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ON RANK-MONOTONE GRAPH OPERATIONS

AND MINIMAL OBSTRUCTION GRAPHS

FOR THE LOVÁSZ–SCHRIJVER SDP HIERARCHY

YU HIN (GARY) AU AND LEVENT TUNÇEL

Abstract. We study the lift-and-project rank of the stable set polytopes of graphs with respect
to the Lovász–Schrijver SDP operator LS+, with a particular focus on finding and characterizing
the smallest graphs with a given LS+-rank (the least number of iterations of the LS+ operator
on the fractional stable set polytope to compute the stable set polytope). We introduce a
generalized vertex-stretching operation that appears to be promising in generating LS+-minimal
graphs and study its properties. We also provide several new LS+-minimal graphs, most notably
the first known instances of 12-vertex graphs with LS+-rank 4, which provides the first advance
in this direction since Escalante, Montelar, and Nasini’s discovery of a 9-vertex graph with
LS+-rank 3 in 2006.

1. Introduction

Given a simple, undirected graph G = (V (G), E(G)), we say that S ⊆ V (G) is a stable set
if no two vertices in S are joined by an edge. The (maximum) stable set problem, which aims
to find a stable set of maximum cardinality in a given graph G, is one of the most well-studied
problems in combinatorial optimization. While this problem is NP-hard, a standard approach
for tackling the problem is to associate stable sets of G with points in R

V (G), and model it as

a convex optimization problem. Given a set S ⊆ V (G), its incidence vector χS ∈ {0, 1}V (G) is
defined so that [χS ]i = 1 if i ∈ S, and [χS ]i = 0 otherwise. Then we define the stable set polytope
of a given graph G to be the convex hull of the incidence vectors of stable sets of G:

STAB(G) := conv ({χS : S ⊆ V (G) is a stable set of G}) .

Observe that if we let α(G) be the cardinality of a maximum stable set in G, then

(1) α(G) = max




∑

i∈V (G)

xi : x ∈ STAB(G)



 .

While (1) is a linear program, considering again that the underlying combinatorial problem
is NP-hard, it is a difficult task to find an explicit description (e.g., via listing its facets) of
STAB(G) for a general graph G. This naturally leads to the pursuit of “nice” convex relaxations
of STAB(G). Below we list several desirable characteristics of such a convex relaxation P :
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• P ∩ {0, 1}V (G) = STAB(G) ∩ {0, 1}V (G). That is, a 0-1 vector is in P if and only if it is
the incidence vector of a stable set in G.

• P is tractable. That is, one can optimize a linear function over P with arbitrary precision
in polynomial time.

• P is a “strong” relaxation. This is a relatively subjective measure, and can mean that
important families of valid inequalities of STAB(G) are also valid for P , and/or that

max
{∑

i∈V (G) xi : x ∈ P
}

is “close” to α(G).

One of the simplest convex relaxations of STAB(G) is the fractional stable set polytope

FRAC(G) :=
{
x ∈ [0, 1]V (G) : xi + xj ≤ 1,∀ {i, j} ∈ E(G)

}
.

While FRAC(G) is both a correct and tractable relaxation, it is rather weak in general. For a
stronger relaxation, we call C ⊆ V (G) a clique if every pair of vertices in C is joined by an edge.
Then notice that, for every clique C, the inequality

∑

i∈C

xi ≤ 1

is valid for STAB(G). Thus, if we define the clique polytope

CLIQ(G) :=

{
x ∈ [0, 1]V (G) :

∑

i∈C

xi ≤ 1 for every clique C ⊆ V (G)

}
,

then STAB(G) ⊆ CLIQ(G) ⊆ FRAC(G) for every graph G. (For the second containment.
observe that every edge is a clique of size 2.) However, while CLIQ(G) is a stronger relaxation
than FRAC(G), it is not tractable in general.

In this manuscript, we focus on semidefinite relaxations of STAB(G) produced by LS+, a
lift-and-project operator devised by Lovász and Schrijver [LS91] which we will fully define in
Section 2. (The operator has also been referred to as N+ in the literature.) Given a graph G,
the LS+ operator generates a sequence of relaxations LSk+(G) which satisfies

FRAC(G) =: LS0+(G) ⊇ LS1+(G) ⊇ LS2+(G) ⊇ · · · ⊇ LS
|V (G)|
+ (G) = STAB(G).

(We will usually refer to LS1+(G) as simply LS+(G).) When k ∈ O(1), LSk+(G) can be described
as the feasible region of a semidefinite program whose number of variables and constraints are
polynomial in the size of the number of vertices and edges in G, and thus the relaxation is indeed
tractable in this case. Moreover, the first relaxation LS+(G) already satisfies many well-known
families of valid inequalities of STAB(G), including (among others) the aforementioned clique
inequalities, odd hole and odd antihole constraints, odd wheel constraints, and orthogonality
constraints imposed by the Lovász theta body [Lov79].

The hierarchy of relaxations generated by LS+ gives rise to the notion of the LS+-rank of a
graph G, which is defined to be the smallest integer k where LSk+(G) = STAB(G), and gives us
a measure of how difficult the stable set problem is for the LS+ operator. It is well-known that
a graph G has LS+-rank 0 (i.e., satisfies FRAC(G) = STAB(G)) if and only if G is bipartite.
Some families of graphs that are known to have LS+-rank 1 (i.e., satisfies LS+(G) = STAB(G))
include — but are not limited to — odd cycles, odd antiholes, odd wheels, and perfect graphs
(which are defined to be graphs where CLIQ(G) = STAB(G)). In the last decade, considerable
progress has been made in finding a combinatorial characterization of graphs with LS+-rank 1
— see, for instance, [BENT13, BENT17, Wag22, BENW23].

Nevertheless, since the maximum stable problem is NP-hard, there has to be graphs with
unbounded LS+-rank. The first family of graphs that have unbounded LS+-rank was obtained
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by Stephen and the second author [ST99], who showed that the line graph of the complete graph
on 2k+1 vertices has LS+-rank k, giving a family of graphs G whose LS+-rank is asymptotically

Ω(
√

|V (G)|). On the other hand, Lipták and the second author [LT03] showed the following:

Theorem 1. For every graph G, the LS+-rank of G is at most
⌊
|V (G)|

3

⌋
.

This begs the natural question: For every integer ℓ ≥ 1, is there a graph on 3ℓ vertices which
has LS+-rank ℓ? If these graphs exist, their extremal nature (in terms of being the smallest
possible graphs with a given LS+-rank) may help reveal the critical structures that expose the
limitations of these LS+-relaxations. This understanding could be extremely helpful when it
comes to analyzing other convex relaxations of the maximum stable set problem, particularly
those which are produced by other lift-and-project methods.

This direction of investigation was already set in the seminal paper [LS91] and questions
about the behaviour of LS+-rank under simple graph operations were also raised in [GT01].
In the same general direction of research, Laurent [Lau02] analyzed the LS+-rank and related
ranks in the context of the maximum cut problem by establishing nice behaviour (only in the
context of maximum cut problems) of the underlying lift-and-project operators under graph
minor operations; also see [Lau03] for an analysis of the Lasserre operator. However, as it
was illustrated in some depth in [LT03], the LS+-rank of a graph does not behave in a nice,
uniform way under the usual graph minor operations for the stable set problem. Therefore,
a deeper investigation is necessary to construct the kind of graph operations which would be
helpful in discovering and understanding minimal obstructions to tractable convex relaxations
of the stable set polytope obtained by LS+ or other convex optimization based lift-and-project
hierarchies. Overall, the importance of the quest to understand minimal obstructions to families
of SDP relaxations in particular — and convex relaxations in general — has been raised by
many others. For example, Knuth, in his well-known survey “The Sandwich Theorem” [Knu94]
poses six open problems in the general context of Lovász theta function. Two of the six open
problems concern LS+(FRAC(G)). One of them asks for finding what we call below a 2-minimal
graph (answered in [LT03]).

We say that a graph G is ℓ-minimal if |V (G)| = 3ℓ and G has LS+-rank ℓ. It is known that
ℓ-minimal graphs exist for ℓ ∈ {1, 2, 3}. For ℓ = 1, it is easy to see that the 3-cycle is the only 1-
minimal graph. The first 2-minimal graph (G2,1 in Figure 1) was found by Lipták and the second
author [LT03], who also conjectured that ℓ-minimal graphs exist for all ℓ ∈ N. Subsequently,
Escalante, Montelar, and Nasini [EMN06] showed that there is only one other 2-minimal graph
(G2,2 in Figure 1), while providing the first example of a 3-minimal graph (G3,1 in Figure 1).
(The logic behind the seemingly odd choice of vertex labels in the figures of this section will be
explained in Section 4 when we introduce the vertex-stretching operation.)

In producing the first 3-minimal graph, Escalante et al. [EMN06] also showed that there does
not exist an ℓ-minimal graph for any ℓ ≥ 4 if we restrict ourselves to graphs that can be obtained
by starting with a complete graph and replacing every edge by a path of length at least 1. (Let
Kn denote the complete graph on n vertices. Notice that G2,1 and G3,1 can be respectively
obtained from K4 and K5 by replacing some edges with paths of length 3.)

Recently, the authors [AT23] discovered several family of graphs G for which the LS+-rank
of G is Ω(|V (G)|). One of them is the family of graphs Hk, which is defined as follows. Given
k ∈ N, let [k] denote the set {1, 2, . . . , k}. For every k ≥ 3, let

V (Hk) := {i0, i1, i2 : i ∈ [k]}

and
E(Hk) := {{i1, i0} , {i0, i2} : i ∈ [k]} ∪ {i1, j2 : i, j ∈ [k], i 6= j} .
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Figure 1. Known 2- and 3-minimal graphs due to [LT03] and [EMN06]
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Figure 2. Several graphs in the family Hk

Figure 2 illustrates the graphs Hk for k = 3, 4, 5. (Note that our vertex labels for Hk are
different from that in [AT23].) The authors [AT23, Theorem 2] proved the following.

Theorem 2. For every k ≥ 3, The LS+-rank of Hk is at least 3k
16 .

Theorem 2 (and other results in [AT23]) ended a 17-year lull in new hardness results for
LS+-relaxations of the stable set problem, and provides renewed hope that ℓ-minimal graphs do
exist for ℓ ≥ 4. Indeed, one of the main contributions of this work is the discovery of what we
believe to be the first known instance of a 4-minimal graph (G4,1 in Figure 3).

This paper is organized as follows. In Section 2, we define the LS+ operator and introduce
some of the tools and notation we will need for our subsequent analysis. Then, in Section 3,
we discuss what we call star-homomorphism between graphs, and provide a template for con-
structing graph operations that are LS+-rank non-decreasing. Using this template, we define
our vertex-stretching operation in Section 4, which generalizes similar graph operations studied
previously [LT03, AEF14, BENT17]. We then show in Section 5 that every ℓ-minimal graph for
ℓ ≥ 2 must be obtained from applying our vertex-stretching operation to a smaller graph, and
in particular study the LS+-ranks of graphs obtained from stretching the vertices of a complete
graph. In Section 6, we prove that G4,1 indeed has LS+-rank 4 and discuss some of the immediate
consequences of the result, which includes the discovery of several other new 3- and 4-minimal
graphs. We then revisit the aforementioned families of graphs Hk in Section 7, and apply our
results on vertex stretching to show that there exists a family of graphs G with maximum degree
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Figure 3. G4,1, a 12-vertex graph with LS+-rank 4

3 and LS+-rank Ω(
√

|V (G)|). Finally, we conclude our paper in Section 8 by mentioning some
natural future research directions.

2. Preliminaries

In this section, we define the lift-and-project operator LS+ due to Lovász and Schrijver [LS91]
and the convex relaxations of STAB(G) it produces, as well as go over the basic tools we will
use in subsequent sections to analyze the LS+-rank of graphs.

2.1. The LS+-operator. Given a set P ⊆ [0, 1]n, we define the homogenized cone of P to be

cone(P ) :=

{[
λ

λx

]
: λ ≥ 0, x ∈ P

}
.

Notice that cone(P ) ⊆ R
n+1, and we will refer to the new coordinate with index 0. Next, given

a vector x and an index i, we may refer to the i-entry in x by xi or [x]i. All vectors are column
vectors by default, so x⊤, the transpose of a vector x, is a row vector. Next, let Sn+ denote the
set of n-by-n real symmetric positive semidefinite matrices, and diag(Y ) be the vector formed
by the diagonal entries of a square matrix Y . We also let ei be the ith unit vector.

Given P ⊆ [0, 1]n, the operator LS+ first lifts P to the following set of matrices:

L̂S+(P ) :=
{
Y ∈ S

n+1
+ : Y e0 = diag(Y ), Y ei, Y (e0 − ei) ∈ cone(P ) ∀i ∈ [n]

}
.

It then projects the set back down to the following set in R
n:

LS+(P ) :=

{
x ∈ R

n : ∃Y ∈ L̂S+(P ), Y e0 =

[
1
x

]}
.

Given x ∈ LS+(P ), we say that Y ∈ L̂S+(P ) is a certificate matrix for x if Y e0 =

[
1
x

]
. Also,

given a set P ⊆ [0, 1]n, we define

PI := conv (P ∩ {0, 1}n)

to be the integer hull of P . The following is a well-known and foundational property of LS+.

Lemma 3. For every set P ⊆ [0, 1]n, PI ⊆ LS+(P ) ⊆ P .
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Proof. For the first containment, let x ∈ P∩{0, 1}n. Observe that Y :=

[
1
x

] [
1
x

]⊤
∈ L̂S+(P ), and

so x ∈ LS+(P ). For the second containment, let x ∈ LS+(P ), and Y ∈ L̂S+(P ) be a certificate

matrix for x. Since Y e0 = Y ei + Y (e0 − ei) for any index i ∈ [n] and that L̂S+ imposes that

Y ei, Y (e0 − ei) ∈ cone(P ), it follows that Y e0 =

[
1
x

]
∈ cone(P ), and thus x ∈ P . �

Therefore, LS+(P ) contains the same set of integral solutions as P . Also, if P is tractable,
then so is LS+(P ), and it is known that P ⊃ LS+(P ) unless P = PI . Thus, LS+(P ) offers a
tractable relaxation of PI that is tighter than the initial relaxation P .

Furthermore, we can apply LS+ multiple times to obtain yet tighter relaxations. Given k ∈ N,
let LSk+(P ) be the set obtained from applying k successive LS+ operations to P . (We also let

LS0+(P ) := P .) Then it is well known that

PI = LSn+(P ) ⊆ LSn−1
+ (P ) ⊆ · · · ⊆ LS+(P ) ⊆ P.

Thus, LS+ generates a hierarchy of progressively tighter convex relaxations which converge to
PI in no more than n iterations. The reader may refer to Lovász and Schrijver [LS91] for a proof
of this fact and some other properties of the LS+ operator.

2.2. Analyzing the LS+-rank of a graph. Recall that FRAC(G), the fractional stable set
polytope of a graph G, offers a simple and tractable convex relaxation of STAB(G). Thus, we
could apply LS+ to obtain stronger relaxations of STAB(G) than FRAC(G). Given an integer
k ≥ 0, define

LSk+(G) := LSk+(FRAC(G)),

and let r+(G) denote the LS+-rank of G (which, again, is the smallest integer k where LSk+(G) =
STAB(G)).

To show that a graph G has LS+-rank at least p, the standard approach is to find a point

x̄ where x̄ 6∈ STAB(G) and x̄ ∈ LSp−1
+ (G) — this is the approach we will take when verifying

that r+(G4,1) ≥ 4. We do remark that verifying x̄ ∈ LSp−1
+ (G) tends to get progressively more

challenging as p increases, unless the symmetries of G allow for an inductive argument (which
is the case for the line graphs of odd cliques [ST99], and to a lesser extent for Hk and related
graphs [AT23]). Given p ∈ N, we also define

αLSp+
(G) := max

{
ē⊤x : x ∈ LSp+(G)

}
,

where ē denotes the vector of all-ones. Notice that if αLSp
+
(G) > α(G), then r+(G) ≥ p+ 1.

Next, the following is a well-known property of LS+.

Lemma 4. Let P ⊆ [0, 1]n be a polyhedron, and F be a face of [0, 1]n. Then

LS+(P ∩ F ) = LS+(P ) ∩ F.

It follows from Lemma 4 that if x̄ ∈ LSp+(G) and G′ is an induced subgraph of G, then the
vector obtained from x̄ by removing entries not in V (G′) is in LSp+(G

′). This in turn implies
that r+(G

′) ≤ r+(G) — see, for instance, [AT23, Lemma 5] for a proof.
We next mention several other ways of bounding r+(G) using the LS+-rank of graphs that are

related to G. Given a graph G and S ⊆ V (G), we let G− S denote the subgraph of G induced
by the vertices V (G)\S, and call G−S the graph obtained by the deletion of S. (When S = {i}
for some vertex i, we simply write G− i instead of G− {i}.) Next, given i ∈ V (G), let

ΓG(i) := {j ∈ V (G) : {i, j} ∈ E(G)}
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be the open neighborhood of i in G, and ΓG[i] := ΓG(i) ∪ {i} be the closed neighborhood of i in
G. Then the graph obtained from the destruction of i in G is defined as

G⊖ i := G− Γ[i].

Then we have the following.

Theorem 5. For every graph G,

(i) [LS91, Corollary 2.16] r+(G) ≤ max {r+(G⊖ i) : i ∈ V (G)}+ 1;
(ii) [LT03, Theorem 36] r+(G) ≤ min {r+(G− i) : i ∈ V (G)} + 1.

Recall that r+(G) = 0 if and only if G is bipartite (in which case FRAC(G) = STAB(G)).
Thus, it follows immediately from Theorem 5(ii) that if G is non-bipartite but G− i is bipartite
for some i ∈ V (G), then r+(G) = 1 — an example for such graphs is the odd cycles. Likewise,
if G is non-bipartite while G⊖ i is bipartite for every i ∈ V (G), then r+(G) = 1 as well — such
as when G is an odd antihole (i.e., the graph complement of an odd cycle of length at least 5),
or an odd wheel (i.e., the graph obtained from joining a vertex to every vertex of an odd cycle
of length at least 5).

We say that a graph G is perfect if CLIQ(G) = STAB(G). In terms of forbidden subgraphs,
G is perfect if and only if it does not contain an induced subgraph that is an odd hole (i.e.,
an odd cycle of length at least 5) or an odd antihole [CRST06]. Since LS+(G) ⊆ CLIQ(G) in
general [LS91], it follows that r+(G) ≤ 1 if G is perfect.

The following is a restatement of [LT03, Lemma 5].

Proposition 6. Let G be a graph, and S1, S2, C ⊆ V (G) are mutually disjoint subsets such that

• S1 ∪ S2 ∪ C = V (G);
• C induces a clique in G;
• There is no edge {i, j} ∈ E(G) where i ∈ S1, j ∈ S2.

Then r+(G) = max {r+(G− S1), r+(G− S2)}.

Thus, if G has a cut clique (i.e., a clique C where G−C has multiple components), then the
LS+-rank of G is equal to that of one of its proper subgraphs.

Finally, it is clear from the definition of LS+ that if P1 ⊆ P2, then LS+(P1) ⊆ LS+(P2). This
implies the following.

Lemma 7. Given graphs G,H where V (G) = V (H) and E(G) ⊆ E(H),

(i) If a⊤x ≤ β is valid for LSp+(G), then a⊤x ≤ β is valid for LSp+(H);

(ii) If a⊤x ≤ β is not valid for LSp+(H), then a⊤x ≤ β is not valid for LSp+(G).

3. Star-homomorphic graphs

In this section, we introduce the notion of two graphs being star-homomorphic, and describe
how the LS+-relaxations of such a pair of graphs are related. Given a graph G = (V (G), E(G)),
we define the graph G† where

V (G†) :=
{
i, i : i ∈ V (G)

}
,

E(G†) := E(G) ∪
{{

i, i
}
: i ∈ V (G)

}
.

In other words, we obtain G† from G by adding a new vertex i for every i ∈ V (G), and then
adding an edge between i and i. Figure 4 provides an example of constructing G† from G.

Also, given graphs G and H, we say that g : V (H) → V (G) is a homomorphism if, for all
i, j ∈ V (H),

{i, j} ∈ E(H) ⇒ {g(i), g(j)} ∈ E(G).
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Figure 4. Constructing G† from G

Next, given graphs G and H, if there exists a homomorphism g : V (H) → V (G†), then we say
that H is star-homomorphic to G under g.
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Figure 5. Two graphs H1,H2 that are star-homomorphic to G

Example 8. Consider the graphs in Figure 5. Then H1 is star-homomorphic to G under g1
where

j ∈ V (H1) 1 2 3 4 5 6 7 8 9

g1(j) ∈ V (G†) 1 2 3 4 5 6 6 6 6

Likewise, H2 is star-homomorphic to G under g2 where

j ∈ V (H2) 1 2 3 4 5 6 7 8

g2(j) ∈ V (G†) 1 2 3 4 5 6 3 6

Given that H is star-homomorphic to G under g and x ∈ R
V (G), we let g̃(x) ∈ R

V (H) be the
vector where

[g̃(x)]j :=

{
xi if g(j) = i;

1− xi if g(j) = i.

While the following property of g̃ follows readily from the definition of star-homomorphism, it
is worth stating explicitly.

Lemma 9. Suppose H is star-homomorphic to G under g, and x ∈ R
V (G). If x ∈ FRAC(G),

then g̃(x) ∈ FRAC(H).
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Proof. First, it is easy to see that x ∈ [0, 1]V (G) implies g̃(x) ∈ [0, 1]V (H). Now given edge
{j1.j2} ∈ E(H), {g(j1), g(j2)} is either an edge in G or

{
i, i
}
for some i ∈ V (G). In both cases,

we see that [g̃(x)]j1 + [g̃(x)]j2 ≤ 1. �

In fact, the implication in Lemma 9 is preserved under applications of LS+.

Proposition 10. Suppose H is star-homomorphic to G under g, and x ∈ R
V (G). If x ∈ LSp+(G),

then g̃(x) ∈ LSp+(H).

Proof. Suppose x ∈ LSp+(G). We prove that g̃(x) ∈ LSp+(H) by induction on p. The base case

p = 0 reduces to Lemma 9. Next, suppose p ≥ 1, and let Y ∈ L̂S
p

+(G) be a certificate matrix.
For convenience, we also extend the function g̃ as follows: Given a real number k ≥ 0, define
g̃k : R{0}∪V (G) → R

{0}∪V (H) such that

[g̃k(x)]j :=





x0 if j = 0;

xi if j ∈ V (H) and g(j) = i;

k − xi if j ∈ V (H) and g(j) = i.

Notice that the function g̃k satisfies

g̃λ

([
λ

λx

])
=

[
λ

λg̃(x)

]

for every λ ≥ 0 and x ∈ R
V (G).

Since Y ∈ L̂S
p

+(G), Y ei, Y (e0 − ei) ∈ cone
(
LSp−1

+ (G)
)
for every i ∈ V (G). Thus, applying

the inductive hypothesis we have g̃xi
(Y ei), g̃1−xi

(Y (e0 − ei)) ∈ cone
(
LSp−1

+ (H)
)
.

Next, define the matrix U ∈ R
({0}∪V (G))×({0}∪V (H)) where

Uej :=





e0 if j = 0;

ei if j ∈ V (H) and g(j) = i;

e0 − ei if j ∈ V (H) and g(j) = i.

Then, given z ∈ R
{0}∪V (G), U⊤z = g̃z0(z).

Next, we claim that the matrix Y ′ := U⊤Y U ∈ L̂S
p

+(H). First, since Y = Y ⊤,diag(Y ) = Y e0,
and Y � 0, it is easy to see that the corresponding properties also hold for Y ′. We next show

that Y ′ej , Y
′(e0 − ej) ∈ cone

(
LSp−1

+ (H)
)
for every j ∈ V (H). First, if g(j) = i ∈ V (G), then

Y ′ej = g̃xi
(Y ei), and

Y ′(e0 − ej) = Y ′e0 − Y ′ej = g̃1(Y e0)− g̃xi
(Y ei) = g̃1−xi

(Y (e0 − ei)).

To see the last equality, notice that

[g̃1(Y e0)− g̃xi
(Y ei)]ℓ = [g̃1−xi

(Y (e0 − ei))]ℓ

=





1− xi if ℓ = 0;

xi′ − Y [i′, i] if g(ℓ) = i′ ∈ V (G);

1− xi′ − xi + Y [i′, i] if g(ℓ) = i′ for some i′ ∈ V (G).

Likewise, if g(j) = i for some i ∈ V (G), then Y ′ej = g̃1−xi
(Y (e0−ei)) and Y ′(e0−ej) = g̃xi

(Y ei).

In all cases, it follows from the inductive hypothesis that Y ′ej , Y
′(e0 − ej) ∈ cone

(
LSp−1

+ (H)
)
.

Therefore, Y ′ ∈ L̂S
p

+(H). Since Y ′e0 = g̃1(Y e0) =

[
1

g̃(x)

]
, it follows that g̃(x) ∈ LSp+(H). �
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Proposition 10 helps establish a framework for bounding the LS+-rank of a graph by that of
another.

Lemma 11. Given graphs G and H where H is star-homomorphic to G under g, if

x 6∈ STAB(G) ⇒ g̃(x) 6∈ STAB(H).

then r+(H) ≥ r+(G).

Proof. Suppose r+(G) = p ≥ 1 (the claim is trivial if p = 0). Then there exists x ∈ LSp−1
+ (G) \

STAB(G). Then by the hypothesis and Proposition 10, g̃(x) ∈ LSp−1
+ (H) \ STAB(H), showing

that r+(H) ≥ p. �

Finally, while our focus for this paper is the LS+ operator, we remark that the framework of
star homomorphism can be extended to analyze relaxations generated by other lift-and-project
operators. Again, let H be a graph that is star-homomorphic to G under g. Then notice that the
function g̃ : RV (G) → R

V (H) can be expressed as a composition of the following four elementary
operations:

(1) Deleting a coordinate. E.g., L : Rn → R
n−1 where

L(x1, x2, . . . , xn) = L(x2, . . . , xn).

(2) Swapping two coordinates. E.g., L : Rn → R
n where

L(x1, x2, x3, . . . , xn) = L(x2, x1, x3, . . . , xn).

(3) Cloning a coordinate. E.g., L : Rn → R
n+1 where

L(x1, x2, . . . , xn) = L(x1, x1, x2, . . . , xn).

(4) Flipping a coordinate. E.g., L : Rn → R
n where

L(x1, x2, . . . , xn) = L(1− x1, x2, . . . , xn).

Now, let L be a lift-and-project operator. If one can show that

(2) x ∈ L(P ) ⇒ L(x) ∈ L(L(P )),

for every function L that belongs to one of the four categories above (where L(P ) denotes
{L(z) : z ∈ P}), then one can prove the analogous version of Proposition 10 for L. For instance,
the ideas from the proof of Proposition 10 show that (2) holds for L ∈ {LS+,LS,LS0} (where
LS,LS0 [LS91] are operators that generate linear relaxations which are generally weaker than
LS+). Also, it has been shown [AT18, Proposition 1] that the Lasserre operator Las [Las01]
commutes with all automorphisms of the unit hypercube, a property that is also shared by
the Sherali–Adams operator SA [SA90] and one of its PSD variants SA+ [AT16]. Thus, these
operators satisfy (2) as well, and much of what we show for LS+ in this section and the next
section also applies to these operators.

4. The (generalized) vertex-stretching operation

In this section, we introduce a graph operation that shows promise in producing relatively
small graphs with high LS+-ranks, and study some of its properties. Given a graph G, vertex
v ∈ V (G), and non-empty sets A1, . . . , Ap ⊂ ΓG(v) where

⋃p
ℓ=1Aℓ = ΓG(v), we define the

stretching of v in G by applying the following sequence of transformations to G:

• Replace v by p+ 1 vertices: v0, v1, . . . , vp;
• For every ℓ ∈ [p], Join vℓ to v0, as well as to all vertices in Aℓ.
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We will also refer to the operation as p-stretching when we would like to specify p (which is
necessarily at least 2). For example, Figure 6 shows the graph obtained from 2-stretching vertex
5 in K5 (with A1 = {2, 3, 4} and A2 = {1, 2, 3}). For another example, observe that in Figure 5,
the graph H1 can be obtained by 3-stretching vertex 6 in G.

1 2

3

4

5

−→

1 2

3

4

50

51

52

Figure 6. Demonstrating the vertex-stretching operation

We remark that our vertex stretching operation is a generalization of the type (i) stretching
operation described in [LT03] and later studied in [AEF14] (which further requires that p = 2
and A1 ∩ A2 = ∅), as well as the k-stretching operation described in [BENT17] (which further
requires that p = 2 and the vertices A1 ∩A2 induce a clique of size k in G, with k = 0 allowed).
Also, when A1, . . . , Ap are mutually disjoint and at most one of these p sets has size greater
than 1, our vertex stretching specializes to an instance of type (ii) stretching from [LT03].

Given a graph G and an integer p ≥ 2, we define Sp(G) to be the set of graphs that can
be obtained from G by p-stretching one vertex. Notice that every graph H ∈ Sp(G) is star-
homomorphic to G under g where

(3) g(j) :=





j if j ∈ V (H ⊖ v0);

v if j ∈ {v1, . . . , vp};

v if j = v0.

We also define S(G) :=
⋃

p≥2 Sp(G), and will show that r+(H) ≥ r+(G) for all H ∈ S(G) using

Lemma 11. First, we need a tool that uses valid inequalities of STAB(G) to generate potential
valid inequalities for STAB(H).

Lemma 12. Let H ∈ S(G) be a graph obtained from G by p-stretching vertex v ∈ V (G), and
a⊤x ≤ β be a valid inequality STAB(G) where a ≥ 0. If d ∈ R

p
+ satisfies

∑p
ℓ=1 dℓ ≥ av and

(4) max

{
a⊤x : x ∈ STAB(G), xi = 0 ∀i ∈ {v} ∪

⋃

ℓ∈T

Aℓ

}
≤ β − av +

∑

ℓ 6∈T

dℓ

for all ∅ ⊂ T ⊂ [p], then

(5)
∑

i∈V (H⊖v0)

aixi +

p∑

ℓ=1

dℓxvℓ +

((
p∑

ℓ=1

dℓ

)
− av

)
xv0 ≤ β − av +

p∑

ℓ=1

dℓ

is valid for STAB(H).
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Proof. Suppose S ⊆ V (H) is an inclusion-wise maximal stable set in H. We define S′ ⊆ V (G)
where

S′ :=





S \ {v0} if v0 ∈ S;

(S \ {v1, . . . , vp}) ∪ {v} if {v1, . . . , vp} ⊆ S;

S \ {v1, . . . , vp} if 1 ≤ | {v1, . . . , vp} ∩ S| ≤ p− 1.

In all cases, S′ is a stable set in G, and a⊤χS′ ≤ β implies that χS satisfies (5). Note that the
third case is when we require the assumption (4) with T := {v1, . . . , vp} ∩ S. �

Due to its similarity with the aforementioned vertex-stretching operations studied in [LT03],
our vertex-stretching operation shares some similar structural properties, which we point out
below.

Proposition 13. Let H ∈ S(G) be a graph obtained from G by p-stretching vertex v ∈ V (G).
Then we have the following.

(i) If a⊤x ≤ β is valid for STAB(G) where a ≥ 0. Then

(6)
∑

i∈V (H⊖v0)

aixi +

p∑

ℓ=1

avxvℓ + (p− 1)avxv0 ≤ β + (p− 1)av

is valid for STAB(H).
(ii) Let g be as defined in (3). If x 6∈ STAB(G), then g̃(x) 6∈ STAB(H).
(iii) r+(H) ≥ r+(G).

Proof. First, (i) follows readily from Lemma 12 with dℓ := av for every ℓ ∈ [p]. Here, the
condition (4) holds as the right hand side is at least β for all non-empty T ⊂ [p].

For (ii), first suppose x 6∈ STAB(G). If x 6∈ [0, 1]V (G), then g̃(x) 6∈ [0, 1]V (H) and the claim
follows. Otherwise, there is a facet a⊤x ≤ β of STAB(G) where a ≥ 0 that is violated by x.
Now notice that for every j ∈ V (H),

[g̃(x)]j =





xj if j ∈ V (H ⊖ v0);

xv if j ∈ {v1, . . . , vp};

1− xv if j = v0.

Then g̃(x) violates (6), and thus does not belong to STAB(H).
Finally, as we have shown that H is star-homomorphic to G under the function g as defined

in (3), (iii) follows directly from Lemma 11. �

We remark that Proposition 13 is a generalization of the corresponding results on types (i) and
(ii) stretching from [LT03], and our proof uses many of the same ideas from similar arguments
therein.

Next, we prove a result somewhat similar to Proposition 13(i) that derives some facets of the
stable set polytope of the stretched graph.

Proposition 14. Let H ∈ S(G) be a graph obtained from G by p-stretching vertex v ∈ V (G), and
suppose a⊤x ≤ β is a facet of STAB(G) where a ≥ 0. For every ℓ ∈ [p], define Aℓ := ΓH(vℓ)\{v0}
and

(7) dℓ := av − β +max



a⊤x : x ∈ STAB(G), xi = 0 ∀i ∈ {v} ∪

⋃

j∈[p],j 6=ℓ

Aj



 .

If the inequality (5) is valid for STAB(H), then it is a facet of STAB(H).
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Proof. For convenience, let n := |V (G)|. Since a⊤x ≤ β is a facet of STAB(G), there exist stable
sets S1, . . . , Sn ⊆ V (G) whose incidence vectors are affinely independent and all satisfy a⊤x ≤ β

with equality. Also, for every ℓ ∈ [p], let Dℓ be a stable set that attains the maximum in the
definition of dℓ in (7). We then define S′

1, . . . , S
′
n+p as follows. For every i ∈ [n],

S′
i :=

{
Si ∪ {v0} if v 6∈ Si;

(Si \ {v}) ∪ {v1, . . . , vp} if v ∈ Si.

We also define

S′
n+i := Di ∪ {vj : j ∈ [p], j 6= i}

for all i ∈ [p].
Observe that S′

1, . . . , S
′
n+p must all be stable sets in H. Also, using the fact that incidence

vectors of S1, . . . , Sn are affinely independent and satisfy a⊤x ≤ β with equality, we see that the
incidence vectors of S′

1, . . . , S
′
n+p are affinely independent and all satisfy (5) with equality.

Thus, if we know that (5) is valid for STAB(H), it must be a facet. �

The special case of p = 2 in Proposition 14 is particularly noteworthy:

Corollary 15. Let H ∈ S2(G) be a graph obtained from G by 2-stretching vertex v ∈ V (G),
and suppose a⊤x ≤ β is a facet of STAB(G) where a ≥ 0. Define A1 := ΓH(v1) \ {v0} , A2 :=
ΓH(v2) \ {v0}, as well as the quantities

d1 := av − β +max
{
a⊤x : x ∈ STAB(G), xi = 0 ∀i ∈ {v} ∪A2

}
,

d2 := av − β +max
{
a⊤x : x ∈ STAB(G), xi = 0 ∀i ∈ {v} ∪A1

}
.

If d1 + d2 ≥ av, then (5) is a facet of STAB(H).

Proof. This is largely a specialization of Proposition 14 to the case p = 2. Notice that the
additional assumption of (5) being valid is not necessary in this case because {1, 2} has exactly
two non-empty and proper subsets, and so the definition of d1, d2 herein are enough to guarantee
that the assumption (4) is met. �

Finally, we close this section by mentioning a “reverse” implication of Proposition 13. Notice
that given graph H, if any vertex v0 ∈ H has the property that ΓH(v0) is a stable set, then there
exists a graph G where H ∈ S(G). In particular, we can obtain this graph G by contracting the
set of vertices ΓH [v0]. Thus, Proposition 13 implies the following.

Corollary 16. Given a graph H and vertex v0 ∈ V (H) where ΓH(v0) is a stable set, let G be
the graph obtained from H by contracting the set of vertices ΓH [v0]. Then r+(G) ≤ r+(H).

Example 17. In general, it is possible that contracting the closed neighborhood of a vertex
results in an increase in the graph’s LS+-rank. For example, notice that the graph H in Figure 7
is the union of two LS+-rank-1 graphs whose intersection is the cut clique {7, 8}, and thus it
follows from Proposition 6 that r+(H) = 1. However, contracting ΓH [6] in H results in G, which
is isomorphic to G2,1, and so r+(G) = 2.

5. LS+-minimal graphs via 2-stretching cliques

In this section, we are interested in studying graphs with the fewest number of vertices with
a given LS+-rank. Given ℓ ∈ N, define n+(ℓ) to be the minimum number of vertices on which
there exists a graph G with r+(G) = ℓ. It follows immediately from Theorem 1 that n+(ℓ) ≥ 3ℓ
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3 2

1

87

4 5

6

3 2

14 5

6

H G

Figure 7. An example in which contracting the closed neighborhood of a vertex
increases the graph’s LS+-rank

for every ℓ ∈ N. On the other hand, Theorem 2 implies that n+(ℓ) ≤ 16ℓ. Thus, we know that
n+(ℓ) = Θ(ℓ) asymptotically.

Recall that a graph G is ℓ-minimal if r+(G) = ℓ and |V (G)| = 3ℓ. The following result
establishes a close connection between ℓ-minimal graphs and 2-stretching vertices.

Theorem 18. Let H be an ℓ-minimal graph where ℓ ≥ 2. Then there exists a graph G where
H ∈ S2(G).

Proof. First, since r+(H) = ℓ, there exists a vertex v0 where r+(H ⊖ v0) = ℓ− 1. This implies
that |V (H ⊖ v0)| ≥ 3ℓ− 3, and thus deg(v0) ≤ 2. If deg(v0) = 1, H would contain a cut vertex,
and Proposition 6 implies there would be a proper subgraph of H with the same LS+-rank as H.
Thus, we obtain that deg(v0) = 2. Let v1, v2 denote the two neighbours of v0. If {v1, v2} ∈ E(H),
then the edge would form a cut clique in H, and Proposition 6 again implies that there would a
proper subgraph of H with the same LS+-rank as H. Thus, {v1, v2} must be a stable set in H.

Next, define G to be the graph obtained from H by contracting {v0, v1, v2}, and label the
new vertex v. We claim that H ∈ S2(G), and to prove that it only remains to show that both
ΓH(v1) \ ΓH(v2) and ΓH(v2) \ ΓH(v1) are non-empty.

Let a⊤x ≤ β be a facet of STAB(H) of LS+-rank ℓ. Then there must be stable sets
S1, . . . , S3ℓ ⊆ V (H) whose incidence vectors are affinely independent and all satisfy a⊤x ≤ β

with equality. Also, since H is ℓ-minimal, a must have full support. Therefore, Si must be
inclusion-wise maximal for all i ∈ [3ℓ], and hence belongs to one of the following cases:

(1) Si ∩ {v0, v1, v2} = {v0};
(2) Si ∩ {v0, v1, v2} = {v1};
(3) Si ∩ {v0, v1, v2} = {v2};
(4) Si ∩ {v0, v1, v2} = {v1, v2}.

Since χS1 , . . . , χS3ℓ
are affinely independent, one of these stable sets contains v0 and belongs

to Case (1), so assume without loss of generality that v0 ∈ S1. Now consider the matrix A

formed by the row vectors (χS2 − χS1)
⊤, (χS3 − χS1)

⊤, . . . , (χS3ℓ
− χS1)

⊤. Since S1, . . . , S3ℓ are
affinely independent, A must have linearly independent rows. This means that, if we focus on
the submatrix A′ of A which consists of just the three columns corresponding to v0, v1, and v2,
A′ must have rank 3. This implies that there must exist at least one Si belonging to each of
Cases (2), (3), and (4).

Now consider a stable set Si that belongs to Case (2). Since Si is inclusion-wise maximal,
it must contain a vertex that is adjacent to v2 and not v1, and so we have found a vertex that
belongs to ΓH(v2) \ ΓH(v1). The same argument applied to an Si from Case (3) gives a vertex
that belongs to ΓH(v1) \ ΓH(v2). This finishes the proof. �
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Thus, for the remainder of this section, we will focus on 2-stretching vertices, and study when
that helps (and does not help) in generating ℓ-minimal graphs. Since we will be studying graphs
obtained from applying a sequence of 2-stretching operations, we recursively define

Sk
2 (G) :=

⋃

G′∈Sk−1
2 (G)

S2(G
′)

for every graph G and integer k ≥ 1. That is, Sk
2 (G) is the set of graphs that can be obtained

from G by a sequence of k 2-stretching operations. We also let S0
2 (G) := {G}. The following is

a basic property of the graphs in Sk
2 (G).

Lemma 19. Let G be a graph, and let H ∈ Sk
2 (G). Then α(H) = α(G) + k.

Proof. Let H ∈ S2(G) be a graph obtained from G by 2-stretching vertex v ∈ V (G). To prove
our claim, it suffices to show that α(H) = α(G) + 1. Consider a set of vertices S ⊆ V (G). If
v ∈ S, then S is a stable set in G if and only if (S \ {v}) ∪ {v1, v2} is a stable set in H. If
v 6∈ S, then S is a stable set in G if and only if S ∪ {v0} is a stable set in H. Thus, we see that
α(H) = α(G) + 1. �

Recall the graphs G2,1, G2,2, and G3,1. In Figure 1, we labelled the vertices of these graphs to
highlight the fact that all three graphs can be obtained from applying a number of 2-stretching
operations to a complete graph. In fact, every known ℓ-minimal graph to date — the 3-cycle
and the three graphs in Figure 1 — belongs to Sℓ−1(Kℓ+2). Thus, for the remainder of this
section, we focus on graphs obtained from 2-stretching vertices of a complete graph, and prove
some results about the LS+-ranks of these graphs. Some of our subsequent arguments rely on
the positive semidefiniteness of some specific matrices, and so we first provide a framework for
easily and reliably verifying such claims. Given a symmetric matrix Y ∈ R

n×n, we say that
U, V ∈ Z

n×n is a UV -certificate of Y if

• kY = U⊤U + V for some k ∈ N, and,
• V is diagonally dominant.

Observe that the existence of a UV -certificate implies that Y � 0 (these certificates are sum-
of-squares certificates, and every rational matrix Y ∈ S

n
+ admits such certificates). Given a

UV -certificate to verify that Y is PSD, it suffices to

(i) form U⊤U + V and check that it is equal to kY for some integer k
(ii) check that Vii ≥

∑
j 6=i |Vij| for every i ∈ [n].

Since every entry in U and V is an integer, verifying (i) and (ii) only involve elementary
numerical operations on whole numbers.

Next, we show that if we 2-stretch a vertex in a complete graph, the result is always a graph
with LS+-rank 2.

Proposition 20. Let n ≥ 4. Then r+(H) = 2 for all H ∈ S2(Kn).

Proof. Let H ∈ S2(Kn), and assume without loss of generality that H is obtained from Kn by
2-stretching vertex n. Also, let Gn be the graph obtained from 2-stretching vertex n in Kn with
A1 := {2, 3, . . . , n} and A2 := [n− 1]. (For example, G4 is the graph G2,2 from Figure 1 and G5

is shown in Figure 6.) Then H must be isomorphic to a subgraph of Gn.
Next, we show that αLS2

+
(G4) > 2. Consider the certificate matrix
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Y :=





















1 2 3 41 40 42

200 78 12 78 78 78 78
78 78 0 0 39 39 0
12 0 12 0 0 12 0
78 0 0 78 0 39 39
78 39 0 0 78 0 39
78 39 12 39 0 78 0
78 0 0 39 39 0 78





















Note that the columns of Y are labelled by the vertices in G4 they correspond to (the rows
of Y follow the same order of indexing). Observe that Y � 0 — a UV -certificate for Y is

U :=





















0 0 0 0 0 0 0
−73 −26 −141 −26 60 132 61
0 124 0 −124 −200 0 200
27 −181 247 −181 51 159 51
0 −527 0 527 −326 0 326
1 −166 −73 −166 449 −556 449

1224 482 60 482 482 485 482





















, V :=





















2765 917 91 917 316 −11 389
917 1308 3 −212 −136 10 29
91 3 601 3 −280 71 −139
917 −212 3 1308 3 10 −110
316 −136 −280 3 1328 −155 −45
−11 10 71 10 −155 664 −287
389 29 −139 −110 −45 −287 1207





















,

which gives 7535Y = U⊤U + V . One can also check that Y ei, Y (e0 − ei) ∈ FRAC(G4) for
every i ∈ V (G4). This shows that x̄ := 1

200(78, 12, 78, 78, 78, 78)
⊤ ∈ LS+(G4). Now since

ē⊤x̄ = 2.01 > 2 = α(G4), we see that r+(G4) ≥ 2. Since Gn contains G4 as an induced subgraph
for all n ≥ 4, we conclude that αLS+(Gn) > 2. Then Lemma 7(ii) implies that αLS+(H) > 2.
Since α(H) = 2, it follows that r+(H) ≥ 2.

Finally, notice that H − n0 must be a perfect graph, so r+(H − n0) ≤ 1 and consequently
r+(H) ≤ 2. Thus, we conclude that r+(H) = 2. �

We remark that in the proof for r+(G2,2) ≥ 2 in [EMN06], the following certificate matrix
was given:

1

2688





















42 1 3 41 40 2

2688 769 769 769 769 769 1538
769 769 0 336 413 7

13
0 0

769 0 769 0 336 384 0
769 336 0 769 0 384 0
769 413 7

13
336 0 769 0 896

769 0 384 384 0 769 0
1538 0 0 0 896 0 1538





















However, the certificate is incorrect: Y [2, 40] =
896
2688 = 1

3 > Y [0, 40], and thus violates Y e40 ∈

cone(FRAC(G2,2)). In fact, since the vector 1
2688 (769, 769, 769, 769, 769, 1538)

⊤ contains only

one entry greater than 1
3 , any certificate matrix for this vector cannot contain the entry 1

3
(which would have to appear in at least 2 columns in the certificate). Still, the claim that
r+(G2,2) = 2 is correct, as shown in the proof of Proposition 20.

Next, while all graphs in S2(Kn) have LS+-rank 2, we show that not all graphs in S2
2 (Kn)

have LS+-rank 3. Given a graph G, we say that a path in G is sparse if at most one of the
vertices in the path has degree greater than 2 in G. For example, in Figure 8, the graph on the
left contains a sparse path 40, 41, 51, 50, 52 of length 4, while the graph on the right also contains
a sparse path 40, 42, 3, 52, 50 of length 4. Then we have the following.

Proposition 21. Let n ≥ 4. If G ∈ Sn−3
2 (Kn) contains a sparse path of length at least 3, then

G is not ℓ-minimal.
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Figure 8. Two graphs in S2
2 (K5) with sparse paths

Proof. Suppose u1, u2, . . . , um form a sparse path in G where m ≥ 4, and let i be the index such
that deg(uj) = 2 for all j ∈ [m], j 6= i. Then Proposition 6 implies that r+(G−ui) = r+(G−U),
where U := {u1, . . . , um}. Since m ≥ 4, G − U has 3(n − 2) − |U | < 3(n − 3) vertices, and so
r+(G− ui) = r+(G− U) ≤ n− 4. As a result, r+(G) ≤ n− 3, and G is not ℓ-minimal. �

Thus, both graphs in Figure 8 have LS+-rank at most 2. (In fact, they have rank 2 as they
both contain G2,1 as an induced subgraph.) Next, we show that if we 2-stretch a vertex in Kn,
and then 2-stretch one of the three new vertices in the stretched graph, the resulting graph
cannot have LS+-rank 3.

Proposition 22. Let n ≥ 4. Suppose G1 ∈ S2(Kn) is obtained by stretching vertex n in Kn,
and G2 ∈ S2

2 (Kn) is obtained by stretching vertex n0, n1, or n2 in G1. Then r+(G2) = 2.

Proof. First, if G2 is obtained from G1 by stretching n0, then n00, n01, n02 all have degree 2.
Notice that G2−n00 must be a perfect graph, and so r+(G2−n00) ≤ 1, which implies r+(G2) ≤ 2
in this case.

Otherwise, assume without loss of generality that G2 is obtained from G1 by stretching n1,
and that {n12, n0} ∈ E(G2). (Note that {n11, n0} may or may not be an edge.) Now notice that
G2 −n12 is a perfect graph, and thus, r+(G2) ≤ 2 in this case as well. Finally, since r+(G1) = 2
(from Proposition 20) and G2 ∈ S(G1), Proposition 13(iii) implies that r+(G2) ≥ 2. �

Thus, to obtain a graph with LS+-rank 3 in S2
2 (Kn), it is necessary that we stretch two of

the original vertices of Kn. (That is not sufficient though, as shown for the graphs in Figure 8.)
Next, observe that if G is an ℓ-minimal graph, then it is necessary that STAB(G) has a facet

with full support (or G would have a proper subgraph with the same LS+-rank). We provide
more circumstantial evidence that 2-stretching a number of original vertices of a complete graph
is a promising approach for generating ℓ-minimal graphs by showing that the stable set polytope
of these graphs all have a full-support facet.

Proposition 23. Let k, ℓ be integers where ℓ ≥ 3 and ℓ ≥ k ≥ 0. Suppose H ∈ Sk
2 (Kℓ) is

obtained from Kℓ by 2-stretching k vertices in Kℓ. Then
∑

i∈V (H) xi ≤ k + 1 is a facet of

STAB(H).

Proof. We prove our claim by induction on k. When k = 0, H = Kℓ, and the claim obviously
holds. Next, assume 1 ≤ k ≤ ℓ. Let T ⊆ [n] be the vertices in Kℓ that were stretched to obtain

H, and let G ∈ Sk−1
2 (Kℓ) be a graph such that H ∈ S2(G). (So there exists v ∈ T where H is

obtained from G by stretching v.)
By the inductive hypothesis,

∑
i∈V (G) xi ≤ k is a facet of STAB(G). To prove our claim, we

make use of Proposition 14 and show that d1 = d2 = 1. To do so, let A1 := ΓH(v1) \{v0} , A2 :=
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ΓH(v2) \ {v0},

c1 := max
{
a⊤x : x ∈ STAB(G), xℓ = 0 ∀ℓ ∈ {v} ∪A2

}
,

c2 := max
{
a⊤x : x ∈ STAB(G), xℓ = 0 ∀ℓ ∈ {v} ∪A1

}
.

Then it suffices to prove that c1 = c2 = k, which would then imply that d1 = d2 = 1.
First, it is obvious that c1, c2 ≤ k since α(G) = k. Next, consider Γ(v1) ⊆ V (H). By the

definition of the vertex-stretching operation, one of the following must hold:

• There exists an index j ∈ [n], j 6= v where j 6∈ T (so j ∈ V (H)) and j 6∈ Γ(v1). Then

S := {j} ∪ {p0 : p ∈ T, p 6= v}

is a stable set that gives c1 = k.
• There exists an index j ∈ [n], j 6= v where j ∈ T (so j0, j1.j2 ∈ V (H)) and j0, j1, j2 6∈
Γ(v1). Then

S := {j1, j2} ∪ {p0 : p ∈ T, p 6= v, j}

is a stable set that gives c1 = k.

The same argument shows that c2 = k, and this finishes the proof. �

We remark that the assumption of stretching only the original vertices of Kℓ in Proposition 23
is necessary, as shown in the following example.

Example 24. Recall the graph G2,2 from Figure 1. Observe that G2,2 ∈ S2(K4), and that

ē⊤x ≤ 2 is a facet of STAB(G2,2). Now, we 2-stretch the vertex 42 ∈ V (G2,2) to obtain
H ∈ S2

2 (K4) as shown in Figure 9 (right). Observe that the subgraph of H induced by vertices
1, 2, 3, 41, 40, 421 is isomorphic to G2,1 from Figure 1. Thus,

(8) x1 + x2 + x3 + x41 + x40 + x421 ≤ 2

is valid for STAB(H). (In fact, one can show that it is a facet of STAB(G) using Proposition 14).)
This implies that

∑
i∈V (H) xi ≤ 3, which is the sum of (8) and the edge inequality x420+x422 ≤ 1,

is not a facet of STAB(H).

1

2

3

41

40

42

−→ 1

2

3

41

40

421

420

422

Figure 9. A graph in H ∈ S2(K4) (right) where ē⊤x ≤ α(H) is not a facet of STAB(H)
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Figure 10. An alternative drawing of G4,1 to highlight its automorphisms

6. Existence of 4-minimal graphs

Recall the graph G4,1 (Figure 3), which was introduced in Section 1. We show in this section
that r+(G4,1) = 4, providing what we believe to be the first known example of a 4-minimal
graph (and the first advance in this direction since 2006 [EMN06]). Observe from its drawing
in Figure 3 that G4,1 ∈ S3

2 (K6), and is obtained from stretching three of the original vertices in
K6. We also point out two important automorphisms of G4,1 that will be useful in simplifying
our analysis of its LS+-rank. Consider the alternative drawing of G4,1 in Figure 10, and define
the functions f1, f2 : V (G4,1) → V (G4,1) as follows:

i 1 2 3 41 40 42 51 50 52 61 60 62
f1(i) 2 3 1 51 50 52 61 60 62 41 40 42
f2(i) 1 3 2 52 50 51 42 40 41 62 60 61

Visually, f1 corresponds to rotating the graph G4,1 in Figure 10 counterclockwise by 2π
3 , and

f2 corresponds to reflecting the figure along the centre vertical line. Now we are ready to prove
the main result of this section.

Theorem 25. The LS+-rank of G4,1 is 4.

Proof. For convenience, let G := G4,1 throughout this proof. Since G has 12 vertices, by Theo-
rem 1 it suffices to show that r+(G) ≥ 4. Consider the matrix Y0 defined as follows:

Y0 :=















































1 2 3 41 40 42 51 50 52 61 60 62

100000 25340 25340 25340 16500 75020 16500 16500 75020 16500 16500 75020 16500
25340 25340 0 0 0 17502 7838 7838 17502 0 0 25340 0
25340 0 25340 0 0 25340 0 0 17502 7838 7838 17502 0
25340 0 0 25340 7838 17502 0 0 25340 0 0 17502 7838
16500 0 0 7838 16500 0 8073 589 15911 0 589 15419 1081
75020 17502 25340 17502 0 75020 0 15419 51150 15911 15911 51150 15419
16500 7838 0 0 8073 0 16500 1081 15419 589 0 15911 589
16500 7838 0 0 589 15419 1081 16500 0 8073 589 15911 0
75020 17502 17502 25340 15911 51150 15419 0 75020 0 15419 51150 15911
16500 0 7838 0 0 15911 589 8073 0 16500 1081 15419 589
16500 0 7838 0 589 15911 0 589 15419 1081 16500 0 8073
75020 25340 17502 17502 15419 51150 15911 15911 51150 15419 0 75020 0
16500 0 0 7838 1081 15419 589 0 15911 589 8073 0 16500















































.

Again, the columns of Y0 are labelled by the vertices in G they correspond to. with the rows
of Y0 following the same order of indexing.
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We prove our claim by showing that Y0 ∈ L̂S
3

+(G). First, one can check that Y0 � 0 (a
UV -certificate is provided in Table 1). Moreover, observe that for all i, j ∈ V (G),

Y0[i, j] = Y0[f1(i), f1(j)] = Y0[f2(i), f2(j)],

and thus the entries of Y0 exhibit the same symmetries of the graph that are exposed by the

automorphisms f1 and f2. Hence, to show that Y0 ∈ L̂S
3

+(G), it suffices to verify the conditions

Y0ei, Y0(e0 − ei) ∈ cone(LS2+(G)) for i ∈ {1, 41, 60}, since for every other vertex j there is an
automorphism of G that would map j to one of these three vertices.

Next, notice that

Y0e1 ≤ 17502

[
1

χ{1,40,50,60}

]
+ 7838

[
1

χ{1,42,51,60}

]
,

Y0e41 ≤ 7838

[
1

χ{3,41,50,60}

]
+ 589

[
1

χ{41,42,51,60}

]
+ 6992

[
1

χ{41,42,50,60}

]

+ 492

[
1

χ{41,42,50,62}

]
+ 589

[
1

χ{41,50,61,62}

]
,

Y0(e0 − e60) ≤ 7366

[
1

χ{2,40,50,61}

]
+ 476

[
1

χ{2,40,52,61}

]
+ 476

[
1

χ{3,41,50,62}

]

+ 7366

[
1

χ{3,40,50,62}

]
+ 605

[
1

χ{41,42,50,62}

]
+ 605

[
1

χ{40,51,52,61}

]

+ 8058

[
1

χ{40,50,61,62}

]
+ 28

[
1
0

]
.

Since all incidence vectors above correspond to stable sets inG, we obtain that Y0e1, Y0e41 , Y0(e0−
e60) ∈ cone(STAB(G)) ⊆ cone(LS2+(G)). The details for Y0e60 , Y0(e0 − e1), Y0(e0 − e41) ∈

cone(LS2+(G)) are provided, respectively, in the proofs of Lemmas 39, 38, and 40 in Appen-
dix A.

Finally, let x̄ be the vector such that Y0e0 = 100000

[
1
x̄

]
. Since Y0 ∈ L̂S

3

+(G), we have

x̄ ∈ LS3+(G). Thus, we see that

αLS3
+
(G) ≥ ē⊤x̄ = 4.0008 > 4 = α(G).

Thus, r+(G) ≥ 4. �

Notice that G4,1 contains 24 edges. By Proposition 23, the inequality ē⊤x ≤ 4 is a facet of
STAB(G) for every graph G in S3

2 (K6), which contains G4,1. Thus, by Lemma 7(ii) it follows
that every graph in S3

2 (K6) which is a subgraph of G4,1 (which can have as few as 21 edges)
also has LS+-rank 4, giving more examples of 4-minimal graphs. The six non-isomorphic proper
subgraphs of G4,1 that belong to S3

2 (K6) are listed in Figure 11.
Moreover, the fact that G4,1 is 4-minimal also provides some new examples of 3-minimal

graphs.

Corollary 26. Let G3,2 := G4,1 ⊖ 60. Then G3,2 is a 3-minimal graph.

Proof. Since r+(G4,1) = 4, there exists vertex i ∈ V (G4,1) where G ⊖ i has LS+-rank 3, which
implies that deg(i) = 2, and so i ∈ {40, 50, 60}. Now observe that G4,1 ⊖ 40, G4,1 ⊖ 50, G4,1 ⊖ 60
are all isomorphic to each other. Thus, G3,2 is 3-minimal. �
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G4,1 − {{2, 42} , {3, 52} , {1, 62}} G4,1 − {{2, 42} , {3, 52} , {1, 61}} G4,1 − {{2, 42} , {3, 52}}
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G4,1 − {{2, 42} , {3, 51}} G4,1 − {{2, 42} , {1, 61}} G4,1 − {{2, 42}}

Figure 11. The six non-isomorphic proper subgraphs of G4,1 that belong to
S3
2(K6) (and thus are 4-minimal)

By Lemma 7(ii) again, every graph in S2
2 (K5) that is a subgraph of G3,2 is 3-minimal. Fig-

ure 12 illustrates G3,2 (top left) and its five non-isomorphic proper subgraphs that belong to
S2
2 (K5). Notice that one of these graphs (top right of Figure 12) is isomorphic to G3,1, the first

3-minimal graph discovered in [EMN06].
We close the section by showing that there are no 3-minimal graphs with fewer edges than

G3,1.

Proposition 27. Suppose G is a 3-minimal graph. Then |E(G)| ≥ 14.

Proof. Since G is 3-minimal, there must exist vertex v0 where r+(G⊖v0) = 2. This implies that
|V (G⊖ v0)| ≥ 6, and thus deg(v0) ≤ 2. Since ℓ-minimal graphs cannot have cut vertices, we see
that deg(v0) = 2 and |V (G⊖ v)| = 6, and so G⊖ v is isomorphic to either G2,1 (8 edges) or G2,2

(9 edges).
Let v1, v2 be the two neighbours of v0, and let A := {v0, v1, v2} and B := V (G) \ A. Observe

that

(9) |E(G)| = δ(A) + δ(B) + δ(A,B).



22 YU HIN (GARY) AU AND LEVENT TUNÇEL
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G3,2 − {{2, 42}} G3,2 − {{2, 41} , {3, 52}} G3,2 − {{2, 42}}

Figure 12. The graph G3,2 (top left) and its five non-isomorphic proper sub-
graphs that belong to S2

2(K5) (and thus are 3-minimal)

Since |E(G)| ≤ 13, δ(A) = 2, and δ(B) ≥ 8, we obtain δ(A,B) ≤ 3. Again, G being 3-minimal
implies that deg(v1),deg(v2) ≥ 2, and so we obtain that 2 ≤ δ({v1} , B)+ δ({v2} , B) ≤ 3. Thus,
we may assume without loss of generality that δ({v1} , B) = 1, and let u be the only neighbour
of v1 in B.

If δ({v2} , B) = 1, then u, v1, v0, v2 form a sparse path of length 3 (with deg(v1) = deg(v0) =
deg(v2) = 2), and Proposition 21 implies that G is not 3-minimal. Now suppose δ({v2} , B) = 2.
This means that δ(A,B) = 3, and so from (9) we know that |E(G)| = 13, δ(B) = 8, and G−A

is indeed isomorphic to G2,1 and not G2,2.
Next, since r+(G) = 3, we obtain that r+(G−u) ≥ 2. However, notice that v0 is a cut vertex

in G−u. Thus, if we let A′ := {u, v1, v0} and B′ := V (G) \A′, then we see that r+(G−A′) ≥ 2.
Since G−A′ has 6 vertices, it must be isomorphic to G2,1 or G2,2. Thus, we see that δ(B′) ≥ 8.
Also, δ(A′) = 2 and

δ(A′, B′) = δ({v0} , B
′) + δ({u} , B′) = 1 + (deg(u)− 1) = deg(u).

Since 13 = |E(G)| = δ(A′) + δ(A′, B′) + δ(B′), we obtain that deg(u) = δ(A′, B′) = 3, and
δ(B′) = 8. Thus, G − A′ is also isomorphic to G2,1 and not G2,2. For both G − A and G − A′

to be isomorphic to G2,1, v2 must be adjacent to the two neighbours of u in G⊖ v0. Thus, G is
isomorphic to the graph shown in Figure 13.

However, notice that G − w has LS+-rank 1, which contradicts r+(G) = 3. This completes
the proof. �
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wv2v0

v1

u

A′ B′

A

B

Figure 13. Illustrating the proof of Proposition 27

7. Revisiting Hk and constructing sparse graphs with high LS+-rank

In this section, we revisit the graphs Hk defined in Section 1, and obtain other related graphs
with high LS+-ranks by applying some of our results on vertex stretching. First, we point out
that the LS+-rank lower bound in Theorem 2 also applies to some particular subgraphs of Hk.
For every k ≥ 3, define

H ′
k := Hk − {10, 12, 20, 21} .

11 22
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11 22

31

30324140

42

11 22

31
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32

41

40

42

51

50

52

H ′
3 H ′

4 H ′
5

Figure 14. Several graphs in the family H ′
k

Figure 14 illustrates the graphs H ′
k for k = 3, 4, 5. Notice that H ′

k ∈ Sk−2
2 (Kk) for all k ≥ 3

— this is apparent if one takes the drawings of H ′
k from Figure 14 and relabels the vertices 11

and 22 by 1 and 2 respectively. Then we have the following.

Proposition 28. For every k ≥ 3, r+(H
′
k) ≥

3k
16 .

Proof. For convenience, let p :=
⌈
3k
16

⌉
− 1 throughout this proof. Also, given a, b ∈ R, we define

the vector wk(a, b) ∈ R
V (Hk) such that

[wk(a, b)]j :=

{
a if j ∈ {i1, i2 : i ∈ [k]};

b if j ∈ {i0 : i ∈ [k]}.
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In [AT23], it was shown that there exists real numbers a, b where wk(a, b) is contained in LSp+(Hk)
and violates the inequality

(10) wk(k − 1, k − 2)⊤x ≤ k(k − 1),

which is valid for STAB(Hk) [AT23, Lemma 8].

Now let wk(a, b)
′ ∈ R

V (H′
k
) be the vector obtained from wk(a, b) by removing the four entries

that correspond to vertices which are not inH ′
k. Then by Lemma 4, we have wk(a, b)

′ ∈ LSp+(H
′
k).

On the other hand, the fact that wk(a, b) violates (10) implies that (k− 1)(2ka) + (k− 2)(kb) >
k(k − 1), which implies that

αLSp+
(H ′

k) ≥ ē⊤wk(a, b)
′ = (2k − 2)a+ (k − 2)b > k − 1.

However, since H ′
k ∈ Sk−2

2 (Kk), it follows from Lemma 19 that α(H ′
k) = k − 1. This implies

that wk(a, b)
′ ∈ LSp+(H

′
k) \ STAB(H

′
k), and that r+(H

′
k) ≥ p+ 1 ≥ 3k

16 . �

In fact, we can use the argument above to find many subgraphs of H ′
k for which the LS+-rank

lower bound given in Proposition 28 applies.

Proposition 29. Let G ∈ Sk−2(Kk) be a subgraph of H ′
k. Then r+(G) ≥ 3k

16 .

Proof. Again, let p :=
⌈
3k
16

⌉
− 1, and let G ∈ Sk−2(Kk) be a subgraph of H ′

k. Since αLSp
+
(H ′

k) >

k− 1 (as shown in the proof of Proposition 28, Lemma 7(ii) implies that αLSp
+
(G) > k− 1. But

then Lemma 19 implies that α(G) = k − 1. Thus, r+(G) ≥ p+ 1 ≥ 3k
16 . �

Given a graph G, define the edge density of G to be d(G) := |E(G)|

(|V (G)|
2 )

. For instance, d(G) = 1 for

complete graphs, and d(G) = 0 for empty graphs. An interesting contrast that has emerged in
the study of lift-and-project relaxations of the stable set polytope of graphs is that dense graphs
tend to have high lift-and-project ranks with respect to operators that produce polyhedral
relaxations, whereas graphs from both ends of the density spectrum tend to be of small lift-and-
project ranks with respect to semidefinite operators. Thus, it is interesting to note that

d(H ′
k) =

k2 − k − 1(
3k−4
2

) =
2

9
+ o(k).

It was pointed to us by a reviewer that the family of graphs H ′
k coincide with the family of

graphs Gk in [DV15, page 675]. It is very interesting that the families of graphs H ′
k have been

considered as challenging instances for other but related convex relaxations of the stable set
polytope. These graphs are also related to four graphs G8, G11, G13 and G17 considered as
minimal obstructions in [PnVZ07] to the hierarchies discussed there which are related to the
hierarchy proposed in [dKP02]. The latter four graphs are related to our family H ′′

k below.
These connections raise some more hope that some of our techniques and approaches in this
paper may be useful for analyzing other lift-and-project operators.

Moreover, it follows from Proposition 29 that the LS+-rank lower bound we showed for H ′
k

also applies for many subgraphs of H ′
k with lower edge densities. For an example, given k ≥ 3,

we define the graph H ′′
k where V (H ′′

k ) := V (H ′
k), with E(H ′′

k ) consisting of the following edges:

(i) {11, 22};
(ii) {11, i2} , {22, i1} , {i0, i1}, and {i0, i2} for every i ∈ {3, . . . , k};
(iii) {i2, j1} for all i, j ∈ {3, . . . , k} where (j − i) mod (k − 2) < k−2

2 ;

(iv) {i2, j1} for all i, j ∈ {3, . . . , k} where j − i = k−2
2 .
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Observe that (iv) only contributes edges when k is even. Also, for every k ≥ 3, notice that H ′′
k is

a subgraph of H ′
k, and that H ′′

k ∈ Sk−2(Kk) (see Figures 15 and 16, respectively, for drawings of

H ′′
5 and H ′′

6 ). Furthermore, H ′′
k has the fewest edges among all graphs in Sk−2(Kk). To see this,

suppose we start with a complete graph Kk with vertex labels 11, 22, 3, 4, . . . , k, and stretch the
vertices 3, 4, . . . , k to obtain a graph G ∈ Sk−2(Kk). If we define the sets S1 := {11} , S2 := {22},
and Si := {i0, i1, i2} for all i ∈ {3, . . . , k}, then there must be at least one edge in G joining Si

and Sj for all distinct i, j ∈ [k]. To minimize the number of edges in G, one can ensure that the
sets A1, A2 are disjoint in each vertex stretching operation. This would result in a graph with
exactly one edge joining Si, Sj for all distinct i, j ∈ [k], which is indeed the case for H ′′

k .

It is easy to check that |E(H ′′
k )| =

k2+3k−8
2 , and thus d(H ′′

k ) =
1
9 + o(k). Thus, we see that

there are many subgraphs of H ′
k with edge densities between 1

9 and 2
9 for which the rank lower

bound in Proposition 29 applies.
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Figure 15. H ′
5 (left), H ′′

5 (centre), and another subgraph of H ′
5 in S3(K5) with

the fewest possible edges (right)

Finally, we point out that we can further stretch the vertices of H ′′
k to obtain very sparse

graphs with arbitrarily high LS+-ranks. Given a graph G and a vertex v ∈ V (G), define

w(v) :=

{
1 if deg(v) ≤ 3;

deg(v)− 1 if deg(v) ≥ 4.

We also define w(G) :=
∑

v∈V (G) w(v). Then we have the following.

Lemma 30. For every graph G, there exists a graph H that can be obtained from G by a sequence
of vertex stretching operations where deg(v) ≤ 3 for all v ∈ V (H), and |V (H)| ≤ w(G).

Proof. First, if every vertex in G has degree at most 3, then H = G suffices, so we now assume
there exists v ∈ V (G) with deg(v) ≥ 4. Next, we define

w1(G) := | {v ∈ V (G) : deg(v) ≥ 4} |,

w2(G) :=
∑

i∈V (G)

max {deg(i)− 3, 0} .

Then w(G) = |V (G)|+w1(G) +w2(G) for every graph G. It is helpful to think of w2(G) as the
total “excess” vertex degree in G, and w2(G) = 0 if and only if deg(v) ≤ 3 for all v ∈ V (G).
Now notice that

• If v ∈ V (G) has deg(v) = 4, we can 2-stretch it with |A1| = |A2| = 2. In this case, we
obtain H ∈ S(G) with |V (H)| = |V (G)|+2, w1(H) = w1(G)−1, and w2(H) = w2(G)−1.
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• If v ∈ V (G) has deg(v) = 5, we can 3-stretch it with |A1| = |A2| = 2 and |A3| = 1.
In this case, we obtain H ∈ S(G) with |V (H)| = |V (G)| + 3, w1(H) = w1(G) − 1, and
w2(H) = w2(G)− 2.

• If v ∈ V (G) with deg(v) = p ≥ 6, we can 3-stretch it with |A1| = |A2| = 2 and
|A3| = p−4. In this case, we obtainH ∈ S(G) with |V (H)| = |V (G)|+3, w1(H) ≤ w1(G),
and w2(H) = w2(G) − 3. (More precisely, notice that w1(H) = w1(G) − 1 if p = 6 and
w1(H) = w1(G) if p ≥ 7.)

In all cases, we see that given a graph G with w2(G) > 0, we can apply a stretching operation
to obtain H ∈ S(G) such that w(H) ≤ w(G) and w2(H) < w2(G). Iterating this process would
result in a graph H with w1(H) = w2(H) = 0, which would satisfy |V (H)| = w(H) ≤ w(G). �

Then we have the following.

Theorem 31. For every k ≥ 5, there exists a graph G on k2 − 4 vertices such that deg(i) ≤ 3
for every i ∈ V (G), and r+(G) ≥ r+(H

′′
k ).

Proof. Given k ≥ 5, consider the graph H ′′
k . Notice that deg(11) = deg(22) = k − 1. Moreover,

for every i ∈ {3, . . . , k}, we have deg(i0) = 2, deg(i1),deg(i2) ≥ 3, and deg(i1)+deg(i2) = k+1.
Thus, using notation from the proof of Lemma 30, we obtain that |V (H ′′

k )| = 3k−4, w1(H
′′
k ) ≤

2k − 2, and w2(H
′′
k ) = k2 − 5k + 2 (as each of 11, 22 contributes k − 4 to the sum, while i1 and

i2 together contribute k− 5 for every i ∈ {3, . . . , k}). Therefore, w(H ′′
k ) ≤ k2 − 4. Thus, we can

apply Lemma 30 to obtain a graph G from stretching vertices of H ′′
k where |V (G)| ≤ k2 − 4 and

deg(v) ≤ 3 for all v ∈ V (G). Since stretching a vertex cannot decrease the LS+-rank of a graph
(Proposition 13), the claim follows. �

Note that the bound w1(H
′′
k ) ≤ 2k−2 is not tight for k = 5 and k = 6. In those cases, we can

obtain a yet better bound as w(H ′′
5 ) = 15 and w(H ′′

6 ) = 28. Figure 16 illustrates H ′′
6 (left), and

a stretched graph with w(H ′′
6 ) = 28 vertices which has maximum degree 3 (right). Note that we

suppressed the vertex labels in this figure to reduce cluttering.

Figure 16. H ′′
6 (left), and a 28-vertex graph with maximum degree 3 obtained

from stretching H ′′
6 (right)

For example, Figure 16 illustrates H ′′
6 and one possible graph obtained from successively

stretching vertices of degree greater than 3 until there are no such vertices. Note that we
suppressed the vertex labels in this figure to reduce cluttering.

Also, since r+(H
′′
k ) = Θ(k), it follows from Theorem 31 that there exists a family of graphs

G with maximum degree 3 where r+(G) = Ω(
√

|V (G)|). This bound asymptotically matches
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the previously known bound achieved by line graphs of odd cliques, whose vertex degrees grow
without bound.

8. Some Future Research Directions

In this section, we mention some follow-up questions to our work in this manuscript that
could lead to interesting future research.

Problem 32. Is there an ℓ-minimal graph G in Sℓ−1(Kℓ+2) for all ℓ ∈ N?

Results from [LT03, EMN06] show that the answer is “yes” for ℓ ∈ {1, 2, 3}. Our 4-minimal
graph G4,1 shows that this is also true for ℓ = 4. Does the pattern continue for larger ℓ? And
more importantly, how can we verify the LS+-rank of these graphs analytically, as opposed to
primarily relying on specific numerical certificates?

Problem 33. Given ℓ ∈ N, what are the maximum and minimum possible edge densities of
ℓ-minimal graphs?

Given ℓ ∈ N, let d+(ℓ) (resp. d−(ℓ)) be the maximum (resp. minimum) possible edge density
of an ℓ-minimal graph. It was previously known that d+(1) = d−(1) = 1 (attained by the
3-cycle), d+(2) = 3

5 (G2,2), d
−(2) = 8

15 (G2,1), and d−(3) ≤ 7
18 (G3,1). In this work we showed

that d−(3) = 7
18 (Proposition 27) and d+(3) ≥ 4

9 (G3,2). For ℓ = 4, the discovery of G4,1 and

the other 4-minimal graphs presented in Figure 11 show that d−(4) ≤ 7
22 and d+(4) ≥ 4

11 . Can
we prove tight bounds for d+(ℓ) and/or d−(ℓ) in general?

Problem 34. How many non-isomorphic ℓ-minimal graphs are there for each ℓ ≥ 1?

Given ℓ ∈ N, let c(ℓ) denote the number of non-isomorphic ℓ-minimal graphs. We know that
c(1) = 1 (the triangle) and c(2) = 2 (G2,1 and G2,2). We showed in Section 6 that c(3) ≥ 6 (G3,2

and its subgraphs in Figure 12) and c(4) ≥ 7 (G4,1 and its subgraphs in Figure 11). Does c(ℓ)
grow without bound as ℓ increases? If so, at what rate asymptotically?

Problem 35. What is the fastest growing function f such that there exist graphs G with
maximum degree at most three and r+(G) = Θ(f(|V (G)|))?

Problem 36. What is the fastest growing function f such that there exist cubic graphs G with
r+(G) = Θ(f(|V (G)|))?

We proved in Section 7 that there exist very sparse graphs (maximum degree at most three)

with r+(G) = Θ(
√

|V (G)|). Since all graphs G with maximum degree at most two satisfy
r+(G) ≤ 1, Problems 35 and 36 are really about the sparsest graphs with high LS+-ranks.

Problem 37. What can we say about the lift-and-project ranks of graphs for other positive
semidefinite lift-and-project operators? To start with some concrete questions for this research
problem, what are the solutions of Problems 32-36 when we replace LS+ with Las,BZ+,Θk, or
SA+? (For Problem 32, we may have different sets S, based on different graph operations, for
different lift-and-project operators.)

After LS+, many stronger semidefinite lift-and-project operators (such as Las [Las01],
BZ+ [BZ04], Θk [GPT10], and SA+ [AT16]) have been proposed. While these stronger operators
are capable of producing tighter relaxations than LS+, these SDP relaxations can also be more
computationally challenging to solve. For instance, while the LSk+-relaxation of a set P ⊆ [0, 1]n

involves O(nk) PSD constraints of order O(n), the operators Lask,BZk
+ and SAk

+ all impose

one (or more) PSD constraint of order Ω(nk) in their formulations. We have already briefly
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mentioned at the end of Section 3 that some of our tools for analyzing LS+ relaxations can
be extended to these other operators. More generally, it would be interesting to determine the
corresponding properties of graphs which are minimal with respect to these stronger lift-and-
project operators.
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[AT16] Yu Hin Au and Levent Tunçel. A comprehensive analysis of polyhedral lift-and-project methods.
SIAM J. Discrete Math., 30(1):411–451, 2016.
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Appendix A. Proofs of Lemmas 38, 39, and 40

The following lemmas provide the deferred technical details from the proof of Theorem 25.

To reduce cluttering, given S ⊆ [n] we will let χ̂S denote the vector

[
1
χS

]
∈ R

n+1.

Lemma 38. Let Y0 be as defined in the proof of Theorem 25. Then Y0(e0−e1) ∈ cone(LS2+(G4,1)).

Proof. First, notice that [Y0(e0 − e1)]1 = 0. Thus, let G′ := G4,1 − 1 and v be the restriction

of Y0(e0 − e1) to the coordinates indexed by cone(LS2+(G
′)). Then, by Lemma 4, it suffices to

show that v ∈ cone(LS2+(G
′)). Consider the matrix

Y2 :=









































2 3 41 40 42 51 50 52 61 60 62

74660 25340 25340 16500 57518 8662 8662 57518 16500 16500 49680 16500
25340 25340 0 0 25340 0 0 17166 8174 8363 16977 0
25340 0 25340 8174 17166 0 0 25340 0 0 16977 8363
16500 0 8174 16500 0 8320 342 16158 0 0 14067 2433
57518 25340 17166 0 57518 0 7678 41360 16158 16494 34971 14067
8662 0 0 8320 0 8662 984 7678 342 0 8662 0
8662 0 0 342 7678 984 8662 0 8320 0 8662 0
57518 17166 25340 16158 41360 7678 0 57518 0 14067 34971 16494
16500 8174 0 0 16158 342 8320 0 16500 2433 14067 0
16500 8363 0 0 16494 0 0 14067 2433 16500 0 8137
49680 16977 16977 14067 34971 8662 8662 34971 14067 0 49680 0
16500 0 8363 2433 14067 0 0 16494 0 8137 0 16500









































.

We claim that Y2 ∈ L̂S
2

+(G
′). First, one can verify that Y2 � 0 (a UV -certificate is provided

in Table 1). Also, notice that the function f2 (restricted to V (G′)) is an automorphism of G′.
Moreover, observe that for all i, j ∈ V (G′), Y2[i, j] = Y2[f2(i), f2(j)]. Thus, by symmetry, it only
remains to prove the conditions Y2ei, Y2(e0 − ei) ∈ cone(LS+(G

′)) for i ∈ {2, 41, 40, 42, 61, 60}.
First, notice that

• [Y2e40 ]0 = [Y2e40 ]40 , [Y2e40 ]41 = [Y2e40 ]42 = 0, and that the following matrix certifies
that Y2e40 (with the entries corresponding to vertices 41, 40, 42 removed) belongs to
cone(LS+(G

′ ⊖ 40)).

Y21 :=





























2 3 51 50 52 61 60 62

57518 25340 17164 7678 41360 16158 16496 34970 14068
25340 25340 0 0 19057 6283 5860 19444 0
17164 0 17164 0 17164 0 0 12010 5117
7678 0 0 7678 0 7678 3125 4516 0
41360 19057 17164 0 41360 0 10718 26585 10400
16158 6283 0 7678 0 16158 5778 8385 3668
16496 5860 0 3125 10718 5778 16496 0 8910
34970 19444 12010 4516 26585 8385 0 34970 0
14068 0 5117 0 10400 3668 8910 0 14068





























• [Y2e60 ]0 = [Y2e60 ]60 , [Y2e60 ]61 = [Y2e60 ]62 = 0, and that the following matrix certifies
that Y2e60 (with the entries corresponding to vertices 61, 60, 62 removed) belongs to
cone(LS+(G

′ ⊖ 60)).
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Y22 :=





























2 3 41 40 42 51 50 52

49680 16977 16977 14068 34970 8662 8662 34970 14068
16977 16977 0 0 16977 0 0 11129 5848
16977 0 16977 5848 11129 0 0 16977 0
14068 0 5848 14068 0 8220 442 13626 0
34970 16977 11129 0 34970 0 7578 21344 13626
8662 0 0 8220 0 8662 1084 7578 442
8662 0 0 442 7578 1084 8662 0 8220

34970 11129 16977 13626 21344 7578 0 34970 0
14068 5848 0 0 13626 442 8220 0 14068





























• [Y2(e0−e2)]2 = 0, and that the following matrix certifies that Y2(e0−e2) (with the entry
corresponding to vertex 2 removed) belongs to cone(LS+(G

′ − 2)).

Y23 :=





































3 41 40 42 51 50 52 61 60 62

49320 25340 16500 32178 8662 8662 40354 8324 8137 32703 16500
25340 25340 6118 19222 0 0 25340 0 0 19368 5972
16500 6118 16500 0 8107 595 15905 0 2465 10494 6006
32178 19222 0 32178 0 7688 24409 7769 5672 21928 10250
8662 0 8107 0 8662 974 7688 555 0 5933 2729
8662 0 595 7688 974 8662 0 8067 70 8592 0
40354 25340 15905 24409 7688 0 40354 0 7763 24111 16243
8324 0 0 7769 555 8067 0 8324 374 7950 257
8137 0 2465 5672 0 70 7763 374 8137 0 8067
32703 19368 10494 21928 5933 8592 24111 7950 0 32703 0

16500 5972 6006 10250 2729 0 16243 257 8067 0 16500





































• [Y2(e0 − e41)]41 = 0, and that the following matrix certifies that Y2(e0 − e41) (with the
entry corresponding to vertex 41 removed) belongs to cone(LS+(G

′ − 41)).

Y24 :=





































2 3 40 42 51 50 52 61 60 62

58160 25340 17164 57518 342 8320 41360 16500 16496 35612 14068
25340 25340 0 25228 0 0 19229 6068 5788 19552 0
17164 0 17164 17063 0 0 17055 0 0 12187 4977
57518 25228 17063 57518 0 7946 41199 16198 16378 35219 13979
342 0 0 0 342 340 1 190 0 340 1
8320 0 0 7946 340 8320 0 8190 3046 5274 0
41360 19229 17055 41199 1 0 41360 0 10763 26612 10417
16500 6068 0 16198 190 8190 0 16500 5653 8919 3601
16496 5788 0 16378 0 3046 10763 5653 16496 0 9091
35612 19552 12187 35219 340 5274 26612 8919 0 35612 0
14068 0 4977 13979 1 0 10417 3601 9091 0 14068





































Also, notice that Y21e0 = Y21(e50 + e52). Thus, if we let Y ′
21 be the matrix obtained from Y21 by

removing the 0th row and column, then we see that Y ′
21 � 0 ⇒ Y21 � 0. The UV -certificates of

Y ′
21, Y22, Y23, and Y24 are provided in Table 1.
Next, observe that

Y2e2 ≤ 8291χ̂{2,40,50,61} + 8873χ̂{2,40,50,60} + 72χ̂{2,40,52,61} + 8104χ̂{2,40,52,60},

Y2e41 ≤ 6365χ̂{3,41,50,60} + 1811χ̂{3,41,50,62} + 342χ̂{41,42,51,60} + 7361χ̂{41,42,50,60}

+ 617χ̂{41,42,50,62} + 4χ̂{41,50,61,62},

Y2e42 ≤ 642χ̂{41,42,51,60} + 7678χ̂{41,42,50,60} + 342χ̂{42,51,52,60},

Y2e61 ≤ 6764χ̂{2,40,50,61} + 1599χ̂{2,40,52,61} + 4χ̂{41,50,61,62} + 7300χ̂{40,50,61,62}

+ 833χ̂{40,52,61,62},

Y2(e0 − e40) ≤ 7254χ̂{3,41,50,60} + 1004χ̂{3,41,50,62} + 489χ̂{41,42,51,60} + 6472χ̂{41,42,50,60}
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+ 1291χ̂{41,42,50,62} + 137χ̂{41,50,61,62} + 495χ̂{42,51,52,60},

Y2(e0 − e42) ≤ 832χ̂{2,40,50,61} + 3414χ̂{2,40,50,60} + 496χ̂{2,40,52,61} + 919χ̂{2,40,52,60}

+ 5480χ̂{3,41,50,60} + 2094χ̂{3,41,50,62} + 2827χ̂{3,40,50,60} + 1634χ̂{3,40,50,62}

+ 700χ̂{41,50,61,62} + 526χ̂{40,51,52,61} + 1070χ̂{40,5152,60} + 690χ̂{40,50,61,62}

+ 455χ̂{40,52,61,62} + 126χ̂{42,51,52,60} +
44735

57518
Y2e40 ,

Y2(e0 − e61) ≤ 275χ̂{2,40,50,60} + 186χ̂{3,41,50,60} + 2333χ̂{3,41,50,62} + 186χ̂{3,40,50,60}

+ 5933χ̂{3,40,50,62} + 140χ̂{41,42,50,62} + 227χ̂{40,51,52,60} +
48880

49680
Y2e60 ,

Y2(e0 − e60) ≤ 7474χ̂{2,40,50,61} + 978χ̂{2,40,52,61} + 978χ̂{3,41,50,62} + 7474χ̂{3,40,50,62}

+ 1454χ̂{41,50,61,62} + 5168χ̂{40,50,61,62} + 1454χ̂{40,52,61,62}.

Since all incidence vectors above correspond to stable sets in G′, and we already showed earlier
that Y2e40 , Y2e60 ∈ cone(LS+(G

′)), we obtain that all the vectors above belong to cone(LS+(G
′)).

Thus, we conclude that Y0(e0 − e1) ∈ cone(LS2+(G4,1)). �

Lemma 39. Let Y0 be as defined in the proof of Theorem 25. Then Y0e60 ∈ cone(LS2+(G4,1)).

Proof. First, notice that [Y0e60 ]0 = [Y0e60 ]60 , and [Y0e60 ]61 = [Y0e60 ]62 = 0. Thus, let G′ :=
G4,1 ⊖ 60 and v be the restriction of Y0e60 to the coordinates indexed by cone(LS2+(G

′)). Then,

by Lemma 4, it suffices to show that v ∈ cone(LS2+(G
′)). Consider the matrix

Y1 :=

































1 2 3 41 40 42 51 50 52

75020 25340 17502 17502 15419 51150 15911 15911 51150 15419
25340 25340 0 0 0 17400 7940 7940 17400 0
17502 0 17502 0 0 17502 0 0 9571 7931
17502 0 0 17502 7931 9571 0 0 17502 0
15419 0 0 7931 15419 0 7488 396 14993 0
51150 17400 17502 9571 0 51150 0 15485 27920 14993
15911 7940 0 0 7488 0 15911 396 15485 396
15911 7940 0 0 396 15485 396 15911 0 7488
51150 17400 9571 17502 14993 27920 15485 0 51150 0
15419 0 7931 0 0 14993 396 7488 0 15419

































.

We claim that Y1 ∈ L̂S
2

+(G
′). First, one can verify that Y1 � 0 (a UV -certificate is provided

in Table 1). Also, notice that the function f2 (restricted to V (G′)) is an automorphism of G′.
Moreover, observe that for all i, j ∈ V (G′), Y1[i, j] = Y1[f2(i), f2(j)]. Thus, by symmetry, it only
remains to prove the conditions Y1ei, Y1(e0 − ei) ∈ cone(LS+(G

′)) for i ∈ {1, 2, 41, 40, 42}.
First, notice that [Y1e40 ]0 = [Y1e40 ]40 , [Y1e40 ]41 = [Y1e40 ]42 = 0, and that the following matrix

certifies that Y1e40 (with the entries corresponding to vertices 41, 40, 42 removed) belongs to
cone(LS+(G

′ ⊖ 40)). (See Table 1 for a UV -certificate.)

Y11 :=





















1 2 3 51 50 52

51150 17400 17502 9571 15485 27920 14993
17400 17400 0 0 7544 9856 0
17502 0 17502 0 0 10450 7052
9571 0 0 9571 0 9571 0
15485 7544 0 0 15485 0 7941
27920 9856 10450 9571 0 27920 0
14993 0 7052 0 7941 0 14993





















Now consider the following vectors:
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1 2 3 41 40 42 51 50 52
z(1) := [ 51150 17400 17502 9571 0 51150 0 5485 27920 14933 ]⊤

z(2) := [ 51150 17502 17400 9571 0 51150 0 14933 27920 15485 ]⊤

z(3) := [ 57518 25340 0 17164 14068 34970 16496 16158 41360 7678 ]⊤

z(4) := [ 49680 0 16977 169771 40683 4970 8662 8662 34970 14068 ]⊤

Notice that z(1) ∈ cone(LS+(G
′)) follows from Y1e40 ∈ cone(LS+(G

′)) as shown above. Then

it follows from the symmetry of G′ that z(2) ∈ cone(LS+(G
′)) as well. z(3), z(4) ∈ cone(LS+(G

′))
follows respectively from Y2e40 , Y2e60 ∈ cone(LS+(G4,1 − 1)), as shown in Lemma 38. Next,
observe that

Y1e1 ≤ 17400χ̂{1,40,50} + 7940χ̂{1,42,51},

Y1e2 ≤ 9571χ̂{2,40,50} + 7931χ̂{2,40,52},

Y1e41 ≤ 7931χ̂{3,41,50} + 396χ̂{41,42,51} + 7092χ̂{41,42,50},

Y1e42 ≤ 414χ̂{1,40,51} + 7523χ̂{2,40,50} + 7974χ̂{3,40,50},

Y1(e0 − e1) ≤ 874χ̂{2,40,50} + 3160χ̂{2,40,52} + 3160χ̂{3,41,50} + 874χ̂{3,40,50} + 1100χ̂{41,42,50}

+ 1100χ̂{40,51,52} +
39412

49680
z(4),

Y1(e0 − e2) ≤ 1729χ̂{1,40,51} + 6165χ̂{1,40,50} + 626χ̂{1,42,51} + 1749χ̂{1,42,50}

+ 4298χ̂{3,41,50} + 2999χ̂{3,40,50} + 1009χ̂{41,42,51} + 1751χ̂{41,42,50}

+ 1959χ̂{40,51,52} + 971χ̂{42,51,52} +
34235

57518
z(3) + 27χ̂∅,

Y1(e0 − e41) ≤ 498χ̂{1,40,51} + 2500χ̂{1,40,50} + 639χ̂{1,42,51} + 6832χ̂{1,42,50}

+ 1613χ̂{2,40,50} + 1022χ̂{2,40,52} + 1421χ̂{3,40,50} + 478χ̂{40,51,52}

+ 952χ̂{42,51,52} +
20799

51150
z(1) +

22819

51150
z(2) + 28χ̂∅,

Y1(e0 − e40) ≤ 452χ̂{1,40,51} + 7504χ̂{2,40,50} + 7931χ̂{3,41,50} + 7955χ̂{3,40,50} + 28χ̂∅,

Y1(e0 − e42) ≤ 234χ̂{1,40,51} + 195χ̂{2,40,52} + 7935χ̂{3,41,50} + 93χ̂{3,40,50}

+
46278

51150
z(1) +

4354

51150
z(2) + 20χ̂∅.

Since all incidence vectors above correspond to stable sets in G′, we obtain that all the vectors
above belong to cone(LS+(G

′)). Thus, we conclude that Y0e60 ∈ cone(LS2+(G4,1)). �

Lemma 40. Let Y0 be as defined in the proof of Theorem 25. Then Y0(e0−e41) ∈ cone(LS2+(G4,1)).

Proof. For convenience, let G := G4,1 throughout this proof. Using Y0e60 ∈ cone(LS2+(G)) from
Lemma 39 and the symmetry of G, we know that the vector

1 2 3 41 40 42 51 50 52 61 60 62
z := [ 75020 17502 25340 17502 0 75020 0 15419 51150 15911 15911 51150 15419 ]⊤



RANK-MONOTONE OPERATIONS AND MINIMAL GRAPHS LS+ 33

belongs to cone(LS2+(G)). Now observe that

Y0(e0 − e41) ≤
2

3
z +

1

3

(
7726χ̂{1,40,51,60} + 17105χ̂{1,40,50,60} + 16187χ̂{1,42,50,60}

+ 8509χ̂{2,40,50,61} + 8324χ̂{2,40,50,60} + 8509χ̂{2,40,52,60} + 9486χ̂{3,40,50,60}

+ 8017χ̂{3,40,50,62} + 7403χ̂{40,50,61,62} + 9170χ̂{42,51,52,60} + 24χ̂∅

)
.

Notice that all incidence vectors above correspond to stable sets in G. Since cone(LS2+(G)) is

a lower-comprehensive convex cone, it follows that Y0(e0 − e41) ∈ cone(LS2+(G)). �

Finally, we provide in Table 1 the UV -certificates of all PSD matrices used in Theorem 25
and Lemmas 38, 39, and 40.



34 YU HIN (GARY) AU AND LEVENT TUNÇEL

U V

Y0




−2 1 1 1 1 1 1 1 1 1 1 1 1
0 114 −8 −107 152 27 −114 202 411 348 −353 −440 −234
0 −57 128 −71 −320 −492 −335 292 270 69 29 221 268

−361 −710 −711 −711 −88 434 −88 −88 434 −88 −89 434 −87
0 −135 521 −387 477 230 31 395 −171 −771 −872 −60 741
0 525 −145 −379 731 −65 −873 −779 −167 409 48 231 462
0 0 0 0 −984 0 984 −984 0 984 −984 0 984

820 −787 −788 −787 1222 −569 1222 1221 −569 1221 1222 −569 1222
0 1693 −2745 1052 −901 857 −628 1238 −329 −652 −337 −529 1280
0 −2192 −370 2562 909 116 −1116 326 −801 1102 −1235 685 14
0 1845 −595 −1250 308 −990 1042 1707 −2079 1128 −2014 3069 −2170
0 −378 1787 −1409−2148 2972 −1904 1341 −2343 1854 808 −629 50

8215 2154 2154 2154 1246 6313 1246 1246 6313 1246 1246 6313 1246







11050 1142 1601 781 −196 621 −196 624 621 624 −557 621 165
1142 15917 −509 −499 −1882 3390 −156 −27 432 −915 −1711 −214 1694
1601 −509 12805 −677 958 −1473 1373 −587 −70 59 −379 235 227
781 −499 −677 14384 1269 58 20 75 1698 −1891 −868 901 703
−196 −1882 958 1269 13455 −739 −38 −706 1544 −297 −936 409 −415
621 3390 −1473 58 −739 11866 −186 540 −364 186 −530 381 544
−196 −156 1373 20 −38 −186 8568 −1358 220 469 156 −1144−163
624 −27 −587 75 −706 540 −1358 10158 1776 −61 476 −1550 172
621 432 −70 1698 1544 −364 220 1776 11890 −1026 1209 198 23
624 −915 59 −1891 −297 186 469 −61 −1026 13347 −1927 −193 1281
−557 −1711 −379 −868 −936 −530 156 476 1209 −1927 11530 −292 43
621 −214 235 901 409 381 −1144−1550 198 −193 −292 9703 1337
165 1694 227 703 −415 544 −163 172 23 1281 43 1337 8773




Y2




−2 1 1 0 0 1 1 0 0 1 1 0
0 1 −2 72 70 −5 5 −70 −72 0 0 0

−67 −50 −51 82 87 −35 −35 88 82 −57 −58 −56
−56 −129 −129 35 −44 −250−250 −44 35 142 278 143
0 −110 110 −110 141 384 −384−141 111 52 0 −52
0 216 −216 −18 25 125 −125 −25 18 −567 0 567

−144 −423 −423−424 255 253 252 255 −424 −48 263 −48
362 −556 −556 538 −221 531 531 −221 538 546 −248 546
0 928 −928 442 −429 492 −492 429 −442 429 0 −429

−62 82 82 −588 568 −470−470 568 −588 1034 −1489 1034
0 −1020 1021 1031 −1020 432 −432 1020 −1031−371 0 371

3377 1203 1203 673 2686 338 338 2686 673 717 2294 717







4918 41 −26 −35 −29 −89 −233 38 −35 −130 576 −9
41 6219 172 148 1281 −511 448 −1143 908 −675 173 −80
−26 172 4074 −79 −16 399 −532 329 1079 54 115 −922
−35 148 −79 5725 −112 974 −28 −20 201 −548 953 −344
−29 1281 −16 −112 4852 −1238−471 −31 −79 −27 −22 −1183
−89 −511 399 974 −1238 5976 −273 −691 12 −533 26 −469
−233 448 −532 −28 −471 −273 6481 −948 934 −803 289 −295
38 −1143 329 −20 −31 −691 −948 4677 −53 −1083 36 −14
−35 908 1079 201 −79 12 934 −53 5504 −279 953 −613
−130 −675 54 −548 −27 −533 −803−1083−279 4546 77 −53
576 173 115 953 −22 26 289 36 953 77 9521 −142
−9 −80 −922−344−1183 −469 −295 −14 −613 −53 −142 4375




Y ′
21




−44 −1 0 −20 −1 0 0 0
233 22 465 229 20 −410 −389 86
385 793 −241 −149 305 244 −460 −545
439 137 −877 −360 468 −700 −18 959
1565 −1333−1075 528 −1287 508 −788 −327
655 −1159 930 −530 1923 1995 −641 1022

−1375 1105 −499 1255 −949 1180 −1505 1780
2466 1620 307 4002 775 986 3444 835







3758 −873 −519 −1 636 9 −429 −479
−873 7118 −18 2774 −91 −423−1334−135
−519 −18 1822 17 282 −78 70 −402
−1 2774 17 8485 −2504−708 22 687
636 −91 282 −2504 6178 −107 586 225
9 −423 −78 −708 −107 3903 −635 −904

−429−1334 70 22 586 −635 5449 602
−479 −135 −402 687 225 −904 602 5052




Y22




5 −3 −3 −1 −1 −3 −3 −1 −1
−1 −12 9 8011 8038 −189 190 −8035 −8009

−7048 −7604 −7605 6746 7345 −5664 −5664 7345 6752
−1 8338 −8339 10389 −11032−29236 29235 11032 −10389
5767 23052 23052 28635 −19951−26290−26290−19952 28635
0 82739 −82739 16909 −15913 35612 −35612 15913 −16909

32757 −40385−40385 61612 −35034 61878 61878 −35034 61613
0 55744 −55744−88585 87206 −48485 48485 −87206 88585

239799 88332 88332 60363 177671 34664 34664 177671 60363







245290 67346 43642 33983 37 8790 67640 11795 6716
67346 262681 −47235−60196 1386 −15331−35125 −4652 21255
43642 −47235 230858 −23610 −7313 −78942 460 18674 −1875
33983 −60196−23610 293133 −56794 −5587 28035 3646 3783
37 1386 −7313 −56794 116143 891 −8115 −5728 −26068

8790 −15331−78942 −5587 891 159853 −29478−14768 −1859
67640 −35125 460 28035 −8115 −29478 217945 −6899 −36239
11795 −4652 18674 3646 −5728 −14768 −6899 124459 2908
6716 21255 −1875 3783 −26068 −1859 −36239 2908 120960




Y23




−1 −1 0 0 −1 0 0 0 −1 0 0
3 0 −10 −5 −6 −1 11 −3 −6 23 24
−1 7 26 29 7 −50 −61 −4 4 18 20
−56 −71 75 74 −61 −45 63 55 −78 −15 −13
−20 −29 71 77 −26 125 −34 −186 −29 4 12
3 −6 219 −154−525 −3 −17 16 490 160 −165
71 395 245 −200−264 256 −195 248 −296−219 283

−382 1053−281 −46 −387−664 309 −650−488 157 −530
−61 135 −946 906 −666−101 25 −28 493 −776 714
25 −59 764 −724 359 −748 769 −732 442 −855 883
2625 1525 824 1782 403 373 2243 358 385 1800 822







3268 −126 −24 −112 −237 198 −265 583 192 −200 631
−126 5487 −1306 −32 22 −488 501 −233−286 8 753
−24 −1306 3523 −177 4 802 29 9 −228 −99 75
−112 −32 −177 2815 −3 −4 −57 928 47 597 −258
−237 22 4 −3 4247 119 −1336 82 −822−708 8
198 −488 802 −4 119 3240 189 165 337 −120 68
−265 501 29 −57 −1336 189 4825 96 −29 796 459
583 −233 9 928 82 165 96 3654 262 374 −122
192 −286 −228 47 −822 337 −29 262 4115 −118 199
−200 8 −99 597 −708 −120 796 374 −118 4024 −139
631 753 75 −258 8 68 459 −122 199 −139 4828




Y24




−23 −1 −1 0 0 −1 −1 −1 0 0 −1
20 7 6 −12 −25 0 −15 −19 0 5 10
−4 −1 2 44 43 −2 −42 −42 −2 −2 0
72 31 31 −119 136 21 3 6 13 7 20
−41 −70 16 −41 −1 −164 −61 26 192 188 −6
−19 −131−304 −36 25 107 83 −101 −95 203 256
−13 −170 −62 −28 16 369 166 −186 294 26 −360
82 −767 605 68 15 358 −253 330 −375 269 44
33 510 −537 20 15 373 −620 652 −252 506 −562

−222 245 337 −215 −3 −333 402 −620−773 659 −567
2058 955 634 2045 7 242 1551 501 533 1338 451







3039 256 −4 11 33 616 259 212 195 517 213
256 2748 −376 −1 −168−556 192 −60 147 −215−197
−4 −376 2699 −164 9 −114 −33 −861 7 513 −52
11 −1 −164 3056 −981−238 125 −117 651 −6 −116
33 −168 9 −981 2948 −11 −251 5 −464 102 −130
616 −556−114−238 −11 3982 71 516 145 253 −36
259 192 −33 125 −251 71 4861 −1304 80 1182 218
212 −60 −861−117 5 516 −1304 3960 18 −14 8
195 147 7 651 −464 145 80 18 2459 90 −12
517 −215 513 −6 102 253 1182 −14 90 5059 1081
213 −197 −52 −116−130 −36 218 8 −12 1081 2689




Y1




−3 1 1 1 1 1 1 1 1 1
0 0 312 −312 −663 −1314−1080 1080 1313 665
639 262 1834 1834 −1199−1101 1007 1007 −1100−1201
−573 −2813−954 −953 −1543 1304 1872 1872 1305 −1544
0 0 1938 −1939 3269 304 −1822 1822 −303 −3269
0 0 6254 −6254−1331−1182 4069 −4069 1182 1331

−2501 2818 1055 1055 −5112 3150 −4138−4138 3151 −5112
−123 −9594 4954 4954 2208 1240 −3751−3751 1240 2208
0 0 3904 −3904−6195 8605 −5528 5528 −8605 6195

22183 7784 5318 5318 4055 15768 4304 4304 15768 4055







15782 3040 944 1517 −961 810 −1074−1074 3245 −256
3040 28790 −3737 −924 −1274 561 −1625−1625 294 −3563
944 −3737 23948 −126 −1931 2745 203 −3361−4007 3326
1517 −924 −126 21978 6048 −1446 −7055 153 828 −318
−961 −1274−1931 6048 37807 −12613 −459 −3449 188 3617
810 561 2745 −1446−12613 36247 852 −2975 6408 −2004

−1074−1625 203 −7055 −459 852 18359 322 −974 2597
−1074−1625−3361 153 −3449 −2975 322 18359 1369 1267
3245 294 −4007 828 188 6408 −974 1369 32772 −4348
−256 −3563 3326 −318 3617 −2004 2597 1267 −4348 27264




Y11




−2 1 1 1 1 1 1
1218 1284 1319 2378 −1339 −3175 −1273
11 2338 −2256 −81 −4392 40 4398

−981 5772 5824 −8802−2137 −362 −2372
169 −10840 10788 −537 −4810 −823 6490
2335 1031 −1134−5111 10842 −11453 9705
26748 9331 9439 5079 7256 15899 7008







32150 −109 12752 4226 506 −460 13236
−109 21193 568 −2619−6911 −795 −2712
12752 568 20891 130 −600 863 −5224
4226 −2619 130 19072 −4217 463 −1160
506 −6911 −600 −4217 20400 2412 −2691
−460 −795 863 463 2412 32551 −3917
13236−2712−5224−1160−2691−3917 37492




Table 1. UV -certificates for matrices in the proofs of Theorem 25 and Lem-
mas 38, 39, and 40
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