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A problem of minimizing (or maximizing) a multivariate polynomial over a subset
of an Euclidean Space defined by the solution set of finitely many polynomial equa-
tions and inequalities is called a Polynomial Optimization Problem (PoP). PoPs
describe a class of optimization problems with a nontrivial amount of geometric,
algebraic and analytic properties. At the same time, POPs are general enough
to capture as a special case, a very wide swath of finite dimensional optimization
problems and even some semi-infinite optimization problems. We can reformulate
PoPs in many equivalent forms. For example, by introducing a new variable (in-
creasing the dimension of the space by one), we can push the objective function’s
multivariate polynomial into the constraints (hence, without loss of generality, we
may assume that the objective function is always linear).

In this setting, an interesting, nicely structured, and powerful class of convex
PoPs is Semidefinite Programming (SDP) problems. Objective functions of SDPs
are linear, and their feasible solution sets are defined as the intersection of the
convex cone of n-by-n symmetric positive semidefinite matrices (all real entries),
denoted Sn+ with an affine subspace. Such convex sets are called spectrahedra.
In SDP problems we may also use additional auxiliary variables that effectively
get projected away due to our carefully picked choices for the objective function
of the SDP. This observation shows that SDPs can also deal with convex sets
that are orthogonal projections of spectrahedra. These latter convex sets are
called spectrahedral shadows. Indeed, spectrahedral shadows yield a strict superset
of spectrahedra. However, except for utilization of facial exposedness property
(of spectrahedra), we do not have many elegant, useful certificates helping us
distinguish these two families of convex sets precisely (see [25, 8, 23, 20, 3, 16]).

We consider PoPs from a convex optimization viewpoint (see for instance [9,
11, 19]). Then a central question is “when is the feasible region of a PoP con-
vex?” This leads us to hyperbolic polynomials (a.k.a. stable polynomials, under a
suitable transformation) which naturally define convex domains. For the sake of
convenience, we work with homogeneous hyperbolic polynomials so that the under-
lying convex domains become convex cones called hyperbolicity cones. Let p be a
homogeneous polynomial (this is without loss of generality in our current context)
of degree d in n variables, and let e ∈ Rn. p is said to be hyperbolic in direction e
if p(e) > 0 and, for all x ∈ Rn, the scalar polynomial λ 7→ p(x− λe) has only real
roots. Studies of hyperbolic polynomials go back at least to the work of Petro-
vsky (from the 1930s). Considerable amount of work has been done by G̊arding,
Atiyah, Bott and G̊arding as well as Hörmander. Since the early 1990’s there has
been an amazing amount of activity allowing the subject to branch into systems
and control theory, operator theory (see Marcus-Spielman-Srivastava [13] solution
of Kadison-Singer problem) interior-point methods (see, for instance, [5, 20, 15]
and the references therein), discrete optimization and combinatorics (see, for in-
stance, Gurvits [4], Wagner [27] and references therein) semidefinite programming
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and semidefinite representations, matrix theory as well as theoretical computer
science.

Fix a direction e and a polynomial p hyperbolic in direction e. We call the roots
of λ 7→ p(x−λe) the eigenvalues of x. Let Λ++ denote the set of points that have
only positive eigenvalues and let Λ+ denote its closure. Λ+ is called the hyper-
bolicity cone of p in direction e. It is a convex cone. A very nice example is Sn+
associated with the hyperbolic polynomial p(x) := det(x) and the direction e given
by the n-by-n identity matrix. Helton-Vinnikov Theorem [26, 7, 12] implies that
all three dimensional hyperbolicity cones are spectrahedra and every hyperbolic
polynomial giving rise to a 3-dimensional hyperbolicity cone admits a very strong
determinantal representation. Using Helton-Vinnikov Theorem, one can prove:
some general facts about all hyperbolicity cones, some general facts about all hy-
perbolic polynomials, and generalizations of many theorems from matrix analysis
to ”hyperbolicity cone optimization” setting. There are many generalizations of
Helton-Vinnikov theorem (see [21] and the references therein), counter examples
to certain proposed generalizations of Helton-Vinnikov Theorem (see Brändén [2]
and the references therein), various spectrahedral and spectrahedral-shadow rep-
resentations for interesting hyperbolicity cones (see Netzer and Sanyal [17] and the
references therein, in the light of [18]).

If K = Λ+(p), then F : Rn → R, F (x) :=

{
− ln (p(x)) , if x ∈ Λ++(p);
+∞, otherwise.

has very useful properties for modern interior-point methods (see [5, 15]). Let F
be a normal barrier (see [15] for a definition) for the regular cone K. We say that F
has negative curvature if for every x ∈ int(K) and h ∈ K we have ∇3F (x)[h] nega-
tive semidefinite. Negation of logarithms of hyperbolic polynomials have negative
curvature [10, 5]. While the dual cone of a hyperbolicity cone is not necessarily
hyperbolic [3], the dual barrier function F∗(s) := max

x∈int(K)
{−〈s, x〉 − F (x)} is al-

ways a normal barrier for the dual cone K∗. F∗ does not necessarily have negative
curvature.
Open Problems: 1.Does there exist an algebraic convex cone (defined as the
solution set of homogeneous multivariate polynomial inequalities) which admits a
normal barrier with negative curvature but it is not a hyperbolicity cone? 2. [15]
Characterize the set of convex cones which admit normal barriers with negative
curvature. 3. (Generalized Lax Conjecture) Every hyperbolicity cone is a spectra-
hedron.
Conjecture 1: [24] Every hyperbolicity cone is a spectrahedral shadow.
A few months before this writing, Scheiderer [22] answered a related question of
Nemirovski [14] by disproving the Helton-Nie conjecture [6] (Helton-Nie conjecture
is a stronger version of our Conjecture 1 above).
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