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Abstract

A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1
2k

for some

nonnegative integer k. An unpublished conjecture of Seymour from 1975 predicts that every ideal clutter has

an optimal fractional packing that is dyadic. In this paper, we prove that every ideal clutter with a covering

number of at least two has a dyadic fractional packing of value two, one whose support cardinality is quasi-

polynomial in the size of the ground set, thereby providing some evidence for the conjecture. Furthermore, if

the clutter is provided via an oracle, such a fractional packing can be found with f calls to the oracle, where f

is quasi-polynomial in the size of the ground set. Our proof stops short of giving polynomial guarantees, the

bottleneck being the fractionality of the fractional packing.

We work with a larger class of clutters. A clutter is clean if it has no minor that is a delta or the blocker of

an extended odd hole. The class of clean clutters contains ideal clutters, but also binary clutters, and clutters

without an intersecting minor. Furthermore, unlike ideal clutters, clean clutters can be recognized in polynomial

time, due to a result by Abdi, Cornuéjols and Lee (Combinatorica, 2020).

Our result applies more generally to the more amenable class of clean clutters, and indeed this is the

key insight of the proof. We conclude with conjectures addressing the support cardinality, the computational

complexity, and the fractionality issue, all inspired by the efficient performance of our algorithm on the class

of binary clutters, as well as Carathéodory’s Theorem.

Keywords. Ideal clutter, binary clutter, cube-ideal set, vector space over GF (2), dyadic fractional packing,

quasi-polynomial time.

1



Contents

1 Introduction 3

1.1 Clean clutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The existence of a dyadic fractional packing of value two . . . . . . . . . . . . . . . . . . . . . 6

1.3 Finding a dyadic fractional packing in quasi-polynomial time . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Clean tangled clutters 8

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 An inductive tool for clean tangled clutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Clean cuboids 10

3.1 Cube-ideal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Binary spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Preliminaries for computational complexity 12

4.1 The filter oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Finding a dyadic fractional packing of value two 14

5.1 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Algorithm 1 and the proof of Theorem 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Incrementally maximal reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4 Algorithm 2 and the proof of Theorem 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Binary tangled clutters 20

6.1 Algorithm 2 on binary tangled clutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Projective geometries over the two-element field . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Affine flats and cocycle covers in binary matroids . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Concluding remarks 25

7.1 Two conjectures on dyadic fractional packings of value two . . . . . . . . . . . . . . . . . . . . 25

7.2 Possible extensions and restrictions of Conjecture 1.1 . . . . . . . . . . . . . . . . . . . . . . . 26

A Reductions from affine flats 29

2



1 Introduction

Let C be a clutter over ground set V . The polyhedron
{
x ∈ RV

+ : x(C) ≥ 1 ∀C ∈ C
}

is called the set covering

polyhedron associated with C, where x(C) =
∑

v∈C xv . C is an ideal clutter if this polyhedron is integral [12].

Consider the following primal-dual pair of linear programs for an ideal clutter C:

(P )

min 1>x

s.t. x(C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : v ∈ C,C ∈ C) ≤ 1 ∀v ∈ V
y ≥ 0.

Basic polyhedral theory tells us that the primal (P) has an integral, in fact 0 − 1, optimal solution. As a

result, the linear program (P) computes the covering number of C, that is, the minimum number of elements in

V needed to intersect every member of C.

Let us switch to the dual program. Any feasible solution y to (D) is called a fractional packing of C of value

1>y. Observe that a fractional packing assigns a nonnegative fraction to every member so that every element has

congestion at most 1. Is there always an optimal fractional packing that is integral? Unfortunately, the answer is

no. For example, the clutterQ6 := {{1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}} is ideal, but there is a unique optimal

fractional packing assigning 1
2 , a fractional number, to every member [28]. Let us provide some context and then

ask a better informed question.

A well-known and fundamental result in Combinatorial Optimization and Polyhedral Combinatorics is the

theorem of Edmonds and Johnson stating that the clutter of (minimal) T -cuts of a graph is ideal [15]. A less

known result is that of Lovász, stating that there is always an optimal fractional packing of T -cuts that is 1
2 -

integral [23].

After applying tools from the theory of blocking clutters to the theorem of Edmonds and Johnson, we obtain

that the clutter of (minimal) T -joins of a graph is also ideal [16] (see [10], §2). Seymour observed that within

this class of ideal clutters, there are examples where (D) has no 1
2 -integral optimal solution [29]. However,

motivated by conjectures of Tutte, Berge and Fulkerson, he conjectures that there should always exist an optimal

fractional packing of T -joins that is 1
4 -integral [29] (see also [10], Conjecture 2.15). He made a case for this

conjecture by showing that it would follow from the generalized Berge-Fulkerson conjecture on edge-colorings

of r-graphs [29].

More generally, a vector is dyadic if it is 1
2k

-integral for some integer k ≥ 0. Inspired by the results,

implications, and conjectures above, Seymour made the following conjecture about all ideal clutters:

Conjecture 1.1 (Seymour 1975, see [26], §79.3e). Every ideal clutter has an optimal fractional packing that is

dyadic.

In this paper, we prove that every ideal clutter with covering number at least two has a dyadic fractional

packing of value two, thereby providing some evidence for Conjecture 1.1. Our proof uses the key insight that

ideal clutters forbid two types of substructures: deltas which are clutters coming from projective planes, and the

blocker of an extended odd hole which are clutters coming from odd holes in graphs.
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Figure 1: Left: The points and lines correspond to the elements and members of ∆n. Right: The edges corre-

spond to the minimum cardinality members of an extended odd hole with n elements.

Before going further, we must point out that Seymour has another conjecture that every ideal clutter should

have an optimal fractional packing that is not only dyadic but 1
4 -integral (see [26], §79.3e). This conjecture,

however, is studied in the more appropriate context of k-wise intersecting families [2, 3].

1.1 Clean clutters

Let us formally define clutters. Let V be a finite set of elements, and let C be a family of subsets of V , called

members. The family C is a clutter over ground set V if no member contains another one [14]. A subset B ⊆ V
is a cover of C if it intersects every member. The covering number of C, denoted τ(C), is the minimum cardinality

of a cover. The covering number of {∅} is assumed∞, while the covering number of its blocker, {}, is 0.

A cover of C is minimal if it does not contain another cover. The family of the minimal covers of C forms

another clutter over the same ground set, called the blocker of C, and denoted b(C) [14]. It can be readily checked

that b(b(C)) = C [20, 14]. Lehman’s width-length inequality, and also Fulkerson’s theory of blocking polyhedra,

implies that if a clutter is ideal, then so is its blocker [22, 16].

Take disjoint I, J ⊆ V . The minor of C obtained after deleting I and contracting J , denoted C \ I/J , is

the clutter over ground set V − (I ∪ J) whose members consist of the inclusion-wise minimal sets of {C − J :

C ∈ C, C ∩ I = ∅}. The minor is proper if I ∪ J 6= ∅. It can be readily checked that b(C \ I/J) =

b(C)/I \ J [27]. In terms of the set covering polyhedron, deletion and contraction correspond to projection and

restriction, respectively. As these operations preserve polyhedral integrality, we get that if a clutter is ideal, then

so is every minor of it [28].

For an integer n ≥ 3, denote by ∆n the clutter over ground set [n] := {1, . . . , n} whose members

are {1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n} (see Figure 1). Observe that b(∆n) = ∆n. Observe further that(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
is a fractional vertex of the associated set covering polyhedron, so ∆n is non-ideal. More

generally, a delta is any clutter obtained from ∆n after relabeling its ground set.

An extended odd hole is any clutter whose elements can be relabeled as [n], for some odd integer n ≥ 5,

to obtain a clutter C such that C = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} ∪ C′ where every member of C′, if

any, has cardinality at least 3 (see Figure 1). Observe that every cover of C has cardinality at least n+1
2 . Observe

further that 1
2 · 1 is a fractional vertex of the associated set covering polyhedron. Thus an extended odd hole is
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Figure 2: A Venn diagram of the world of clean clutters

non-ideal, implying in turn that the blocker of an extended odd hole is non-ideal.

Deltas, extended odd holes and their blockers are among the most basic classes of non-ideal clutters. In fact,

with the sole exception of the lines of the Fano plane, these were the first non-ideal clutters found and studied by

Lehman [22]. Thus, as a first step to studying idealness, it seems natural to study clutters without such minors.

What is fascinating though is the recent discovery that finding the blocker of an extended odd hole as a minor is

much easier than an extended odd hole! More precisely, the following result was shown recently:

Theorem 1.2 ([4], Theorem 1.11). There is an algorithm that given a clutter over n elements and m members

runs in time polynomial in n,m and finds a delta or the blocker of an extended odd hole minor, or certifies that

none exists.

In stark contrast with Theorem 1.2, testing whether a clutter has a delta or an extended odd hole as a minor

is NP-complete [13, 4]. In fact, this hardness result is the reason that testing idealness is co-NP-complete [13].

Inspired by these results, let us make the following definition:

Definition 1.3. A clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole.

Notice that if a clutter is clean, then so is every minor of it. As was already pointed out, every ideal clutter is

clean. However, unlike idealness, being clean is efficiently recognizable as shown by Theorem 1.2. Other than

ideal clutters, there are two other important classes of clean clutters, as described below and depicted in Figure 2.

A clutter is intersecting if every two members intersect yet no element belongs to all members [4]. Notice

that every delta and the blocker of every extended odd hole is an intersecting clutter. Thus clutters without an

intersecting minor are also clean. A natural connection between clean clutters and this class was recently estab-

lished in [4]. This class is important because it has been conjectured that idealness of such clutters is equivalent

to the total dual integrality of the associated set covering linear system (P) [4]. This is in fact equivalent to the

τ = 2 Conjecture by Cornuéjols, Guenin and Margot [11].
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C is a binary clutter if the symmetric difference of any odd number of members contains a member; equiv-

alently, C is binary if |C ∩ B| ≡ 1 (mod 2) for all C ∈ C, B ∈ b(C) [21]. In particular, a clutter is binary if

and only if its blocker is binary. For instance, the clutter of T -joins of a graph is binary. Observe that the deltas,

extended odd holes and their blockers are not binary. If a clutter is binary, so is every minor of it [27]. Thus

binary clutters are clean.

1.2 The existence of a dyadic fractional packing of value two

Consider a clean clutter with covering number at least two. To look for a fractional dyadic packing of value two

in the clutter, we first move to a deletion minor that is minimal subject to having covering number at least two,

find the desired fractional packing there, and then lift it back up to a desired fractional packing in the original

clutter. Such a deletion minor conforms to the following definition:

Definition 1.4 ([2, 3]). A clutter is tangled if its covering number is two, and every element belongs to a minimum

cover.

Observe that a clutter is tangled if, and only if, it has covering number at least two but every proper deletion

minor has covering number less than two.

Let C be a clean tangled clutter over ground set V . Denote by G(C) the graph over vertex set V whose edges

correspond to the minimal covers of C of cardinality two. The rank of C, denoted rank(C), is the number of

connected components of G(C). We prove that every clean tangled clutter has a dyadic fractional packing of

value two, one whose fractionality depends on the rank:

Theorem 1.5. Let C be a clean tangled clutter of rank r. Then C has a 1
2r−1 -integral packing of value two.

In fact, motivated by Carathéodory’s Theorem and also projective geometries over the two-element field, we

conjecture that the denominator 2r−1 can be improved to 2k−1, for some integer k ≥ 1 such that k ≤ log(r+1);

see §7 for more details.1 For now, let us present some consequences of Theorem 1.5.

Theorem 1.6. Every clean clutter with covering number at least two has a dyadic fractional packing of value

two.

Proof of Theorem 1.6, assuming Theorem 1.5. Let C be a clean clutter with covering number at least two, and

let C′ be a deletion minor that is minimal subject to having covering number at least two. Then C′ is necessarily

a clean tangled clutter. It therefore follows from Theorem 1.5 that C′, and therefore C, has a dyadic fractional

packing of value two.

Applying this result to the special classes of clean clutters yields the following:

Corollary 1.7. The following statements hold:

(a) Every ideal clutter with covering number at least two has a dyadic fractional packing of value two.
1All the log’s in this paper are base 2.
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(b) Every binary clutter with covering number at least two has a dyadic fractional packing of value two.

In particular, Corollary 1.7 (a) provides some evidence for Conjecture 1.1. For the joint special case of ideal

binary clutters, Corollary 1.7 was strengthened very recently by using tools from Graph Theory and Matroid

Theory: It is shown that every ideal binary clutter with covering number at least two has a 1
4 -integral packing of

value two [3].

Finally, note that Theorem 1.6 also implies that every clutter without an intersecting minor and with covering

number at least two, has a dyadic fractional packing of value two. However, this is a trivial statement as every

such clutter has two disjoint members, by definition.

1.3 Finding a dyadic fractional packing in quasi-polynomial time

To discuss the computational complexity of our algorithms in full generality, we assume that our clutters are

inputted via an oracle. More precisely, a filter oracle for a clutter C consists of V along with an oracle which,

given any set X ⊆ V , decides in unit time whether or not X contains a member [30].

We see two algorithms that, given a clean tangled clutter over ground set V , output a dyadic fractional

packing y? of value two. For both algorithms, the enumeration tree is binary, the height of the tree determines

the fractionality of y?, the total number of leaves determines the support cardinality of y?, while the total number

of nodes in the tree determines the number of calls to the filter oracle.

Our proof of Theorem 1.5 leads to the first algorithm, Algorithm 1, with the following characteristics:

Theorem 1.8. Let C be a clean tangled clutter of rank r over ground set V inputted via a filter oracle. Then

Algorithm 1 outputs a fractional packing y? of value two that is 1
2r−1 -integral and whose support has cardinality

at most 2r. Moreover, the algorithm makes at most (2r − 1) · |V |2 calls to the oracle and has running time

O(|V |2) per call.

While r can be much smaller than |V |, both the number of calls to the oracle and the support cardinality

depend exponentially on r. We see a revised algorithm, Algorithm 2, that improves this dependence on r to

quasi-polynomial:

Theorem 1.9. Let C be a clean tangled clutter of rank r over ground set V inputted via a filter oracle. Then

Algorithm 2 outputs a fractional packing y? of value two that is 1
2r−1 -integral and whose support has cardinality

at most rO(log r). Moreover, the algorithm makes rO(log r) · O(|V |3) calls to the oracle and has running time

O(|V |2) per call.

We believe that the dependence on r can be further improved to a polynomial by either Algorithm 2 itself

(our analysis of the algorithm is not known to be tight) or another algorithm; see §7 for more details. In §6, we

prove that Algorithm 2 on binary tangled clutters has in fact a linear dependence on r.
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1.4 Outline of the paper

We prove Theorem 1.5 in §2. In that section, we also provide a key induction tool for clean tangled clutters.

In §3, we apply Theorem 1.5 to cuboids, and see how convex combinations and Carathéodory’s Theorem come

into play. In that section, we also talk about cube-ideal sets and vector spaces over GF (2). After discussing

some preliminaries on the computational complexity in §4, we present in §5 Algorithms 1 and 2 and the proofs

of Theorem 1.8 and Theorem 1.9. In §6, we analyze the provably efficient performance of Algorithm 2 on the

class of binary tangled clutters. In the final section, §7, we discuss potential improvements of Theorem 1.5 and

Theorem 1.9, and debate possible extensions and restrictions of Conjecture 1.1.

2 Clean tangled clutters

In this section, we present two preliminaries on clean tangled clutters in §2.1, prove an important inductive tool

in §2.2, and then prove Theorem 1.5 in §2.3.

2.1 Preliminaries

Let C be a clean tangled clutter over ground set V . Recall that G(C) denotes the graph over vertex set V whose

edges correspond to the minimal covers of cardinality two. We need the following preliminaries from [8]:

Remark 2.1 ([8]). Let C be a clean tangled clutter. Then G(C) is bipartite.

Proof. Suppose otherwise. Let V be the ground set of C. As G(C) is non-bipartite, it has a chordless odd cycle;

let us label its vertices as u1, . . . , un ∈ V for some odd integer n ≥ 3. Let J := V − {u1, . . . , un}. Observe

that b(C)\J is either ∆3 or an extended odd hole, implying in turn that C/J is either b(∆3) = ∆3 or the blocker

of an extended odd hole, a contradiction as C is clean.

Theorem 2.2 ([8]). Let C be a clean tangled clutter, whereG(C) is connected and has bipartition {U,U ′}. Then

neither U nor U ′ is a cover.

We also need the following remark:

Remark 2.3. Let C be a clean tangled clutter, let G := G(C), and let {U,U ′} be the bipartition of a connected

component of G. Then every member of C disjoint from U contains U ′.

Proof. Every edge of G gives a cover of C, so every member of C is a vertex cover of G, implying in turn that

every member of C disjoint from U must contain U ′.

Theorem 2.2 and Remark 2.3 have the following immediate consequence:

Corollary 2.4. Let C be a clean tangled clutter, where G := G(C) is connected and has bipartition {U,U ′}.
Then U,U ′ ∈ C (so C has two disjoint members).
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Proof. By Theorem 2.2, U is not a cover, so there is a member C such that C ∩ U = ∅, implying that C ⊆ U ′.

However, any such member has to contain U ′ by Remark 2.3, so U ′ ⊆ C, implying in turn that C = U ′, so

U ′ ∈ C. Similarly, U ∈ C, as required.

2.2 An inductive tool for clean tangled clutters

Given a graph G = (V,E) and a subset X ⊆ V , denote by G[X] the subgraph induced on vertices X . We are

now ready to prove the following important result, which is crucial for the proof of Theorem 1.5.

Theorem 2.5. Let C be a clean tangled clutter. Then G(C) is a bipartite graph where every vertex is incident

with an edge. Moreover, if G(C) is not connected and {U,U ′} is the bipartition of a connected component, then

C \ U/U ′ is a clean tangled clutter.

Proof. Let C be a clean tangled clutter over ground set V , and let G := G(C). Then by Remark 2.1 and the

tangled property, G is a bipartite graph where every vertex is incident with an edge.

Let {U,U ′} be the bipartition of a connected component ofG. Clearly C\U/U ′ is clean and every element of

it appears in a cardinality-two cover. To prove that C \U/U ′ is tangled, it remains to prove that τ(C \U/U ′) ≥ 2.

Suppose for a contradiction that τ(C \ U/U ′) ≤ 1. Then there exists a B ∈ b(C) such that B ∩ U ′ = ∅ and

|B−U | ≤ 1. Let C′ be the minor of C obtained after deleting B−U and contracting V − (U ∪U ′ ∪B). Notice

that C′ has ground set U ∪ U ′. Clearly, C′ is a clean clutter.

We claim that τ(C′) ≥ 2. If B − U = ∅, then τ(C′) ≥ τ(C) = 2. Otherwise, |B − U | = 1. In this case,

a cover of cardinality one in C′ would come from a cardinality-two cover in C contained in U ∪ U ′ ∪ (B − U)

and with an element in B − U , that is, it would come from an edge of G with an end in U ∪ U ′ and another end

in B − U . However, as G[U ∪ U ′] is a connected component of G, G has no edge with an end in U ∪ U ′ and

another in B − U . As a result, C′ has no cover of cardinality one, so τ(C′) ≥ 2, as claimed.

Since every cardinality-two cover of C contained in U ∪ U ′ is also a cover of C′, the latter must be a tangled

clutter. Let G′ := G(C′). Then G′ is a bipartite graph by Remark 2.1. As G[U ∪ U ′] ⊆ G′, G′ is connected and

its bipartition is inevitably {U,U ′}. It therefore follows from Corollary 2.4 that U,U ′ are both members of C′.
However, B ∩ U = B ∩ (U ∪ U ′) ∈ b(C′) is disjoint from U ′ ∈ C′, a contradiction.

2.3 The proof of Theorem 1.5

We need the following two lemmas:

Lemma 2.6. Let C be a clean tangled clutter, where G(C) is not connected. Let {U,U ′} be the bipartition

of a connected component of G(C), and let z, z′ be fractional packings of C \ U/U ′, C/U \ U ′ of value two,

respectively. Let y, y′ ∈ RC+ be defined as follows: 2

yC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and y′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

2Notice that by Remark 2.3, if C ∩ U = ∅ then U ′ ⊆ C so C − U ′ is a member of C \ U/U ′, and if C ∩ U ′ = ∅ then U ⊆ C so

C − U is a member of C/U \ U ′.

9



Then 1
2y+ 1

2y
′ is a fractional packing of C of value two. Moreover, if z, z′ are dyadic vectors, then so is 1

2y+ 1
2y
′.

Proof. We leave this as an exercise for the reader.

Given a clean tangled clutter C, recall that rank(C) denotes the number of connected components of the

bipartite graph G(C).

Lemma 2.7. Let C be a clean tangled clutter, where G := G(C) is not connected, and let {U,U ′} be the

bipartition of a connected component of G. Then rank(C \ U/U ′) ≤ rank(C)− 1.

Proof. Let r := rank(C), and let {Ui, Vi}, i ∈ [r − 1] be the bipartitions of the connected components of G

different from G[U ∪U ′]. Let C′ := C \U/U ′, which is clean and tangled by Theorem 2.5, and let G′ := G(C′).

As G[Ui ∪ Vi] ⊆ G′ for all i ∈ [r − 1], G′ has at most r − 1 connected components, so rank(C′) ≤ r − 1.

We are now ready to prove Theorem 1.5:

Proof of Theorem 1.5. Let C be a clean tangled clutter over ground set V and of rank r. We prove, by induction

on r ≥ 1, that C has a 1
2r−1 -integral packing of value two. Let G := G(C), a bipartite graph where every

vertex is incident with an edge by Theorem 2.5, and let {U,U ′} be the bipartition of a connected component

of G. For the base case r = 1, notice that U,U ′ ∈ C by Corollary 2.4, so {U,U ′} gives a 1
2r−1 -integral

packing of value two, thereby proving the base case. For the induction step, assume that r > 1, that is, G is not

connected. Then C \U/U ′ and C/U \U ′ are clean and tangled by Theorem 2.5. Let r1 := rank(C \ U/U ′) and

r2 := rank(C/U \ U ′). By Lemma 2.7, r1 ≤ r − 1 and r2 ≤ r − 1. Hence, by the induction hypothesis, there

exist fractional packings z, z′ of C \ U/U ′, C/U \ U ′ of value two that are 1
2r1−1 -integral and 1

2r2−1 -integral,

respectively. Let y, y′ ∈ RC+ be defined as follows:

yC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and y′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

Then 1
2y + 1

2y
′ is a fractional packing of C of value two by Lemma 2.6, one that is 1

2k−1 -integral for k =

1 + max{r1, r2}. As k ≤ r, 1
2y+ 1

2y
′ is the desired dyadic fractional packing, thereby completing the induction

step.

3 Clean cuboids

The reader may wonder about the significance of Theorem 1.5, as it only guarantees dyadic fractional packings

of value two, and none of higher value. The theory of cuboids addresses this concern, by which we derive an

insightful consequence of Theorem 1.5. Let us elaborate.

Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n. The cuboid of S, denoted cuboid(S), is the clutter over

ground set [2n] whose members have incidence vectors {(p1, 1 − p1, . . . , pn, 1 − pn) : p ∈ S}. Observe that

{1, 2}, {3, 4}, . . . , {2n − 1, 2n} are covers of cuboid(S). As a consequence, if the points in S do not agree on
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a coordinate, then cuboid(S) has covering number two, so it is a tangled clutter. In the case where the cuboid is

a clean clutter, too, we can apply Theorem 1.5 and obtain the following consequence:

Theorem 3.1. Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n whose points do not agree on a coordinate and

whose cuboid is a clean clutter. Then 1
2 ·1 can be written as a 1

2n -integral convex combination of the points in S.

Proof. Let C := cuboid(S). We know that C is a clean tangled clutter, with rank at most n as G(C) contains

edges {2i− 1, 2i}, i ∈ [n]. It therefore follows from Theorem 1.5 that C has a 1
2n−1 -integral packing y ∈ RC+ of

value two. For each i ∈ [n], every member of C contains exactly one of 2i− 1, 2i, so

2 = 1>y =
∑

(yC : C ∈ C, 2i− 1 ∈ C) +
∑

(yC : C ∈ C, 2i ∈ C) ≤ 1 + 1 = 2,

where the inequality follows from the fact that y has congestion at most 1 at every element. Equality must hold

throughout above, so∑
(yC : C ∈ C, 2i− 1 ∈ C) =

∑
(yC : C ∈ C, 2i ∈ C) = 1 ∀i ∈ [n].

For each point p ∈ S with corresponding member C ∈ C, define zp := 1
2 · yC . The equality above implies that∑

p∈S
zp · p =

1

2
· 1.

As 1>z = 1
2 · 1

>y = 1, the equality above expresses 1
2 · 1 as a 1

2n -integral convex combination of the points

in S, as required.

We see a conjecture in §7 (namely, Conjecture 7.1) that would imply the following strengthening of Theo-

rem 3.1:

Conjecture 3.2. Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n whose points do not agree on a coordinate

and whose cuboid is a clean clutter. Then 1
2 · 1 can be written as a 1

2k
-integral convex combination of the points

in S, where k is an integer such that 1 ≤ k ≤ log(n+ 1).

Notice that the support of such a convex combination would have cardinality at most 2k ≤ n+1, thereby meeting

the upper bound guaranteed by Carathéodory’s Theorem.

The assumption in Theorem 3.1 that the cuboid be clean may seem too unfamiliar to the reader, so let us

focus on two insightful special cases, namely ideal cuboids in §3.1 and binary cuboids in §3.2.

3.1 Cube-ideal sets

Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n. We say that S is cube-ideal if every facet of conv(S) is either

xi ≥ 0 or xi ≤ 1 for some i ∈ [n], or it is a generalized set covering inequality:∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 I, J ⊆ [n], I ∩ J = ∅.

11



Generalized set covering inequalities were studied previously by Hooker [19], Guenin [18], and Nobili and

Sassano [24]. The notion of cube-idealness was defined in [9] and studied in [1].

Let S be a cube-ideal set whose points do not agree on a coordinate. Then every valid generalized set

covering inequality for conv(S) must consist of at least two variables. Subsequently, 1
2 · 1 ∈ conv(S). In

fact, a set is cube-ideal if and only if its cuboid is an ideal clutter ([1], Theorem 1.6). We may therefore apply

Theorem 3.1 to derive a stronger conclusion:

Corollary 3.3. Take an integer n ≥ 1 and a cube-ideal set S ⊆ {0, 1}n whose points do not agree on a

coordinate. Then 1
2 · 1 can be written as a 1

2n -integral convex combination of the points in S.

3.2 Binary spaces

Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n. The set S is a vector space over GF (2), or simply a binary

space, if a4b ∈ S for all a, b ∈ S. In particular, a nonempty binary space necessarily contains 0. It can be

readily checked that a set is a binary space if and only if its cuboid is a binary clutter [3]. We may therefore

apply Theorem 3.1 to derive the following consequence:

Corollary 3.4. Take an integer n ≥ 1 and a binary space S ⊆ {0, 1}n whose points do not agree on a

coordinate. Then 1
2 · 1 can be written as a 1

2n -integral convex combination of the points in S.

Alternative proof. Let S be a binary space whose points do not agree on a coordinate. Basic Linear Algebra tells

us that |S| = 2r where r is the GF (2)-rank of S, and that for each i ∈ [n], |S ∩ {x : xi = 0}| = |S ∩ {x :

xi = 1}| = 2r−1. As a result, the point 1
2 · 1 can be expressed as the uniform convex combination 1

2r · 1 ∈ RS
+,

thereby proving Corollary 3.4.

4 Preliminaries for computational complexity

In §4.1, we discuss the filter oracle in some detail, and in §4.2, we discuss enumeration trees of exponential,

quasi-polynomial, and polynomial sizes.

4.1 The filter oracle

Let C be a clutter over ground set V . Recall that a filter oracle for C consists of V along with an oracle which,

given any set X ⊆ V , decides in unit time whether or not X contains a member. Observe that,

Remark 4.1. Given a filter oracle for a clutter C over ground set V , one can produce all covers of cardinality

two with
(|V |

2

)
calls to the oracle.

Proof. Given X ⊆ V , X is a cover if and only if V −X does not contain a member of C, so we can test in unit

time whether or not X is a cover. As a result, one can produce all covers of cardinality at most two by querying

the oracle accordingly for each set in {X ⊆ V : |X| = 2}.
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Remark 4.2 ([30]). Given a filter oracle for a clutter C over ground set V , and given disjoint I, J ⊆ V , one has

a filter oracle for C \ I/J .

Proof. Given X ⊆ V − (I ∪ J), X contains a member of C \ I/J if and only if X ∪ J contains a member of C,

so we can test in unit time whether or not X contains a member of C \ I/J .

Remark 4.3 ([30]). Given a filter oracle for a clutter C over ground set V , one has a filter oracle for b(C).

Proof. Given X ⊆ V , X contains a member of b(C) if and only if V −X does not contain a member of C, so

we can test in unit time whether or not X contains a member of b(C).

4.2 Binary trees

The enumeration trees of Algorithms 1 and 2 are rooted binary trees where every node is labeled. Here we

analyze the height, the number of leaves, and the number of nodes of such trees. We need the following lemma:

Lemma 4.4. Let f : N→ N be a non-decreasing function such that f(1) = 1, and

f(x) ≤ 1 + f(x− 1) + f(b3x/4c) ∀ x ≥ 2.

Then, for each x ≥ 2, the following statements hold:

(a) f(x) ≤ (1 + 2x− 2b3x/4c) · f(b3x/4c)

(b) f(x) ≤ (1 + 2x− 2b3x/4c)1+
log x

log 4/3 · f(1) ≤ (1 + 2x− 2b3x/4c)1+2.41 log x

In particular, f(x) = xO(log x).

Proof. (a) A simple inductive argument, together with the fact that f is non-decreasing, tells us that for every

integer k ∈ [x− 1],

f(x) ≤ k + f(x− k) + k · f(b3x/4c).

Letting k? := x− b3x/4c we get

f(x) ≤ k? + (k? + 1) · f(b3x/4c) ≤ (2k? + 1) · f(b3x/4c)

thereby proving (a). (b) It follows from (a) and the monotonicity of f that

f(x) ≤ (2k? + 1)`f(b(3/4)`xc).

Choosing ` = d log x
log 4/3e yields (b).

We are now equipped to prove the following:

Theorem 4.5. Let T be a binary tree, where every node is labeled with an integer in N, called the rank of the

node. Suppose that the root has rank r, and the rank of each child is at least one less than the rank of the parent.

Then the following statements hold:
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(a) The tree has height at most r− 1, the number of leaves is at most 2r−1, while the number of nodes is at most

2r − 1.

(b) Assume that if a non-leaf node has rank x, then the sum of the ranks of its two children is at most 3
2 (x− 1).

Then the tree has height at most r − 1, the number of leaves is rO(log r), and the number of nodes is also

rO(log r).

(c) Assume that if a non-leaf node has rank x, then each of its two children has rank at most 1
2 (x− 1). Then the

tree has height at most log (r + 1) − 1, the number of leaves is at most r+1
2 , and the number of nodes is at

most r.

Proof. (a) We leave this as an exercise for the reader. (b) It is clear that the tree has height at most r − 1. For

each node of rank x, denote by f(x) the maximum possible number of descendants of the node, including the

node itself. Clearly, f : N → N is a non-decreasing function such that f(1) = 1. Moreover, our hypothesis

implies that for each x ≥ 2, f(x) ≤ 1+f(y)+f(z) for some integers y, z ∈ [x−1] such that y+z ≤ 3
2 (x−1).

Since f is non-decreasing, it follows that f(x) ≤ 1+f(x−1)+f(b3x/4c). We may therefore apply Lemma 4.4

to conclude that f(r) = rO(log r). Thus, the number of nodes in the tree is rO(log r), implying in turn that the

number of leaves is rO(log r). (c) We leave this as an exercise for the reader.

5 Finding a dyadic fractional packing of value two

In this section, we present the two promised algorithms for finding a dyadic fractional packing of value two in

a clean tangled clutter. Both algorithms rely on the notion of a reduction, introduced in §5.1, which is a bi-set

that reduces the problem of finding the desired fractional packing in a clean tangled clutter to that of two smaller

clean tangled clutters. Algorithm 1 and the proof of Theorem 1.8 are then presented in §5.2. After refining the

notion of a reduction to that of an incrementally maximal reduction in §5.3, we present Algorithm 2 and the

proof of Theorem 1.9 in §5.4.

5.1 Reductions

Let C be a clean tangled clutter over ground set V , and let G := G(C). A reduction is a set {I, J} such that

(R1) I, J ⊆ V are nonempty disjoint subsets, G[I ∪ J ] is the union of some connected components of G, and

I, J is a (proper) bicoloring of G[I ∪ J ], and

(R2) τ(C \ I/J) ≥ 2 and τ(C/I \ J) ≥ 2.

Observe that every reduction {I, J} must also satisfy the following two properties:

(R3) Every member of C disjoint from I contains J , and every member of C disjoint from J contains I: This

follows from (R1) with an argument similar to that of Remark 2.3.
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(R4) rank(C \ I/J) < rank(C) and rank(C/I \ J) < rank(C): This follows from (R1) and (R2) with an

argument similar to that of Lemma 2.7.

A reduction {I, J} is proper if I ∪ J 6= V . We point out that a reduction may indeed be non-proper. In fact,

we have the following characterization:

Remark 5.1. Let C be a clean tangled clutter over ground set V , and let {I, J} be a reduction. Then the

following statements hold:

(R2a) if {I, J} is a proper reduction, then C \ I/J, C/I \ J are clean tangled clutters,

(R2b) {I, J} is a non-proper reduction if, and only if, I, J are members of C.

Proof. (R2a) can be readily checked. (R2b) (⇒) As C \ I/J is tangled, I is not a cover, so V − I = J

must contain a member. It now follows from (R3) that J is a member. As C/I \ J is also tangled, it follows

similarly that I is also a member. (⇐) Observe that I, J are members that are in fact disjoint, because {I, J}
is a reduction. Since C is tangled, it follows that I ∪ J = V , implying in turn that {I, J} is a non-proper

reduction.

A proper reduction allows us to reduce the problem of finding a dyadic fractional packing of value two in

a clean tangled clutter to that of two smaller clean tangled clutters, as outlined in the following extension of

Lemma 2.6:

Lemma 5.2. Let C be a clean tangled clutter over ground set V . Suppose {I, J} is a proper reduction. Let z, z′

be fractional packings of C \ I/J, C/I \ J of value two, respectively. Let y, y′ ∈ RC+ be defined as follows:

yC :=

{
zC−J if C ∩ I = ∅
0 otherwise

and y′C :=

{
z′C−I if C ∩ J = ∅
0 otherwise.

Then the following statements hold:

(a) The assignment y? := 1
2y+ 1

2y
′ is a fractional packing of C of value two, and |support(y?)| ≤ |support(z)|+

|support(z′)|.

(b) If I, J are explicitly provided, and the nonzero entries of z, z′ are explicitly provided, then the nonzero entries

of y? can be explicitly derived with at most |support(z)|+ |support(z′)| pairwise additions.

(c) Assume that C is inputted via a filter oracle. If I, J are found with a calls to the oracle with running time ta
per call, z is found with b calls to the oracle with running time tb per call, and z′ is found with c calls to the

oracle with running time tc per call, then y? is found with a + b + c calls to the oracle with running time

max{ta, tb, tc} per call.

Proof. (a) can be readily checked. (b) follows upon observing that the nonzero entries of y, y′ can be found as

follows, by (R3):
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• For every nonzero entry zA of z, we get a corresponding nonzero entry yA∪J of y.

• For every nonzero entry z′B of z′, we get a corresponding nonzero entry y′B∪I of y′.

(c) is straightforward.

5.2 Algorithm 1 and the proof of Theorem 1.8

Let C be a clean tangled clutter, and let {U,U ′} be the bipartition of a connected component of G(C). If G(C)
is connected, then {U,U ′} yields an integral packing of value two by Corollary 2.4. Otherwise, it follows from

Theorem 2.5 that {U,U ′} is a proper reduction. Such singleton reductions have led to the proof of Theorem 1.5.

The underlying algorithm is presented explicitly in Algorithm 1. Let us use Lemma 5.2 to analyze the algorithm.

Algorithm 1: A basic algorithm for finding a dyadic fractional packing of value two
Input: A filter oracle for a clean tangled clutter C
Output: A dyadic fractional packing y of value two, provided explicitly

Initialize: Let G := G(C), r := rank(C), and {U,U ′} the bipartition of a connected component of G;

if r = 1 then

Let y ∈ RC+ be the incidence vector of the packing U,U ′;

Output y.
else

Let C1 := C \ U/U ′ and C2 := C/U \ U ′;
Run Algorithm 1 on C1 (the filter oracle for C gives one for C1 by Remark 4.2) with output z ;

Run Algorithm 1 on C2 (the filter oracle for C gives one for C2 by Remark 4.2) with output z′;

Define y as in Lemma 5.2;

Output y.

Let us analyze Algorithm 1, in turn proving Theorem 1.8:

Proof of Theorem 1.8. Denote by T the enumeration tree of Algorithm 1. Then T is a rooted binary tree where

each node is labeled with the rank of the corresponding clutter. Observe that the root has rank r, the leaves are

the rank 1 nodes, and the rank of each child is at least one less than the rank of the parent by (R4). It therefore

follows from Theorem 4.5 (a) that T has height ≤ r − 1, its number of leaves is ≤ 2r−1, while the total number

of nodes is ≤ 2r − 1.

As the tree has height≤ r−1 and the number of leaves of the tree is at most 2r−1, it follows from Lemma 5.2

that y? is 1
2r−1 -integral and its support has cardinality ≤ 2× 2r−1 = 2r.

The initialization step of the algorithm takes at most |V |2 calls to the oracle with running time O(|V |2) per

call. More precisely, it takes at most |V |2 calls to the oracle to build G(C) by Remark 4.1, and after the last call,

it takes running time O(|V |2) to find r and {U,U ′}. Thus, for each node of the tree T , at most |V |2 calls to the

oracle are made. Since the number of nodes of the tree is ≤ 2r − 1, the algorithm makes at most (2r − 1) · |V |2

calls to the oracle and has running time O(|V |2) per call.
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5.3 Incrementally maximal reductions

Let C be a clean tangled clutter over ground set V , and let G := G(C). A reduction {I, J} is incrementally

non-maximal if there exists another reduction {I ′, J ′} such that I ( I ′ (and thus J ( J ′), and G[(I ′ ∪ J ′) −
(I ∪ J)] consists of exactly one connected component of G. A reduction is incrementally maximal if it is not

incrementally non-maximal.

We modify Algorithm 1 by replacing singleton reductions by incrementally maximal reductions at every

iteration of the algorithm. We prove that this simple change drastically improves the number of calls to the oracle

as well as the support cardinality of the output. This improvement is due to the fact that for an incrementally

maximal reduction {I, J} that is proper, we have

rank(C \ I/J) + rank(C/I \ J) ≤ 3

2
(rank(C)− 1).

Let us prove this inequality. We need a few ingredients.

Lemma 5.3. Let C be a clean tangled clutter, where G(C) has exactly two connected components with biparti-

tions {U,U ′}, {W,W ′}. Then U ∪W,U ∪W ′, U ′ ∪W,U ′ ∪W ′ ∈ C.

Proof. Denote by V the ground set of C, and let G := G(C). Consider the minor C′ := C \ U/U ′. Then C′ is

a clean tangled clutter by Theorem 2.5. Clearly G[W ∪W ′] ⊆ G(C′), so G(C′) is a connected, bipartite graph

whose bipartition is inevitably {W,W ′}. It therefore follows from Corollary 2.4 that W,W ′ ∈ C′, implying in

turn that U ′ ∪W,U ′ ∪W ′ each contains a member of C, so by Remark 2.3, U ′ ∪W,U ′ ∪W ′ are members of

C. Repeating the argument on C/U \ U ′ instead of C′ tells us that U ∪W,U ∪W ′ are also members of C.

Let {I, J} be an arbitrary reduction of C. Pick two connected components of G disjoint from I ∪ J with

bipartitions {U,U ′}, {W,W ′}, if any. We say that these two connected components are I-linked if at least one

of I ∪ U ∪W, I ∪ U ∪W ′, I ∪ U ′ ∪W, I ∪ U ′ ∪W ′ is a cover of C. Similarly, we say that the two connected

components are J-linked if at least one of J ∪ U ∪W,J ∪ U ∪W ′, J ∪ U ′ ∪W,J ∪ U ′ ∪W ′ is a cover of C.

We say that the two connected components are linked if they are I- or J-linked.

Lemma 5.4. Let C be a clean tangled clutter over ground set V , let G := G(C), and let {I, J} be a reduction.

Suppose {U,U ′}, {W,W ′} are the bipartitions of two I-linked connected components of G. Then G(C \ I/J)

has an edge between U ∪ U ′ and W ∪W ′.

Proof. Suppose otherwise. Let J ′ := V − (I ∪ U ∪ U ′ ∪W ∪W ′), let C′ := C \ I/J ′, and let G′ := G(C′).

(Note that C′ is not necessarily the same as C \I/J .) Observe that C′ has ground set U ∪U ′∪W ∪W ′. As {I, J}
is a reduction and thus satisfies (R2), we have τ(C \ I/J) ≥ 2, so τ(C′) ≥ 2 because J ⊆ J ′. In particular,

G[U ∪ U ′ ∪ W ∪ W ′] ⊆ G′, so C′ is a clean tangled clutter where G′ is a bipartite graph with at most two

connected components.

Claim 1. At least one of U ∪W,U ∪W ′, U ′ ∪W,U ′ ∪W ′ is a cover of C′.
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Proof of Claim. By assumption, the two connected components {U,U ′}, {W,W ′} of G are I-linked, that is, at

least one of I ∪ U ∪W, I ∪ U ∪W ′, I ∪ U ′ ∪W, I ∪ U ′ ∪W ′ is a cover of C. This immediately implies the

claim. ♦

Claim 2. G′ has no edge between U ∪ U ′ and W ∪W ′.

Proof of Claim. Observe that the cardinality-two minimal covers of C′ are precisely the same as the cardinality-

two minimal covers of C \I/J contained in U ∪U ′∪W ∪W ′. As a result, G′ = G(C \I/J)[U ∪U ′∪W ∪W ′].
Thus, our contrary assumption tells us that G′ has no edge between U ∪ U ′ and W ∪W ′, as claimed. ♦

In particular, G′ has exactly two connected components, with bipartitions {U,U ′}, {W,W ′}. It therefore

follows from Lemma 5.3 that U ∪W,U ∪W ′, U ′ ∪W,U ′ ∪W ′ are all members of C′. However, one of these

members is necessarily disjoint from the cover guaranteed by Claim 1, a contradiction.

Lemma 5.5. Let C be a clean tangled clutter over ground set V , and let G := G(C). Then the following

statement holds:

(a) Suppose {I, J} is a reduction, and {U,U ′} is the bipartition of a connected component of G disjoint from

I ∪ J . Then none of I ∪ U, I ∪ U ′, J ∪ U, J ∪ U ′ is a cover of C.

(b) Suppose {I, J} is an incrementally maximal reduction. Then every connected component of G disjoint from

I ∪ J is linked to another connected component disjoint from I ∪ J .

(c) An incrementally maximal reduction cannot be disjoint from exactly one connected component of G.

Proof. (a) Suppose otherwise. We may assume that I ∪ U is a cover of C. Let J ′ := V − (I ∪ U ∪ U ′) and

C′ := C \ I/J ′. Observe that C′ has ground set U ∪ U ′. As {I, J} is a reduction and thus satisfies (R2), we

have τ(C \ I/J) = 2, so τ(C′) ≥ 2 because J ⊆ J ′. In particular, G[U ∪ U ′] ⊆ G(C′), so C′ is a clean tangled

clutter where G(C′) is a connected, bipartite graph whose bipartition is inevitably {U,U ′}. However, as I ∪ U
is a cover of C, U must be a cover of C′, a contradiction to Theorem 2.2.

(b) Let {U,U ′} be the bipartition of a connected component of G disjoint from I ∪ J . Since {I, J} is

an incrementally maximal reduction, the set {I ∪ U, J ∪ U ′} is not a reduction. As (R1) is clearly satisfied,

{I ∪ U, J ∪ U ′} must fail (R2). We may assume that τ(C \ (I ∪ U)/(J ∪ U ′)) ≤ 1. By (a), I ∪ U is not a

cover of C, so τ(C \ (I ∪ U)/(J ∪ U ′)) = 1. That is, C has a minimal cover B such that B ∩ (J ∪ U ′) = ∅ and

B − (I ∪U) = {w} for some w ∈ V . In particular, G has a connected component disjoint from I ∪ J ∪U ∪U ′

which contains w, say with bipartition {W,W ′} such that w ∈W . Then I ∪U ∪W ⊇ B is a cover of C, so the

two connected components G[U ∪ U ′], G[W ∪W ′] are I-linked, as claimed.

(c) follows immediately from (b).

We are now ready to prove the promised inequality:
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Theorem 5.6. Let C be a clean tangled clutter. Suppose {I, J} is an incrementally maximal reduction that is

proper. Then

rank(C \ I/J) + rank(C/I \ J) ≤ 3

2
(rank(C)− 1).

Proof. Denote by V the ground set of C, and let G := G(C) and r := rank(C). Let r′ be the number of

connected components of G disjoint from I ∪ J . As {I, J} is a proper reduction, r′ ≥ 1. In fact, as {I, J} is

incrementally maximal, r′ ≥ 2 by Lemma 5.5 (c). Also, it is clear that r′ ≤ r − 1.

Let V ′1 , . . . , V
′
r′ be the vertex sets of the connected components of G disjoint from I ∪ J , and let V ′ :=⋃

i∈[r′] V
′
i . Let G1 := G(C \ I/J) and G2 := G(C/I \ J). Notice that G1, G2 both have vertex set V ′, and

G[V ′] ⊆ G1, G[V ′] ⊆ G2. As a result, G1[V ′i ] and G2[V ′i ] are connected for each i ∈ [r′], implying in turn that

rank(C \ I/J) + rank(C/I \ J) ≤ 2r′.

The upper bound above can be improved drastically. For each V ′i , there exists a different V ′j linked to it by

Lemma 5.5 (b), so there exists an edge between V ′i , V
′
j in G1 or G2 by Lemma 5.4. Subsequently,

rank(C \ I/J) + rank(C/I \ J) ≤ 3

2
r′.

Since r′ ≤ r − 1, Theorem 5.6 follows.

5.4 Algorithm 2 and the proof of Theorem 1.9

Let us modify Algorithm 1 as follows:

Algorithm 2: A second algorithm for finding a dyadic fractional packing of value two
Input: A filter oracle for a clean tangled clutter C
Output: A dyadic fractional packing y of value two, provided explicitly

Initialize: Let {I, J} be an incrementally maximal reduction;

if {I, J} is a non-proper reduction then

Let y ∈ RC+ be the incidence vector of the packing I, J (see (R2b));

Output y.
else

Let C1 := C \ I/J and C2 := C/I \ J ;

Run Algorithm 2 on C1 (the filter oracle for C gives one for C1 by Remark 4.2) with output z;

Run Algorithm 2 on C2 (the filter oracle for C gives one for C2 by Remark 4.2) with output z′;

Define y as in Lemma 5.2;

Output y.

Lemma 5.7. Let C be a clean tangled clutter over ground set V inputted via a filter oracle. Then the following

statements hold:
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(a) One can test whether or not a given {I, J} is a reduction with O(|V |2) calls to the oracle and with total

running time O(|V |2).

(b) An incrementally maximal reduction can be found with O(|V |3) calls to the oracle and with running time

O(|V |2) per call.

Proof. Let G := G(C), r := rank(C), and {Ui, Vi} the bipartition of the ith connected component of G; these

can be found with at most |V |2 calls to the oracle by Remark 4.1, and with running time O(|V |2). (a) Thus

(R1) can be tested in time O(|V |2). For (R2), notice first that the filter oracle for C yields a filter oracle for b(C)
by Remark 4.3. Notice further that (R2) is equivalent to the following: Neither I nor J is a cover of C, and

neither I ∪ {v} nor J ∪ {v} is a cover of C for any v ∈ V − (I ∪ J). As a result, (R2) can be tested by making

2 + 2 · |V − (I ∪ J)| queries to the filter oracle for b(C). Hence, testing whether or not {I, J} is a reduction can

be carried out with O(|V |2) calls to the oracle, and with running time O(|V |2). (b) We leave this as an exercise

for the reader.

We are now ready to analyze Algorithm 2, in turn proving Theorem 1.9:

Proof of Theorem 1.9. Denote by T the enumeration tree of Algorithm 2. Then T is a rooted binary tree where

each node is labeled with the rank of the corresponding clutter. Observe that the root has rank r, and the rank

of each child is at least one less than the rank of the parent by (R4). Moreover, by Theorem 5.6, if an inner

node has rank x, then the sum of the ranks of its two children is at most 3
2 (x − 1). It therefore follows from

Theorem 4.5 (b) that T has height ≤ r − 1, its number of leaves is rO(log r), and the total number of nodes is

also rO(log r).

As the tree has height ≤ r − 1 and the number of leaves of the tree is at most rO(log r), it follows from

Lemma 5.2 that y? is 1
2r−1 -integral and its support has cardinality rO(log r).

The initialization step takesO(|V |3) calls to the oracle with running timeO(|V |2) per call by Lemma 5.7 (b).

Thus, for each node of the enumeration tree T , O(|V |3) calls to the oracle are made. Since the number of nodes

of the tree is rO(log r), the algorithm makes rO(log r) · O(|V |3) calls to the oracle and has running time O(|V |2)

per call.

6 Binary tangled clutters

In this section, we first analyze the performance of Algorithm 2 on the class of binary tangled clutters, showing

that the algorithm has polynomial guarantees for this class (§6.1). We then show that our analysis is tight for the

class of binary tangled clutters coming from projective geometries over the two-element field (§6.2). Finally, as

binary tangled clutters arise from binary matroids, we address the natural question of what the algorithm does

on binary matroids (§6.3). Along the way, we see concrete examples of reductions and incrementally maximal

reductions.
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6.1 Algorithm 2 on binary tangled clutters

Let C be a clutter, and let u, v be distinct elements. We say that u, v are duplicates in C if every member

containing u also contains v, and vice versa. We say that u, v are replicates in C if every member contains at

most one of u, v, and whenever C is a member containing exactly one of u, v, then C4{u, v} is also a member.

It can be readily checked that a pair of duplicates in a clutter correspond to a pair of replicates in the blocker,

and vice versa. We need the following lemma:

Lemma 6.1. Let C be a binary tangled clutter, and let G := G(C). Then the following statements hold:

(a) Every minimum cover of C is a transversal.

(b) Every connected component of G is a complete bipartite graph.

(c) Every non-minimum minimal cover of C contains at most one vertex from each connected component of G.

(d) Let B be a non-minimum minimal cover of C. For each u ∈ B, let f(u) be a neighbour of u in G. Then for

every subset T ⊆ B of even cardinality, B4{u, f(u) : u ∈ T} is also a cover of C.

(e) Let {I, J} be a reduction. Then two connected components ofG are I-linked if and only if they are J-linked.

Proof. (a) Let {u, v} be a minimum cover of C. As C is binary, |{u, v}∩C| must be odd and therefore 1 for any

C ∈ C, implying in turn that {u, v} is a transversal of C.

(b) If {u, v}, {v, w} are minimum covers of C, then u,w must be duplicates in C by (a). Subsequently, if

{u, v}, {v, w}, {w, t} are minimum covers of C, then so is {u, t}. This observation proves (b).

(c) Let {U,U ′} be the bipartition of a connected component of G. We just saw that the elements in U (resp.

U ′) are duplicates in C, and therefore replicates in b(C). Thus, every minimal cover of C contains at most one

vertex from each of U,U ′. It now follows from (b) that every non-minimum minimal cover contains at most one

vertex from U ∪ U ′.
(d) By definition, {u, f(u)} is a minimal cover for each u ∈ B. As C is a binary clutter, so is its blocker,

implying that the symmetric difference of any odd number of minimal covers is also a cover. As a result, the set

B4{u, f(u) : u ∈ T} = B4 (4u∈T {u, f(u)}) is a cover.

(e) It suffices to prove (⇒). Suppose {U,U ′}, {W,W ′} are two connected components of G disjoint from

I∪J that are I-linked. That is, one of I∪U ∪W, I∪U ∪W ′, I∪U ′∪W, I∪U ′∪W ′, say I∪U ∪W , is a cover

of C. Let B be a minimal cover contained in I ∪U ∪W . Since {I, J} is a reduction, neither I ∪U nor I ∪W is

a cover by Lemma 5.5 (a), so B ∩ U 6= ∅ and B ∩W 6= ∅. As B is a stable set in G, it is a non-minimum cover

of C, so by (c), B picks at most one vertex from every connected component. For each u ∈ B, let f(u) be a

neighbour of u inG. Pick a set T such that I∩B ⊆ T ⊆ B and |T | is even – this is possible since |I∩B| < |B|.
ThenB4{u, f(u) : u ∈ T} is a cover of C by (d). As one of J ∪U ∪W,J ∪U ∪W ′, J ∪U ′∪W,J ∪U ′∪W ′ is
a superset of B4{u, f(u) : u ∈ T} and is therefore a cover, it follows that {U,U ′}, {W,W ′} are J-linked.

Lemma 6.1 (e) enables us to prove the following strengthening of Theorem 5.6.
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Theorem 6.2. Let C be a binary tangled clutter. Suppose {I, J} is an incrementally maximal reduction that is

proper. Then

rank(C \ I/J) ≤ 1

2
(rank(C)− 1) and rank(C/I \ J) ≤ 1

2
(rank(C)− 1).

Proof. We only prove the first inequality as the second inequality’s proof follows a similar argument. By

Lemma 5.5 (b) and Lemma 6.1 (e),

(?) every connected component disjoint from I ∪ J is I-linked to another connected component

disjoint from I ∪ J .

Let V ′1 , . . . , V
′
r′ be the vertex sets of the connected components of G := G(C) disjoint from I ∪ J , and let

V ′ :=
⋃

i∈[r′] V
′
i . Let G′ := G(C \ I/J). Then G′ has vertex set V ′, and G[V ′] ⊆ G′. As a result, G′[V ′i ] is

connected for each i ∈ [r′], implying in turn that

rank(C \ I/J) ≤ r′.

The upper bound above can be improved drastically. For each V ′i , there exists a different V ′j that is I-linked to it

by (?), so there exists an edge between V ′i , V
′
j in G′ by Lemma 5.4. Subsequently,

rank(C \ I/J) ≤ 1

2
r′.

Since r′ ≤ rank(C)− 1, Theorem 6.2 follows.

We are now ready to prove that Algorithm 2 has a polynomial running time performance guarantee on binary

tangled clutters:

Theorem 6.3. Let C be a binary tangled clutter of rank r over ground set V inputted via a filter oracle. Then

Algorithm 2 outputs a fractional packing y? of value two that is 1
2k−1 -integral, for some integer k such that

1 ≤ k ≤ log(r+1), and whose support has cardinality at most r+1. Moreover, the algorithm makes r ·O(|V |3)

calls to the oracle and has running time O(|V |2) per call.

Proof. Denote by T the enumeration tree of Algorithm 2. Then T is a rooted binary tree where each node is

labeled with the rank of the corresponding clutter. Observe that the root has rank r, and the rank of each child

is at least one less than the rank of the parent by (R4). Moreover, by Theorem 6.2, if an inner node has rank x,

then each of its children has rank at most 1
2 (x− 1). It therefore follows from Theorem 4.5 (c) that T has height

≤ log (r + 1)− 1, its number of leaves is ≤ r+1
2 , and the total number of nodes is ≤ r.

As the tree has height ≤ log (r + 1) − 1 and the number of leaves of the tree is at most ≤ r+1
2 , it follows

from Lemma 5.2 that y? is 1
2k−1 -integral, for some integer k such that 1 ≤ k ≤ log(r + 1), and its support has

cardinality ≤ 2× r+1
2 = r + 1.

The initialization step takesO(|V |3) calls to the oracle with running timeO(|V |2) per call by Lemma 5.7 (b).

Thus, for each node of the enumeration tree T , O(|V |3) calls to the oracle are made. Since the number of nodes

of the tree is ≤ r, the algorithm makes r ·O(|V |3) calls to the oracle and has running time O(|V |2) per call.
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In contrast to a quasi-polynomial running time guarantee for the general class of clean tangled clutters (The-

orem 1.9), we saw that Algorithm 2 has a polynomial running time guarantee for binary tangled clutters (The-

orem 6.3). Looking back, we see that the reason for the improved guarantee is a balanced rank drop in the

enumeration tree in the binary case (Theorem 6.2) as opposed to a possibly skewed rank drop in the enumeration

tree in the general case (Theorem 5.6).

6.2 Projective geometries over the two-element field

The guarantee on the fractionality and the support cardinality in Theorem 6.3 is tight for an infinite class of binary

tangled clutters. To describe this class, take an integer k ≥ 1. Let A be the k × (2k − 1) matrix whose columns

are all the 0−1 vectors of dimension k that are nonzero. Let r := 2k−1. Let cocycle(PG(k − 1, 2)) ⊆ {0, 1}r

be the row space of A over GF (2). As suggested by our notation, cocycle(PG(k − 1, 2)) is the cocycle space

of some binary matroid, called the rank-k projective geometry over GF (2) and denoted PG(k−1, 2).3 Observe

that cocycle(PG(k − 1, 2)) is a binary space whose points do not agree on a coordinate, implying in turn that

cuboid(cocycle(PG(k − 1, 2))) is a binary tangled clutter. In fact,

Theorem 6.4 ([5]). For every integer k ≥ 1, cuboid(cocycle(PG(k − 1, 2))) is a binary tangled clutter of rank

2k − 1, with 2k members, and has a unique fractional packing of value two, one which assigns 1
2k−1 to every

member.

Notice that the parameters here match precisely the bounds given in Theorem 6.3.

6.3 Affine flats and cocycle covers in binary matroids

Every binary tangled clutter is a duplication of the cuboid of the cocycle space of a loopless binary matroid [3].

In this subsection, we give a quick and casual overview of what Algorithm 2 accomplishes directly on the binary

matroid itself. We follow Oxley’s terminology of binary matroids [25].

Let M be a loopless binary matroid over ground set E. Let C be the clutter over ground set {e : e ∈
E} ∪ {ẽ : e ∈ E} that has a member of the form D ∪ {ẽ : e ∈ E − D} per cocycle D of M . Observe that

C = cuboid(cocycle(M)), where cocycle(M) = {χD : D is a cocycle of M} denotes the cocycle space of M .

Since M is a loopless binary matroid, cocycle(M) is a binary space whose points do not agree on a coordinate,

so C is a binary tangled clutter.

A fractional packing of value two in C corresponds entry-wise to a fractional 2-cocycle 1-cover of M , i.e. an

assignment yD ∈ R+ to every cocycle D of M such that 1>y = 2 and
∑

(yD : e ∈ D) = 1 for every element

e ∈ E.

Algorithm 2 looks for a dyadic fractional packing of value two in C via reductions. What do these correspond

to in M? To answer this question, we need the notion of affine flats in binary matroids.

3In the context of clutters, rank refers to the R-rank, while in the context of binary matroids, rank refers to the GF (2)-rank.
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Let A ⊆ E. We say that A is affine in M if every cycle contained in A has even cardinality, and that A is a

flat of M if there exists no cycle C such that |C − A| = 1. An affine flat of M is a flat that is affine. An affine

flat of M is incrementally maximal if it is not contained in an affine flat that has just one new parallel class.

1

<latexit sha1_base64="wQ+2foIZ8ymAbto+K5qO6s2mJBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vml6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+RmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Wvm7VK/SaPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/fn2MwQ==</latexit>

2

<latexit sha1_base64="K7k9OmA81cq5/EytLpoXKM35iwY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8MJME/YgOJQ85o8ZKjUq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rw2p9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aVXKXrV806iWardZHHk4g3O4BA+uoAb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYABjMI=</latexit>

3

<latexit sha1_base64="UUpzNYn7KJ4u5TXE3ucIC87YlRI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqQL0FvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+mWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5pl4pVW+zOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A4GFjMM=</latexit>

4

<latexit sha1_base64="0St17u8X8+4hS9j1HX99ZHbcsD0=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIpqLeiF48V7Ae0oWy2k3btZhN2N0IJ/QVePChe/U3e/Ddu2xy09cHA470ZZuaFqeDaeN63U9rY3NreKe+6e/sHh0cV97itk0wxbLFEJKobUo2CS2wZbgR2U4U0DgV2wsnd3O88o9I8kY9mmmIQ05HkEWfUWOmhPqhUvZq3AFknfkGqUKA5qHz1hwnLYpSGCap1z/dSE+RUGc4Eztx+pjGlbEJH2LNU0hh1kC8OnZFzqwxJlChb0pCF+nsip7HW0zi0nTE1Y73qzcX/vF5mousg5zLNDEq2XBRlgpiEzL8mQ66QGTG1hDLF7a2EjamizNhsXBuCv/ryOmlf1vx67abauC3CKMMpnMEF+HAFDbiHJrSAAcILvMG78+S8Oh/LxpJTTJzAHzifPxiDi5o=</latexit>

5

<latexit sha1_base64="Rb0izWSWgCcBgejIE15xfHxRf5Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRL0FvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+mWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5pl4pVW+zOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A4SNjMU=</latexit>

6

<latexit sha1_base64="vTAg2ffy1GAJEbxqc3z4XGLgQ2c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK8HELevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9cteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhtT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe5XyTb1Sqt5mceThBE7hHDy4gircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB4YRjMY=</latexit>

7

<latexit sha1_base64="LGNkydq+095x04pMOxSp+LrwRUU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8MJME/YgOJQ85o8ZKjWq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rw2p9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aV2VvUr5plEp1W6zOPJwBudwCR5UoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYeVjMc=</latexit>

8

<latexit sha1_base64="RCdazJDoK88lj+MMlXAYBeDt1Qg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKwHgLevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8MJME/YgOJQ85o8ZKjWq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5qw6k+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7KXqV806iUardZHHk4g3O4BA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYkZjMg=</latexit>

9

<latexit sha1_base64="4jyd2LUbADcxbb/2BDGvuShZNAk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQHMLevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8MJME/YgOJQ85o8ZKjWq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rwxp9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aV2VvUq52qiUardZHHk4g3O4BA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYqdjMk=</latexit>

10

<latexit sha1_base64="md82v4QpWjmj2VthqLh0H3T+znk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg+f2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhlZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVr1+r5Wqd/kcRThBE7hHDy4hDrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+xSjPs=</latexit>

Figure 3: The complete graph K5

If M is a projective geometry, for instance, then

every affine flat would have cardinality at most one,

because every pair of elements appear in a circuit of

cardinality three. As another example, if M is the cy-

cle matroid of K5, whose edges are labeled as in Fig-

ure 3, then any nonempty matching of K5 forms an

affine flat of M , while any maximal matching forms

an incrementally maximal affine flat. On the other

hand, if M is the dual of the cycle matroid of K5,

then any circuit of K5 forms an affine flat of M ; it is affine because no cut of K5 is contained in a circuit, and it

is a flat because deleting the edges of a circuit of K5 does not create a bridge. The circuit {1, 2, 9}, for example,

is not incrementally maximal because it is contained in the affine flat {1, 2, 9, 4}. The circuit {1, 2, 3, 4, 5}, on

the other hand, is incrementally maximal. This example is particularly interesting because the entire edge set

{1, . . . , 10} is another incrementally maximal affine flat of M , thereby showing that one incrementally maximal

affine flat may be contained in another one.

We also need two functions. The first one is an involution of the form f : E ∪ Ẽ → E ∪ Ẽ where f(e) := ẽ

and f(ẽ) := e for all e ∈ E. The second one is a projection p : E ∪ Ẽ → E defined as p(e) := e and

p(ẽ) := e for all e ∈ E. We follow the convention that for a subset X , f(X) := {f(x) : x ∈ X} and

p(X) := {p(x) : x ∈ X}.
We prove the following theorem in the appendix, linking (incrementally maximal) affine flats in binary

matroids to (incrementally maximal) reductions in binary tangled clutters:

Theorem 6.5. Let M be a loopless binary matroid, and let C := cuboid(cocycle(M)). Then the following

statements hold:

(a) if A is an affine flat in M , then {A, f(A)} is a reduction in C,

(b) if {I, f(I)} is a reduction in C, then p(I) is an affine flat in M ,

(c) if A is an incrementally maximal affine flat in M , then {A, f(A)} is an incrementally maximal reduction

in C.

Consider a fine-tuned version of Algorithm 2 where at every iteration, the incrementally maximal reduction

comes from an incrementally maximal affine flat of the binary matroid, per Theorem 6.5 (c). We may then

reinterpret the algorithm as one that looks for a cocycle cover of M , i.e. a family {D1, . . . , Dk} of cocycles

of M whose union is E; see Algorithm 3. Given the cocycle cover, a dyadic fractional cocycle cover can be

obtained as follows: First, consider the subspace S := 〈χDi
: i = 1, . . . , k〉 over GF (2) generated by the
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cocycles D1, . . . , Dk. Then, given that S has GF (2)-rank r ≤ k and therefore |S| = 2r, a dyadic fractional

cocycle cover is obtained by assigning 1
2r−1 to every cocycle of M whose incidence vector appears in S.

Algorithm 3: An algorithm for finding a cocycle cover in a binary matroid, derived from Algorithm 2
Input: A loopless binary matroid M over ground set E

Output: A cocycle cover D of M

Initialize: Let A be an incrementally maximal affine flat;

if A = E then
Output D := {A}.

else

Let D be a cocycle of M containing A (see Remark A.1 (b));

Run Algorithm 3 on M/A with output D;

Output D ∪ {D}.

7 Concluding remarks

Let us conclude with some discussion about improving Theorem 1.5 and Theorem 1.9, and also extensions and

restrictions of Conjecture 1.1.

7.1 Two conjectures on dyadic fractional packings of value two

Let C be a clean tangled clutter over ground set V inputted via a filter oracle. Algorithm 2 successfully outputs a

dyadic fractional packing of C of value two. However, the number of calls made to the oracle is quasi-polynomial

in r. The bottleneck in achieving a polynomial dependence on r is controlling the height of the enumeration tree

or its proxy, the fractionality of the dyadic fractional packing. We conjecture the following:

Conjecture 7.1. Let C be a clean tangled clutter. Then for some integer k ≥ 1 such that 2k − 1 ≤ rank(C),

there exists a 1
2k−1 -integral packing of value two.

This conjecture, if true, would imply Conjecture 3.2 from §3 inspired by Carathéodory’s Theorerm. Conjec-

ture 7.1 holds for binary tangled clutters by Theorem 6.3. As further evidence for the conjecture, the following

special case is proved in a sequel paper:

Theorem 7.2 ([5]). Let C be a clean tangled clutter with a unique fractional packing y of value two. Then for

some integer k ≥ 1, y is 1
2k−1 -integral and rank(C) = 2k − 1.

Conjecture 7.1, along with the evidence for it, leads us to believe the following:

Conjecture 7.3. There exists an algorithm that, given a clean tangled clutter over ground set V via a filter

oracle, outputs a dyadic fractional packing of value two and its number of calls to the oracle is upper bounded

by a polynomial in |V |.
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Observe that this conjecture holds for binary tangled clutters by Theorem 6.3, and this is achieved by Algo-

rithm 2. In fact, as far as we know, Algorithm 2 is a worthy candidate for proving the conjecture in the general

case of clean tangled clutters.

We note that Conjecture 7.1 and Conjecture 7.3 are open for ideal tangled clutters.

7.2 Possible extensions and restrictions of Conjecture 1.1

Let us look back at the dual programs below for a clutter C over ground set V :

(P )

min 1>x

s.t. x(C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : v ∈ C,C ∈ C) ≤ 1 ∀v ∈ V
y ≥ 0.

Recall that Conjecture 1.1 predicts that for ideal clutters C, (D) must have an optimal solution that is dyadic.

Given Theorem 1.6, a natural wondering is whether Conjecture 1.1 can be extended to all clean clutters C. The

answer, however, turns out to be no. It does not even hold for the other two basic classes of clean clutters –

binary clutters and clutters without an intersecting minor – the reason being that the joint optimal value of (P)

and (D) can be a non-dyadic rational number. For instance, consider the two clutters

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}}

C38 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {6, 7, 8}, {7, 8, 1}, {8, 1, 2}}.

Both of these clutters are minimally non-ideal, that is, each clutter is non-ideal but every proper minor of it is

ideal. It can be readily checked that for the first clutter, the joint optimal value of (P) and (D) is the non-dyadic

number 7
3 , while for the second clutter this value is the non-dyadic number 8

3 . As L7 is also a binary clutter, it

follows that the analogue of Conjecture 1.1 does not hold for binary clutters. The reader can also verify that C38
has no intersecting minor, so the analogue of Conjecture 1.1 does not hold for clutters without an intersecting

minor.

What about restricting Conjecture 1.1 to special cases? A special case is obtained by focusing on ideal

clutters without an intersecting minor:

Conjecture 7.4. Every ideal clutter without an intersecting minor has an optimal fractional packing that is

dyadic.

In fact, the τ = 2 Conjecture [11], mentioned in the introduction, would imply that every ideal clutter without

an intersecting minor has an optimal fractional packing that is integral. Given this observation, Conjecture 7.4 is

quite intriguing as it seems to open a backdoor to approaching the τ = 2 Conjecture.

Another quite intriguing special case of Conjecture 1.1 is obtained by focusing on ideal binary clutters:

Conjecture 7.5. Every ideal binary clutter has an optimal fractional packing that is dyadic.

As far as we know, this conjecture is open even for the clutter of T -joins of a graph. Other than the clutter of

T -cuts of a graph, this conjecture is known to hold for two other classes. Given a signed graph, if the (binary)

26



clutter of odd circuits is ideal, then the clutter must have an optimal fractional packing that is 1
2 -integral [17].

More generally, given a signed graph and (possibly equal) vertices s, t, if the (binary) clutter of odd st-walks is

ideal, then the clutter must have an optimal fractional packing that is 1
2 -integral [6, 7].

We have considered ideal clutters without an intersecting minor, as well as ideal binary clutters. The reader

might wonder about binary clutters without an intersecting minor. RecallQ6 from §1, the clutter whose elements

are the edges and whose members are the triangles of K4. Then Q6 is a binary clutter that is intersecting.

Seymour proved that if C is a binary clutter without a Q6 minor, then the associated set covering linear system

must be totally dual integral [28]. In particular, every binary clutter without an intersecting minor has an optimal

fractional packing that is integral, thereby verifying Conjecture 7.5 for this special class.
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00014-18-12129 and NSF grant CMMI-1560828, Bertrand Guenin by NSERC grant 238811 and ONR grant
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A Reductions from affine flats

In this section, we prove Theorem 6.5. We need the following remark:

Remark A.1 (see [25], §9). Let M be a binary matroid over ground set E, and let A ⊆ E. Then the following

statements hold:

(a) If every cycle has even cardinality, then E is a cocycle.

(b) If A is affine, then it is contained in a cocycle.

(c) If e ∈ E is not contained in any cycle, then {e} is a cocycle.

(d) If e ∈ A and every cycle in A avoids e, then there exists a cocycle D such that D ∩A = {e}.

Proof. (a) As every cycle has even cardinality, |E ∩ C| is even for every cycle C, implying in turn that E is a

cocycle. (b) As A is affine, every cycle of M \ (E − A) has even cardinality, so by (a), A forms a cocycle of

M \ (E − A), implying in turn that A is contained in a cocycle of M . (c) As |{e} ∩ C| is even for every cycle

C, it follows that {e} is a cocycle. (d) Every cycle of M \ (E − A) avoids e, so by (c), {e} is a cocycle of

M \ (E −A), implying in turn that there exists a cocycle D of M such that D ∩A = {e}.

Let M be a loopless binary matroid over ground set E. Let C be the clutter over ground set {e : e ∈
E} ∪ {ẽ : e ∈ E} that has a member of the form D ∪ {ẽ : e ∈ E − D} per cocycle D of M . Recall that

C = cuboid(cocycle(M)), C is a binary tangled clutter, f : E ∪ Ẽ → E ∪ Ẽ is an involution where f(e) = ẽ

and f(ẽ) = e for all e ∈ E, and p : E ∪ Ẽ → E is a projection where p(e) = e and p(ẽ) = e for all e ∈ E.

Remark A.2. Let M be a loopless binary matroid over ground set E, and let C := cuboid(cocycle(M)). Then

e, e′ ∈ E ∪ Ẽ are in the same connected component of G(C) if, and only if, p(e), p(e′) are either equal or

parallel in M .

Proof. (⇒) Assume in the first case that e ∈ E and e′ ∈ Ẽ. It then follows from Lemma 6.1 (b) that {e, e′} is a

minimal cover of C, so by Lemma 6.1 (a), {e, e′} is a transversal, implying in turn that f(e), e′ are either equal

or duplicates in C, implying in turn that p(e), p(e′) are either equal or parallel in M , as required. The remaining

cases are treated similarly, so we leave their verification to the reader. (⇐) is also left to the reader.

We are now ready to prove Theorem 6.5, restated below for the reader’s ease.

Theorem A.3. LetM be a loopless binary matroid over ground set E, and let C := cuboid(cocycle(M)). Then

the following statements hold:

(a) if A is an affine flat in M , then {A, f(A)} is a reduction in C,

(b) if {I, f(I)} is a reduction in C, then p(I) is an affine flat in M ,
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(c) if A is an incrementally maximal affine flat in M , then {A, f(A)} is an incrementally maximal reduction

in C.

Proof. (a) Let A be an affine flat in M . As a flat, if A contains an element, then it must contain all the elements

parallel to it. Thus, it follows from Remark A.2 that {A, f(A)} satisfies (R1). It remains to show that (R2) is

also satisfied.

Claim 1. Neither A nor f(A) is a cover of C. That is, τ(C \A/f(A)) ≥ 1 and τ(C \ f(A)/A) ≥ 1.

Proof of Claim. Since A is disjoint from Ẽ ∈ C, it is not a cover. As an affine set, A is contained in a cocycle D

of M , by Remark A.1 (b). As a result, f(A) is disjoint from D ∪ f(E −D) ∈ C, implying in turn that f(A) is

not a cover. ♦

Claim 2. For c ∈ E −A, neither A ∪ {c} nor A ∪ {c̃} is a cover of C.

Proof of Claim. Since A ∪ {c} is disjoint from Ẽ ∈ C, it is not a cover. Since A is a flat, every cycle of M

contained inA∪{c} avoids c, implying by Remark A.1 (d) that there exists a cocycleD such thatD∩(A∪{c}) =

{c}. Consequently, A ∪ {c̃} is disjoint from D ∪ f(E −D) ∈ C, so A ∪ {c̃} is not a cover of C. ♦

Claim 3. For c ∈ E −A, neither f(A) ∪ {c} nor f(A) ∪ {c̃} is a cover of C.

Proof of Claim. Suppose for a contradiction that f(A) ∪ {e} is a cover of C for some e ∈ {c, c̃}. Let B be a

minimal cover of C contained in f(A) ∪ {e}. By Claim 1, e ∈ B. Let T be an even cardinality set such that

B − {e} ⊆ T ⊆ B. It then follows from Lemma 6.1 (e) that B4{u, f(u) : u ∈ T} is also a cover of C.

However, B4{u, f(u) : u ∈ T} is a subset of A ∪ {f(e)}, so A ∪ {f(e)} which is either A ∪ {c} or A ∪ {c̃},
is also a cover of C, a contradiction to Claim 2. ♦

Claims 2 and 3 imply that τ(C \ A/f(A)) ≥ 2 and τ(C/A \ f(A)) ≥ 2, so {A, f(A)} satisfies (R2), as

required.

(b) Suppose {I, f(I)} is a reduction in C.

Claim 4. Let C be a cycle ofM , and K be a subset of C ∪ C̃ that picks exactly one of e, ẽ for every e ∈ C. Then

|K ∩ (D ∪ f(E −D))| ≡ |K ∩ C̃| (mod 2) ∀ cocycles D of M .

Proof of Claim. Let D be a cocycle of M . Then

K ∩ (D ∪ f(E −D)) = (K ∩D) ∪ (K ∩ f(E −D))

= (K ∩D ∩ C) ∪ (K ∩ f(E −D) ∩ f(C))

because K ∩D ⊆ C and K ∩ f(E −D) ⊆ f(C)

= K ∩ [(C ∩D) ∪ f(C −D)].
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As C is a cycle and D a cocycle, |C ∩D| is even, implying that |K ∩ (C ∩D)|, |K ∩ f(C ∩D)| have the same

parity, and so

|K ∩ [(C ∩D) ∪ f(C −D)]| ≡ |K ∩ [f(C ∩D) ∪ f(C −D)]| ≡ |K ∩ f(C)| (mod 2).

Thus,

|K ∩ (D ∪ f(E −D))| ≡ |K ∩ f(C)| (mod 2)

as claimed. ♦

Claim 5. p(I) is affine in M .

Proof of Claim. Suppose otherwise. Then p(I) contains a cycle C of M of odd cardinality. Let I ′ := I ∩ (C ∪
f(C)). Observe that f(I ′) = f(I) ∩ (C ∪ f(C)), I ′ ∪ f(I ′) = C ∪ f(C), and for every e ∈ C, I ′ picks one of

e, ẽ and f(I ′) picks the other element. As a result, we may apply Claim 4 to K = I ′, f(I ′) to conclude that for

every cocycle D of M ,

|I ′∩ (D∪f(E−D))| ≡ |I ′∩f(C)| (mod 2) and |f(I ′)∩ (D∪f(E−D))| ≡ |f(I ′)∩f(C)| (mod 2)

As

|I ′ ∩ f(C)|+ |f(I ′) ∩ f(C)| ≡ |f(C)| ≡ |C| ≡ 1 (mod 2)

we get that one of I ′, f(I ′) intersects every member of C in an odd number of elements, implying that one of

I ′, f(I ′) is a cover of C. This in turn implies that one of I, f(I) is a cover of C, so either τ(C \ I/f(I)) = 0 or

τ(C/I \ f(I)) = 0, a contradiction as {I, f(I)} is a reduction in C. ♦

Claim 6. p(I) is a flat of M .

Proof of Claim. Suppose otherwise. Then there exists a cycleC ofM such thatC−p(I) = {c} for some c ∈ E.

Note that (I ∪ f(I)) ∩ {c, c̃} = ∅. Let I ′ := I ∩ (C ∪ f(C)). Observe that for every e ∈ C − {c}, I ′ picks

exactly one of e, ẽ. We may therefore apply Claim 4 to K = I ′∪{c}, I ′∪{c̃} to conclude that for every cocycle

D of M ,

|(I ′ ∪ {c}) ∩ (D ∪ f(E −D))| ≡ |(I ′ ∪ {c}) ∩ f(C)| ≡ |I ′ ∩ f(C)| (mod 2)

|(I ′ ∪ {c̃}) ∩ (D ∪ f(E −D))| ≡ |(I ′ ∪ {c̃}) ∩ f(C)| ≡ |I ′ ∩ f(C)|+ 1 (mod 2).

As a result, one of I ′ ∪{c}, I ′ ∪{c̃} intersects every member of C in an odd number of elements and is therefore

a cover of C. Subsequently, one of I ∪ {c}, I ∪ {c̃} is a cover of C. Since f(I) ∩ {c, c̃} = ∅, we have that

τ(C \ I/f(I)) ≤ 1, which is a contradiction as {I, f(I)} is a reduction of C. ♦

Claims 5 and 6 finish the proof of (a).

(c) Let A be an incrementally maximal affine flat in M . By (a), {A, f(A)} is a reduction of C. Suppose for

a contradiction that {A, f(A)} is not incrementally maximal, that is, {A ∪ {e}, f(A ∪ {e})} is a reduction for

some e ∈ (E ∪ Ẽ) − (A ∪ f(A)). It follows from (b) that p(A ∪ {e}), which is a superset of A of cardinality

one larger, is an affine flat, a contradiction to the incremental maximality of A.
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