion. Then \(\Lambda \) is a directed set, and any function from \(\Lambda \) to \(\mathbb{R} \) is a net in \(\mathbb{R} \).

(c) Let \(P \) denote the set of all finite partitions of \([0, 1]\), partially ordered by inclusion (i.e. refinement). Let \(f \) be a continuous function on \([0, 1]\); then to \(P = \{0 = t_0 < t_1 < \cdots < t_n = 1\} \in \mathcal{P} \), we associate the quantity

\[
L_P(f) = \sum_{i=1}^{n} f(t_{i-1})(t_i - t_{i-1}).
\]

The map \(f \mapsto L_P(f) \) is a net (\(\mathcal{P} \) is a directed set), and from Calculus,

\[
\lim_{P \in \mathcal{P}} L_P(f) = \int_{0}^{1} f(x)dx.
\]

10.19. Definition. Let \((X, \tau_X)\) and \((Y, \tau_Y)\) be topological spaces. We say that a function \(f : X \to Y \) is continuous if \(f^{-1}(G) \) is open in \(X \) for all \(G \in \tau_Y \).

That this extends our usual notion of continuity for functions between metric space is made clear by the following result:

10.20. Proposition. If \((X, d_X)\) and \((Y, d_Y)\) are metric spaces with metric space topologies \(\tau_X \) and \(\tau_Y \) respectively, then the following are equivalent for a function \(f : X \to Y \):

(a) \(f \) is continuous on \(X \), i.e. \(f^{-1}(G) \in \tau_X \) for all \(G \in \tau_Y \).

(b) \(\lim_{n} f(x_n) = f(x) \) whenever \((x_n)_{n=1}^{\infty} \) is a sequence in \(X \) converging to \(x \in X \).

As we shall see in the Assignments, sequences are not enough to describe convergence, nor are they enough to characterize continuity of functions between general topological spaces. On the other hand, nets are sufficient for this task, and serve as the natural replacement for sequences. (The following result also admits a local version, which we shall also see in the Assignments.)

10.21. Theorem. Let \((X, \tau_X)\) and \((Y, \tau_Y)\) be topological spaces. Let \(f : X \to Y \) be a function. The following are equivalent:

(a) \(f \) is continuous on \(X \).

(b) Whenever \((x_\lambda)_{\lambda \in \Lambda} \) is a net in \(X \) which converges to \(x \in X \), it follows that \((f(x_\lambda))_{\lambda \in \Lambda} \) is a net in \(Y \) which converges to \(f(x) \).

The notion of a weak topology on a set \(X \) generated by a family of functions \(\{f_\gamma\} \) from \(X \) into topological spaces \((Y_\gamma, \tau_\gamma)\) is of crucial importance in the study of topological vector spaces and of Banach spaces. It is also vital to the understanding of the product topology on a family of topological spaces, which we shall see shortly.
10.22. Definition. Let $\emptyset \neq X$ be a set and $\{(Y_\gamma, \tau_\gamma)\}_{\gamma \in \Gamma}$ be a family of topological spaces. Suppose that for each $\gamma \in \Gamma$ there exists a function $f_\gamma : X \to Y_\gamma$. Set $\mathcal{F} = \{f_\gamma\}_{\gamma \in \Gamma}$.

If $S = \{f_\gamma^{-1}(G_\gamma) : G_\gamma \in \tau_\gamma, \gamma \in \Gamma\}$, then $S \subseteq \mathcal{P}(X)$ and – as noted above – S is a subbase for a topology on X, denoted by $\sigma(X, \mathcal{F})$, and referred to as the weak topology on X induced by \mathcal{F}.

The main and most important result concerning weak topologies induced by a family of functions is the following:

10.23. Proposition.

(a) If τ is a topology on X and if $f_\gamma : (X, \tau) \to (Y_\gamma, \tau_\gamma)$ is continuous for all $\gamma \in \Gamma$, then $\sigma(X, \mathcal{F}) \subseteq \tau$. In other words, $\sigma(X, \mathcal{F})$ is the weakest topology on X under which each f_γ is continuous.

(b) Let (Z, τ_Z) be a topological space. Then $g : (Z, \tau_Z) \to (X, \sigma(X, \mathcal{F}))$ is continuous if and only if $f_\gamma \circ g : Z \to Y_\gamma$ is continuous for all $\gamma \in \Gamma$.

10.24. Definition. Let $\{(X_\alpha, \tau_\alpha)\}_{\alpha \in \Lambda}$ be a collection of topological spaces. The Cartesian product of the sets X_α is

$$\Pi_{\alpha \in \Lambda} X_\alpha = \{x : \Lambda \to \bigcup_\alpha X_\alpha \mid x(\alpha) \in X_\alpha \text{ for each } \alpha \in \Lambda\}.$$

As with sequences, we write $(x_\alpha)_\alpha$ for x.

The map $\pi_\beta : \Pi X_\alpha \to X_\beta$, $\pi_\beta(x) = x_\beta$ is called the βth projection map.

The product topology on ΠX_α is the weak topology on ΠX_α induced by the family $\{\pi_\beta\}_{\beta \in \Lambda}$. As we shall see in the Assignments, this is the topology which has as a base the collection $\mathcal{B} = \{\Pi_{\alpha \in \Lambda} U_\alpha\}$, where

(a) $U_\alpha \in \tau_\alpha$ for all α; and

(b) for all but finitely many α, $U_\alpha = X_\alpha$.

It should be clear from the definition that in (a), it suffices to ask that we take $U_\alpha \in \mathcal{B}_\alpha$, where \mathcal{B}_α is a fixed base for τ_α, $\alpha \in \Lambda$.

Observe that if $U_\alpha \in X_\alpha$ and $U_\alpha = X_\alpha$ for all α except for $\alpha_1, \alpha_2, \ldots, \alpha_n$, then

$$\Pi_\alpha U_\alpha = \pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n}).$$

From this it follows that $\{\pi_\alpha^{-1}(U_\alpha) : U_\alpha \in \mathcal{B}_\alpha, \alpha \in \Lambda\}$ is a subbase for the product topology, where \mathcal{B}_α is a fixed base (or indeed even a subbase will do) for the topology on X_α.

It is perhaps worth pointing out that it follows from the Axiom of Choice that if for all $\alpha \in \Lambda$ we have $X_\alpha \neq \emptyset$, then $X \neq \emptyset$.

We leave it to the reader to verify that the product topology on $\mathbb{R}^n = \Pi_{k=1}^n \mathbb{R}$ is just the usual topology on \mathbb{R}^n.
Bibliography

Index

C*-algebra, 105
\(\ell^\infty\)-direct sum, 4
\(\ell^\infty(N)\), 3
\(\ell^p\)-direct sum, 4
\(\ell^p(N)\), 3
\(\infty\)-norm, 3
c0, 2
p-norm, 2, 3
absolutely summable series, 6
affine hyperplane, 84
affine manifold, 84
affine subspace, 84
algebraic dual, 71
algebraically complemented, 35, 81
annihilator, 102
Axiom of Choice, 122

Balázs, I., 111
Banach space, 1, 3
reflexive, 26
Banach-Alaoglu Theorem, 98
Banach-Mazur compactum, 44
Banach-Mazur distance, 32, 44
Banach-Steinhaus Theorem, 95
Bankead, T., 89
Barros, A.B., 111
base
neighbourhood, 119
base for a topology, 120
basic neighbourhoods, 119
basis
orthonormal, 37
Schauder, 23, 37, 41
basis, Hamel, 37
Berra, Yogi, 32
Bessel’s Inequality, 38
Beurling’s spectral radius formula, 43
Beurling, Arne, 43
Bierce, Ambrose, iii
bilateral weighted shift operator, 21
block-disjoint, 14
bounded operator, 18
bounded variation
sequences of, 14
canonical embedding, 26, 82
Cauchy complete, 48
Cauchy net, 48
Cauchy-Schwarz Inequality, 32, 36, 65
Close Graph Theorem, 113
closed set, 117
c0 finite topology, 118
compact, 119
locally, 105
compactum
Banach-Mazur, 44
compatible, 45
complement
orthogonal, 35
complemented
algebraically, 35, 81
topologically, 35, 80
complete
normed linear space, 1
family of pseudo-metrics, 69
metric, 69
complex-valued Borel measure, 16
condition J, 15
consecutively supported, 14
continuous linear functionals, 23
convergence
pointwise, 92
weak, 91
convex, 57
convexity, 57
diagonal operator, 21
differentiation operator, 22
dimension, 40
 direct sum
 \(\ell^p \), 4
directed set, 120
direction, 120
discrete topology, 117
distance
 Banach-Mazur, 32, 44
double dual space, 23
dual
 algebraic, 71
topological, 71
dual pair, 91
dual space, 11, 23
equivalent norms, 5
Ext\((C)\), 108
extension, 54
extreme point, 108
F. John’s Theorem, 44
face, 108
Fields, W.C., 70
Finite Intersection Property, 97, 110
finite measure, 16
finite subcover, 119
Fréchet space, 69
function of bounded variation, 26
functional, 23, 71
gauge, 57
 Minkowski, 15, 57, 83
 positive linear, 105
functional calculus, 43
gauge functional, 57
Goldstine’s Theorem, 99
Goldwyn, Samuel, iii
Gram-Schmidt Orthogonalisation Process, 38
Hölder’s Inequality, 11, 13
Hölder’s Inequality., 12
Hadas, Moses, iii
Hahn-Jordan Decomposition Theorem, 16
half-space
 closed, 84
 open, 84
Hamel basis, 37, 75
Hausdorff topology, 118
Hilbert space, 4, 32, 65
Hilbert space dimension, 40
hyperplane, 74
 affine, 84
idempotent, 35, 116
Inequality
 Bessel’s, 38
 Cauchy-Schwarz, 32
 inner product spaces, 32
integral
 Riemann-Stieltjes, 26
integral operator, 27
Inverse Mapping Theorem, 113
invertible
 linear operator, 43
isomorphism of Hilbert spaces, 40
iterated dual spaces, 23
James’ space, 15
kernel
 of an integral operator, 27
Krein-Milman Theorem, 110
Kronecker delta function, 41
Laurel, S., 103
LCS, 59
Lebesgue Dominated Convergence Theorem, 97
Lec, Stanislaw J., iii
Levenson, Sam, 105
linear functional, 71
linear manifolds, 2
locally compact, 105
locally convex space, 59, 62
manifold
 affine, 84
Martin, Steve, 31, 112
Marx, Groucho, iii, 56, 117
measurable partition, 16
measure
 complex-valued, Borel, 16
 finite, 16
 regular, 16
metric
 complete, 69
 translation invariant, 69
Milligan, Spike, 17
Minkowski functional, 15, 57, 62, 83
Minkowski’s Inequality, 11, 12
multiplication operator, 20
nbhd, 118
neighbourhood, 118
 balanced, 46
neighbourhood base, 119
neighbourhood system, 118
net, 120
 Cauchy, 48
 convergence of, 120
Newhart, Bob, 1
norm, 1
 Euclidean, 46
 operator, 18, 22
 total variation, 76
 uniform, 3
norm topology, 1
normal topological space, 118
normed linear space, 1
norms
 equivalent, 5
Novak, Ralph, iii
open cover, 119
open map, 10, 49
Open Mapping Theorem, 112
open set, 117
operator
 bilateral weighted shift, 21
 bounded, 18
 diagonal, 21
 differentiation, 22
 multiplication, 20
 positive, 105
 Volterra, 43
 weighted shift, 21
operator norm, 18, 22
operators
 unitary, 40
orthogonal, 32
orthogonal complement, 35
orthogonal projection, 35
orthonormal basis, 37
orthonormal set, 37
Parallelogram Law, 33, 44
Parceval's Identity, 39
Parker, Dorothy, iii
partition
 measurable, 16
Philips, Emo, 71
Phillips' Theorem, 35
positive linear functional, 105
positive operator, 105
pre-annihilator, 102
product topology, 122
projection, 116
pseudo-metric
 complete family of, 69
pure states, 105
Pythagorean Theorem, 33
quasinilpotent, 43
quotient topology, 49
reflexive Banach space, 26
regular measure, 16
regular topological space, 118
Riemann-Stieltjes integral, 26
Riesz Representation Theorem, 36, 96
Riesz-Markov Theorem, 96
Rudner, Rita, 45
Schatten p-class, 29
Schauder basis, 23, 37, 41
 standard, 24
seminorm, 1, 56, 58
seminorms
 separating family of, 60
separable, 119
separated, 84, 118
 strictly, 84
separating
 family of functions, 64
 separating family, 90
separating family of seminorms, 60
separation axioms, 118
series
 absolutely summable, 6
Shandling, Garry, 44
space
 Banach, 3
 Hilbert, 4, 65
 James', 15
 Tsirel'son, 14
spectral radius, 43
spectral radius formula
 Beurling's, 43
spectrum, 43
standard Schauder basis, 24
state, 105
state space, 105
states
 pure, 105
Stone-Weierstraß Theorem, 2
strictly separated, 84
strong operator topology, 65
subbase for a topology, 120
sublinear functional, 57
subnet, 120
subspace
 affine, 84
subspaces, 2
summable
 unconditionally, 38

Theisemann, J., 116

Theorem
 Baire Category, 94, 112
 Banach-Alaoglu, 98
 Banach-Steinhaus, 95
 Closed Graph, 113
 F. John, 44
 Goldstine, 99
 Hahn-Jordan Decomposition, 16
 Inverse Mapping, 113
 Krein-Milman, 110
 Lebesgue Dominated Convergence, 97
 Open Mapping, 112
 Phillips’, 35
 Pythagorean, 33
 Reisz-Markov, 96
 Riesz Representation, 96
 Riesz Representation (for Hilbert spaces), 36
 Stone-Weierstrass, 2
 Tychonoff, 97
 Whitley’s proof of Phillips’, 35

topological dual, 71

topological space
 T_0, 118
 T_1, 118
 T_2, 118
 T_3, 118
 compact, 119
 Hausdorff, 118
 normal, 118
 regular, 118
 separation axioms, 118

topological vector space, 45

topological vector spaces, 2

topologically complemented, 35, 80, 114

topology, 117
 base for a, 120
 co-finite, 118
 compatible, 45
 discrete, 117
 generated by a subbase, 120
 norm, 1
 product, 122
 quotient, 49
 strong operator, 65
 subbase for a, 120
 trivial, 117
 weak, 91, 121, 122

weak operator, 66
 weak*, 92
 total variation, 14
 total variation norm, 76
 trace functional, 105
 translation invariant metric, 69
 trivial topology, 117
 Tsirel’son space, 14, 15
 Tsirel’son, B.S., 14
 TVS, 45
 Twain, Mark, 90
 Tychonoff’s Theorem, 97

unconditionally summable, 38
 uniform boundedness principle, 93, 94
 uniform continuity on a subset, 52
 uniform norm, 3
 uniform space, 70
 uniformity, 51
 uniformly continuous function, 51
 unilaterally backward weighted shift operator, 21
 unilaterally forward weighted shift operator, 21
 unitary operators, 40

variation, 16, 26
 bounded, 26
 total, 14
 vector subspace, 2
 Volterra operator, 27, 43

weak convergence, 91
weak operator topology, 66
weak topology, 90, 121
weak topology (induced by the continuous dual), 91
weak topology induced by a family of functions, 122
weak*-topology, 92
weighted l^2-space, 33
weighted shift operator, 21
Willard, Stephen, 117
Wright, Steven, 18

Youngman, Henny, 55