
ar
X

iv
:2

31
2.

07
43

8v
1

 [
qu

an
t-

ph
]

 1
2

D
ec

 2
02

3

EFFICIENT IMPLEMENTATION OF INTERIOR-POINT METHODS FOR

QUANTUM RELATIVE ENTROPY

MEHDI KARIMI AND LEVENT TUNÇEL

Abstract. Quantum Relative Entropy (QRE) programming is a recently popular and challeng-

ing class of convex optimization problems with significant applications in quantum computing

and quantum information theory. We are interested in modern interior point (IP) methods based

on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical chal-

lenges associated with such barrier functions and the QRE cones have hindered the scalability of

IP methods. To address these challenges, we propose a series of numerical and linear algebraic

techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations

for the self-concordant barrier function, solving linear systems, and performing matrix-vector

products. We also introduce and deliberate about some interesting concepts related to QRE such

as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for per-

forming facial reduction that can significantly improve the performance of QRE programming.

Our new techniques have been implemented in the latest version (DDS 2.2) of the software pack-

age DDS. In addition to handling QRE constraints, DDS accepts any combination of several other

conic and non-conic convex constraints. Our comprehensive numerical experiments encompass

several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation ma-

trix problem, 2) using DDS for combining QRE constraints with various other constraint types,

and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting

results for several QKD protocols.

1. Introduction

In this manuscript, we consider techniques to efficiently solve convex optimization problems

involving the quantum relative entropy (QRE) cone using interior-point methods. Optimization

over the QRE cone has several applications in quantum computing such as calculating the key rate

of quantum key distribution (QKD) channels [27, 34] or calculating the quantum rate-distortion

Date: December 13, 2023.

Mehdi Karimi: Department of Mathematics, Illinois State University, Normal, IL, 61761. (e-mail:

mkarim3@ilstu.edu).

Levent Tunçel: Department of Combinatorics and Optimization, Faculty of Mathematics, University of Water-

loo, Waterloo, Ontario N2L 3G1, Canada (e-mail: levent.tuncel@uwaterloo.ca). Research of this author was

supported in part by Discovery Grants from the Natural Sciences and Engineering Research Council (NSERC) of

Canada.

1

http://arxiv.org/abs/2312.07438v1

2 KARIMI and TUNÇEL

function [6, 15]. QKD is a commercialized secure communication method that distributes a

secret key between two honest parties in the presence of an eavesdropper. The rate-distortion

function is a fundamental concept in information theory that quantifies the minimum achievable

compression rate for transmitting a source signal within a specified distortion or reconstruction

error bound [5]. The quantum relative entropy function is the matrix extension of vector relative

entropy or Kullback-Leibler (KL) divergence [22, 5, 31, 14, 3] of two vectors which is defined as

KL : Rn ⊕ R
n → R ∪ {+∞}:

KL(x, y) :=







∑n
i=1 xiln(xi)− xiln(yi), x, y ∈ R

n
+, supp(x) ⊆ supp(y)

+∞ o.w.
,(1)

where supp(x) := {i : xi 6= 0} denotes the support of x. KL divergence, mostly used to measure

the difference of two probability distributions, is an important function in statistics, information

theory, and machine learning. KL divergence is widely used in machine learning for tasks like

information retrieval, clustering, generative modeling, and variational autoencoders [7, 12]. To

define the quantum version of the KL divergence, we need the definition of the matrix extension

of a univariate function. Consider a function f : R → R ∪ {+∞} and let X ∈ H
n (Hn is

the set of n-by-n Hermitian matrices with complex entries) with a spectral decomposition X =

UDiag(λ1, . . . , λn)U
∗, where Diag returns a diagonal matrix with the given entries on its diagonal

and U∗ is the conjugate transpose of a unitary matrix U . We define the matrix extension F of f

as F (X) := UDiag(f(λ1), . . . , f(λn))U
∗. Then, we define the trace of this extension function as

Tr(F (X)) :=







Tr(UDiag(f(λ1), . . . , f(λn))U
∗) if f(λi) ∈ R, ∀i,

+∞ o.w.
(2)

For the special case of f(x) = xln(x), we use the convention that f(0) := 0, so in this special case,

Tr(F (X)) has a real value for every positive semidefinite matrix. For two matrices X,Y ∈ H
n
+,

the quantity Tr(Xln(Y)) is real if the null space of Y has no intersection with the range of X

(equivalently, range of X is contained in the range of Y). Then, we can define the quantum

relative entropy function qre : Hn ⊕H
n → R ∪ {+∞} as

qre(X,Y) :=







Tr(Xln(X)−Xln(Y)) if X,Y ∈ H
n
+ and range(X) ∩ null(Y) = ∅,

+∞ o.w.

The QRE cone is defined as the epigraph of the qre function:

QREn :=
{
(t,X, Y) ∈ R⊕H

n
+ ⊕H

n
+ : qre(X,Y) ≤ t

}
.

QRE programming concerns with optimization problems over the intersection of one or more

QRE cones with an affine subspace and potentially many other simpler convex sets. One ap-

proach to solve QRE programming is approximating it with other tractable optimization classes

such as semidefinite programming (SDP) [9, 2]. These SDP approximations are expensive and

Quantum Relative Entropy Optimization 3

do not scale well; therefore, work only for small size problems. We are interested in using mod-

ern interior-point (IP) algorithms for convex optimization based on the theory of self-concordant

(s.c.) functions and barriers [25]. After decades of successful implementation of interior-point

algorithms for optimization over symmetric cones [30, 29, 24, 20], there have been several recent

efforts to create efficient codes for handling other convex sets with available computationally

efficient self-concordant (s.c.) barriers. The available modern IP codes for solving convex opti-

mization problems (beyond symmetric cones) using s.c. barriers are: a MATLAB-based software

package Alfonso [26], a software package Hypatia in the Julia language [4], and a MATLAB-based

software package DDS [20]. DDS has some major differences from the other two, including: 1)

accepting both conic and non-conic constraints, and 2) utilizing the Legendre-Fenchel conjugate

of the s.c. barriers when available.

To apply modern IP methods to optimization problems involving the QRE cone or any other

convex set, a computationally efficient s.c. barrier in needed. DDS has been using the following

barrier function since 2019 for solving problems involving quantum relative entropy constraints

Φ : R⊕H
n ⊕H

n → R ∪ {+∞}:

Φ(t,X, Y) :=







−ln(t− qre(X,Y))− ln det(X) − ln det(Y), X, Y ∈ H
n
++

+∞ o.w.
,(3)

which was very recently proved to be self-concordant by Fawzi and Saunderson [8]. The first

available code for QRE programming was CVXQUAD, which is a collection of matrix functions

to be used on top of CVX [13]. The package CVXQUAD is based on the paper [9], which

approximates the matrix logarithm with functions that can be described by SDPs. CVXQUAD

does not scale well and the SDP approximation becomes too large for available SDP solvers even

for matrices of size 15. Faybusovich and Zhou designed some interior-point algorithms for various

problems involving quantum entropy and QRE functions, but the code is not publicly available.

As far as we know, Hypatia and DDS are the only publicly available codes for QRE programming

where both use the s.c. barrier in (3). In a related paper, Hu, et al. [18] created an interior-point

method, not using the s.c. barriers, for solving the key rate for quantum key distribution (QKD)

channels, which is one of the most popular applications of QRE programming. Their approach is

not for general QRE programming or for the optimization problems that contain the combination

of QRE with other types of constraints.

Several computational and theoretical challenges have hindered the scalability of Quantum

Relative Entropy (QRE) optimization solvers, specifically DDS 2.1 and Hypatia. Among the

primary issues are the complexity of evaluating the gradient and Hessian of Φ in (3), and also

solving the linear systems involving the Hessian, which are needed in implementing the second-

order IP methods. In this paper, we present a set of numerical and theoretical techniques aimed at

enhancing the performance of IP methods, and then evaluate the effectiveness of these techniques

4 KARIMI and TUNÇEL

through a series of numerical experiments. The new techniques have been implemented in DDS

2.2, which is introduced and released by this paper. Here are the contributions of this paper:

• Introducing several numerical and linear algebraic techniques and heuristics to improve

calculating the gradient and Hessian of Φ, solving the needed linear systems, and calcu-

lating the matrix-vector products. These techniques improved DDS 2.2, and enabled us

to solve much larger instances compared to DDS 2.1 and Hypatia.

• Introducing a two-phase approach for QRE programming to improve the running time

and condition of the problems.

• Introducing and deliberating about the concept of symmetric quantum relative entropy.

• developing a comprehensive setup (including a two-phase approach and facial reduction)

for calculating quantum key distribution (QKD) channel rates.

• A comprehensive numerical experiment including: 1) comparison of DDS 2.2 with Hypatia

for the nearest correlation matrix, 2) using DDS for combination of QRE and many other

types of constraints, and 3) examples to elaborate on the two-phase method and its per-

formance improvement, 4) Solving symmetric QRE programming problems, 5) calculating

the key rate for QKD channels and presenting results for several QKD protocols.

1.1. Notations. The sets S
n, Sn+, and S

n
++ are the set of n-by-n symmetric matrices, positive

semidefinite matrices, and positive definite matrices, respectively. For a multivariate function f ,

both f ′ and ∇f are used for the gradient, and both f ′′ and ∇2f are used for the Hessian.

2. Evaluating the derivatives for quantum relative entropy

In this subsection, we discuss how to calculate the gradient and Hessian for the s.c. barrier

function in (3), and also how to efficiently solve the linear systems involving the Hessian. The

main challenge is calculating the gradient and Hessian for the qre(X,Y) function in an efficient

and numerically stable way. For this, we need to calculate the derivatives for Tr(Xln(X)) and

Tr(−Xln(Y)). Xln(X) is the matrix extension of xln(x). For the trace of a general matrix

extension function Tr(F (X)) defined in (2), the gradient can be calculated by the following

theorem:

Theorem 2.1 (see, for example, [16]-Section 3.3). Let X and H be self-adjoint matrices and

f : (a, b) 7→ R be a continuously differentiable function defined on an interval. Assume that the

eigenvalues of X + αH are in (a, b) for an interval around α0 ∈ R. Then,

d

dα
TrF (X + αH)

∣
∣
∣
∣
α=α0

= TrHF ′(X + α0H).(4)

Quantum Relative Entropy Optimization 5

This theorem implies that

(Tr(F (X)))′ = vec(F ′(X)),(5)

where vec changes a matrix into a vector by stacking the columns on top of one another. For the

rest of our discussion, we need two definitions for univariate functions similar to the derivative.

For a continuously differentiable function f : (a, b) 7→ R, we define the first and second divided

differences as

f [1](α, β) :=







f(α)−f(β)
α−β

α 6= β

f ′(α) α = β

f [2](α, β, γ) :=







f [1](α,β)−f [1](α,γ)
β−γ

β 6= γ
f [1](α,β)−f ′(β)

α−β
β = γ 6= α

−1
2f

′′(α) β = γ = α

.(6)

To calculate the Hessian of Tr(F (X)), we can use the following theorem:

Theorem 2.2 ([16]-Theorem 3.25). Assume that f : (a, b) 7→ R is a C1-function and T =

Diag(t1, . . . , tn) with ti ∈ (a, b), i ∈ {1, . . . , n}. Then, for a Hermitian matrix H, we have

d

dα
F (T + αH)

∣
∣
∣
∣
α=0

= Tf ⊙H,(7)

where ⊙ is the Hadamard product and Tf is the divided difference matrix defined as

[Tf]ij := f [1](ti, tj), ∀i, j ∈ {1, . . . , n}.(8)

T is diagonal in the statement of the theorem, which is without loss of generality. Note that

by the definition of functional calculus in (2), for a Hermitian matrix X and a unitary matrix U ,

we have

F (UXU∗) = UF (X)U∗.(9)

Therefore, for a matrix T = UDiag(t1, . . . , tn)U
∗, we can update (7) as

d

dα
F (T + αH)

∣
∣
∣
∣
α=0

= U (Tf ⊙ (U∗HU))U∗,(10)

where we extend the definition of Tf in (8) to non-diagonal matrices by defining that Tf for

the non-diagonal matrix T is calculated by (8) using Diag(t1, . . . , tn) instead. Now we can use

Theorems 2.2 and 2.1 to calculate the Hessian of the function Tr(F (X)).

6 KARIMI and TUNÇEL

Theorem 2.3. Let X, H, and H̃ be self-adjoint matrices and f : (a, b) 7→ R be a continuously

differentiable function defined on an interval. Assume that the eigenvalues of X+ tH and X+ tH̃

are in (a, b) for an interval around t = 0. Assume that X = UXDiag(λ1, . . . , λn)U
∗
X . Then,

∇2Tr(F (X))[H, H̃] = Tr
((

Xf ′ ⊙ (U∗
XHUX)

)
U∗
XH̃UX

)

.(11)

Proof. We can write

∇2Tr(F (X))[H, H̃] = d
dβ

d
dα

Tr(F (X + βH + αH̃))
∣
∣
∣
α=0

∣
∣
∣
β=0

= d
dβ
Tr(HF ′(X + βH))

∣
∣
∣
β=0

, using (4)

= Tr(H̃ d
dβ
F ′(X + βH)

∣
∣
∣
β=0

)

= Tr(H̃UX

(
Xf ′ ⊙ (U∗

XHUX)
)
U∗
X), using (10)

= Tr
((

Xf ′ ⊙ (U∗
XHUX)

)
U∗
XH̃UX

)

.

(12)

�

To find a formula for the matrix form of the Hessian, note that by using the properties of the

Hadamard product, we have

vec(Xf ′ ⊙ (U∗
XHUX)) = Diag(vec(Xf ′))vec(U∗

XHUX).

Using this, we have

Tr
((

Xf ′ ⊙ (U∗
XHUX)

)
U∗
XH̃UX

)

= vec(Xf ′ ⊙ (U∗
XHUX))⊤vec(U∗

XH̃UX)

= vec(U∗
XHUX)⊤Diag(vec(Xf ′))vec(U∗

XH̃UX)

= vec(H)⊤(UX ⊗ UX)Diag(vec(Xf ′))(U∗
X ⊗ U∗

X)vec(H̃).

(13)

So the matrix form of the Hessian is

(Tr(F))′′(X) = (UX ⊗ UX)Diag(vec(Xf ′))(U∗
X ⊗ U∗

X)(14)

For the other components of the Hessian of qre, we need to differentiate Tr(−Xln(Y)) in

term of X and Y . In terms of Y , for a fixed matrix X and a continuously differentiable function

f : (a, b) 7→ R, let us define

FX(Y) := Tr(XF (Y)).(15)

Let Y = UY Diag(γ1, . . . , γn)U
∗
Y be the spectral decomposition of Y . The gradient of FX(Y) can

be calculated using Theorem 2.2 as:

F ′
X(Y) = UY (Yf ⊙ (U∗

Y XUY))U
∗
Y .(16)

Quantum Relative Entropy Optimization 7

The Hessian of FX(Y) is calculated as follows in [10]:

F ′′
X(Y) = (UY ⊗ UY)S(U

∗
Y ⊗ U∗

Y),(17)

where S is the n2-by-n2 second divided difference matrix. If we assume that S is a block matrix

of size n-by-n where each block is again a matrix of size n-by-n, then we can show the entries of

S as Sij,kl where ij denotes the place of the block, and kl denotes the rows and columns inside

the block. We have:

Sij,kl = δklX̃ijf
[2](γi, γj , γl) + δijX̃klf

[2](γj , γk, γl),(18)

where X̃ := U∗
YXUY and δij is an indicator function which is 1 if i = j, and 0 otherwise. Putting

together all these results, we have

qre′′(X,Y) =




H11 H12

H⊤
12 H22





H11 = (UX ⊗ UX)(Diag(vec(Xln)))(UX ⊗ UX)

H12 = −(UY ⊗ UY)(Diag(vec(Yln)))(UY ⊗ UY)

H22 = −(UY ⊗ UY)S(U
∗
Y ⊗ U∗

Y)

By having the derivatives of the qre function, we can calculate the derivatives for the s.c. barrier

function Φ in (3). For simplicity, we define T := t− qre(X,Y). We have

Φ′(t,X, Y) =







−1
T

1
T
h+ vec(−X−1)

1
T
h̄+ vec(−Y −1)






,

h := vec(I + ln(X)− ln(Y))

h̄ := vec((UY (Yf ⊙ (U∗
Y XUY))U

∗
Y)).

(19)

We can write the Hessian as:

Φ′′(t,X, Y) =






1
T 2 − 1

T 2h
⊤ 1

T 2 h̄
⊤

− 1
T 2h

1
T
H11 + (X−1 ⊗X−1) 1

T
H12

1
T 2 h̄

1
T
H⊤

12
1
T
H22 + (Y −1 ⊗ Y −1)







︸ ︷︷ ︸

H̄

+







0

1
T
h

1
T
h̄













0

1
T
h

1
T
h̄







⊤

(20)

2.1. Other numerical techniques. For calculating the gradient and Hessian of qre(X,Y), nu-

merical instability happens in calculatingXln and Yln, where for a matrixX = UXDiag(λ1, . . . , λn)U
∗
X ,

8 KARIMI and TUNÇEL

using (8), we have:

[Xln]ij = ln[1](λi, λj) =







1
λi

λi = λj

ln(λi)−ln(λj)
λi−λj

λi 6= λj

.

To make the calculation more stable, Faybusovich and Zhou [11] used the following equivalent

formula given in [17]:

ln[1](λi, λj) =







1
λi

λi = λj

ln(λi)−ln(λj)
λi−λj

λi <
λj

2 or λj <
λi

2

2tanh−1(z)
λi−λj

o.w.

where z = (λi−λj)/(λi+λj). Numerical experiments in DDS 2.2 shows that this formula indeed

works better in terms of numerical stability.

3. Solving the linear system

For second-order interior-point methods, we need to solve a linear system with the Hessian of

the s.c. barrier on the left hand side. Writing the Hessian as in (20) is efficient since the Hessian

is the summation of a simpler matrix and a rank one matrix, and we can use Sherman–Morrison

formula to solve the linear systems involving the Hessian. By the Sherman–Morrison formula,

the linear system reduces to a linear system with H̄ defined in (20). With some linear algebra,

the main part of the reduced linear system is the one involving the matrix




1
T
H11 + (X−1 ⊗X−1) 1

T
H12

1
T
H⊤

12
1
T
H22 + (Y −1 ⊗ Y −1)



(21)

The main computational challenge in forming this matrix is calculating UX⊗UX and UY ⊗UY .

UX and UY are dense matrices, but have the nice property that both are unitary matrices, which

we can exploit. By defining 1/λ := Diag(1/λ1, . . . , 1/λn) and 1/γ := Diag(1/γ1, . . . , 1/γn), we

can write the diagonal block matrices of (21) as

1

T
H11 + (X−1 ⊗X−1) = (UX ⊗ UX)(Diag(

1

T
vec(Xln) + 1/λ ⊗ 1/λ))(UX ⊗ UX)

1

T
H22 + (Y −1 ⊗ Y −1) = (UY ⊗ UY)(−

1

T
S +Diag(1/γ ⊗ 1/γ))(U∗

Y ⊗ U∗
Y).

The approximation we made in DDS 2.2 for solving the linear systems with the Hessian of Φ

on the left hand side is ignoring the off-diagonal block matrices in (21). Doing this, the matrix

Quantum Relative Entropy Optimization 9

can be factorized as

UXY




Diag(1

T
vec(Xln) + 1/λ⊗ 1/λ) 0

0 − 1
T
S +Diag(1/γ ⊗ 1/γ)



U∗
XY ,

UXY :=




UX ⊗ UX 0

0 UY ⊗ UY



 .

By this simplification, solving the linear system is reduced to solving a system with the matrix

in the middle and mostly a system involving S.

4. Handling Complex Matrices

For software packages such as DDS that only accept real symmetric matrices, we need an

equivalent formula for qre(X,Y) based on the real and imaginary parts of X and Y . For a

unitary matrix U = Ur + ιUi (where ι =
√
−1), we have

UU∗ = U∗U = I ⇔







UrU
⊤
r + UiU

⊤
i = I

−UrU
⊤
i + UiU

⊤
r = 0

(22)

For any complex n-by-n matrix X = Xr + ιXi, we define a 2n-by-2n matrix X̄ as

X̄ =




Xr −Xi

Xi Xr





If X is Hermitian, then X̄ is symmetric. By using (22), we can show that if U is a unitary

matrix, then Ū is also a real unitary matrix. We can also show that if X = UDU∗ is a spectral

decomposition for X, then

X̄ = ŪDiag(D,D)Ū⊤

is a spectral decomposition for X̄. This implies that for every function f : R → R ∪ {+∞} we

have

Tr(F (X̄)) = 2Tr(F (X)).

Now we can prove the following lemma:

Lemma 4.1. For two Hermitian matrices X,Y ∈ H
n
+ we have

qre(X̄, Ȳ) = 2qre(X,Y).

Proof. First we show that for two Hermitian matrices X,W ∈ H
n
+, we have

Tr(X̄W̄) = 2Tr(XW).(23)

10 KARIMI and TUNÇEL

Assume that X = Xr + ιXi and W = Wr + ιWi. Then, we have

Tr(XY) = Tr(XrWr −XiWi + ι(XrWi +XiWr)) = Tr(XrWr −XiWi),

where for the last equation we used the fact that Tr(XY) is a real number. Then, we have

Tr(X̄Ȳ) = Tr








Xr −Xi

Xi Xr








Wr −Wi

Wi Wr







 = 2Tr(XrWr −XiWi).

The last two equations confirm (23). To complete the proof, we claim that for every function F ,

we have

F (X) = F (X̄).(24)

Assume that the spectral decomposition of X is X = UDU∗.

F (X) = UF (D)U∗ = (Ur + ιUi)F (D)(U⊤
r − ιU⊤

i)

= UrF (D)U⊤
r + UiF (D)U⊤

i + ι(−UrF (D)U⊤
i + UiF (D)U⊤

r).

Therefore, we have

F (X) =




UrF (D)U⊤

r + UiF (D)U⊤
i UrF (D)U⊤

i − UiF (D)U⊤
r

−UrF (D)U⊤
i + UiF (D)U⊤

r UrF (D)U⊤
r + UiF (D)U⊤

i



 .

The spectral decomposition of X̄ is X̄ = ŪDiag(D,D)Ū⊤. Therefore,

F (X̄) = ŪDiag(F (D), F (D))Ū⊤. By expanding this term, we can confirm that (24) holds. Now,

(23) and (24) imply the result of the lemma. If we define F (X) := ln(X), then

qre(X̄, Ȳ) = Tr(X̄F (X̄))− Tr(X̄F (Ȳ))

= Tr(X̄F (X))− Tr(X̄F (Y)), (24)

= 2TrXF (X) − 2Tr(XF (Y)), (23)

= 2qre(X,Y).

�

5. Symmetric Quantum Relative Entropy

As vector relative entropy or Kullback-Leibler divergence is not symmetric, there is a natural

way to symmetrize the KL function defined in (1) as J : Rn ⊕ R
n → R ∪ {+∞}:

J(x, y) :=







KL(x, y) +KL(y, x), x, y ∈ R
n
+, supp(x) = supp(y)

+∞ o.w.
,(25)

Quantum Relative Entropy Optimization 11

J(x, y) is called Jeffreys divergence or symmetrized Kullback-Leibler divergence [22, 19]. In a

similar way, we define the symmetric QRE function as sqre : Hn ⊕H
n → R ∪ {∞}:

sqre(X,Y) :=







qre(X,Y) + qre(Y,X) if X,Y ∈ H
n
+, range(X) = range(Y),

+∞ o.w.
(26)

SQRE is a straightforward extension of Jeffreys divergence, and it was also suggested in the

context of QRE [28]. Clearly sqre is also a convex function in (X,Y). A code that accepts QRE

constraints can also handle SQRE constraints using the following reformulation:

qre(X,Y) + qre(Y,X) ≤ t ≡







t1 + t2 ≤ t

qre(X,Y) ≤ t1

qre(Y,X) ≤ t2

.(27)

The only issue with this approach is that by this reformulation, the s.c. barrier assigned to two

QRE constraints has parameter 2n. However, it is plausible that there exists an efficient s.c.

barrier with a better parameter for the epigraph of sqre.

6. Two-phase Methods

In this section, we propose two-phase methods for solving QRE programming which can

significantly improve the running time and condition of the problem. This two-phase approach

is different than, for example, the one for solving LP problems where the two phases are roughly

equivalent in terms of size and complexity. Here, phase one for the QRE programming is an

SDP problem that can be solved more efficiently and much faster compared to the QRE problem.

The solution of the SDP is used to reformulate the QRE problem to make it a smaller size and

well-conditioned (or, at least, better conditioned) QRE programming. Consider an optimization

problem of the form

min qre
(
∑k

i=1 xiAi,M
)

ℓ ≤ x ≤ u,
(28)

where M ∈ S
n
+ is given. Assume that the set of points

∑k
i=1 xiAi ∈ S

n
+ lie on a smaller “face”

of the S
n
+ cone. In other words, there exist an n-by-r matrix V with orthonormal columns such

that {

X : X =
k∑

i=1

xiAi

}

∩ S
n
+ ⊂ V S

r
+V

⊤.

We can find such a V by solving the following optimization problem

(Phase-I) min −ln(det(Y))

〈Y,Ai〉 = 0, i ∈ {1, . . . , k}
(29)

12 KARIMI and TUNÇEL

Let Y ∗ be a solution of (29), then we can show that the columns of V can be chosen as an

orthonormal basis for the null space of Y ∗, since we have

Y ∗

(
k∑

i=1

xiAi

)

= 0, ∀x.

In the following section, we propose a similar two-phase methods designed for calculating the

rate of QKD channels. In the numerical result section, we show that two-phase methods can

significantly improve the size and condition of the QRE problems, in general and also in the

context of QKD channel rate calculations.

7. Quantum key distribution rate

One application of minimizing qre function is calculating the rate of quantum key distribu-

tion (QKD) channels. QKD is a secure communication method between two parties involving

components of quantum mechanics [33]. The security of the QKD channel depends on the exact

calculation of its key rate. There are different protocols for QKD and for many of them, the main

non-trivial component of calculating the key rate is an optimization problem of the form:

min qre(G(ρ),Z(G(ρ)))
s.t. A(ρ) = b,

ρ � 0,(30)

where A is a linear map on Hermitian matrices and G and Z are Kraus operators. The Linear

map G : Hn → H
k is defined as

G(ρ) :=
ng∑

j=1

KjρK
†
j ,(31)

where Kj ∈ C
k×n and

∑ng

j=1KjK
†
j � I, and the self-adjoint linear map Z : Hk → H

k is defined

as

Z(δ) :=

nz∑

j=1

ZjδZj ,(32)

where Zj = Z2
j = Z†

j ∈ H
k
+ and

∑nz

j=1 Zj = I. The authors in [18] used “facial reduction” for

calculating the QKD rate. Their approach restrict the feasible region of the problem into a smaller

face and reduce the dimension of the matrices, which improves the performance of interior-point

methods. Another simplification in [18] is using the special structure of Z to prove the following

equation for every δ � I:

Tr(δln(Z(δ)) = Tr(Z(δ)ln(Z(δ))(33)

Quantum Relative Entropy Optimization 13

This can simplify the QRE function as the difference of two quantum entropy (QE) functions,

which makes calculating the gradients and Hessians much easier. Using these techniques, [18]

designed an interior-point algorithm specialized just for solving the QKD rate.

7.1. Two-phase approach. The analytic facial reduction techniques in [18] can be used with

DDS 2.2 as well. Here, we propose a two-phase approach for finding a minimal face for the feasible

region of the problem. The rational is that QRE optimization is much more costlier tha SDP. If

we can use a phase-I SDP to find a more efficient feasible region for the QRE optimization, the

overall cost will be lower. Our phase-I SDP is based on the following lemma:

Lemma 7.1. Consider the spectrahedron defined by the following equations:

〈Ai, ρ〉 = bi, i = 1, . . . ,m

ρ � 0.(34)

Assume that there exist y ∈ R
m such that

Y :=

m∑

i=1

yiAi � 0

y⊤b = 0.(35)

Then, for every ρ in the spectrahedron, we have ρY = 0.

Consider a Y ∈ S
n
+ from the lemma that has n̄ zero eigenvalues with spectral decomposition

Y = [U V]Diag(λ1, . . . , λn−n̄, 0, . . . , 0)[U V]⊤.

Then, ρY = 0 implies that ρ = V ρ̄V ⊤ and the feasible region can be equivalently written as:

〈V ⊤AiV, ρ̄〉 = bi, i = 1, . . . ,m

ρ̄ � 0,(36)

where the size of the ρ̄ matrix was reduced to k. For phase-I of the optimization process, we can

solve the following problem:

min −ln(det(Y))

Y :=

m∑

i=1

yiAi � 0

y⊤b = 0.(37)

The effect of using phase-I on the three groups of the QKD problems are shown in Table 6. The

main bottleneck in the speed of the code is the dimension of G(ρ) and Z(G(ρ)) as the arguments

of qre. We can significantly reduce this dimension by the following lemma:

14 KARIMI and TUNÇEL

Lemma 7.2. Consider the Kraus operator G and assume Z(G(I)) has n̄ non-zero eigenvalues

with the spectral decomposition

Z(G(I)) =
ng∑

i=1

nz∑

j=1

ZiKjK
†
jZ

†
i = [U V]Diag(λ1, . . . , λn̄, 0, . . . , 0)[U V]†.(38)

Then, we have

qre(G(ρ),Z(G(ρ))) = qre(U †G(ρ)U,U †Z(G(ρ))U).(39)

Proof. Note that using (33), we have

qre(G(ρ),Z(G(ρ))) = TrG(ρ)ln(G(ρ)) − TrZ(G(ρ))ln(Z(G(ρ)))
= Tr(F (Z(G(ρ)))) − Tr(F (U †Z(G(ρ))U)),(40)

where F is the matrix extension of f(x) := xln(x). Therefore, to show (39), it suffices to show

that U †G(ρ)U has the same non-zero eigenvalues as G(ρ) and U †Z(G(ρ))U has the same non-zero

eigenvalues as Z(G(ρ)). Consider the columns of V = [v1 . . . vn−n̄]. We claim that

K†
jZ

†
i vt = 0, j ∈ {1, . . . , ng}, i ∈ {1, . . . , nz}, t ∈ {1, . . . , n− n̄}

K†
j vt = 0, j ∈ {1, . . . , ng}, t ∈ {1, . . . , n− n̄}.(41)

For the first equation, note that for each t ∈ {1, . . . , n− n̄} we have

0 = v†tZ(G(I))vt =
ng∑

i=1

nz∑

j=1

v†tZiKjK
†
jZ

†
i vt

=

ng∑

i=1

nz∑

j=1

‖K†
jZ

†
i vt‖2,(42)

which implies the first equation in (41). For the second equation, we can use the first equation

and the fact that
∑nz

i=1 Zi = I: For each fixed j and t, we can add the the equations for all

i ∈ {1, . . . , nz}. Equation (41) is important since it shows that for any ρ, G(ρ) and Z(G(ρ)) have
the columns of V in their null space. Therefore, the range of U contains the ranges of G(ρ) and
Z(G(ρ)) for any matrix ρ. This implies the statement of the lemma. Specifically, if γ is a non-zero

eigenvalue of Z(G(ρ)) with eigenvector w, there exists w̄ such that w = Uw̄, then

U †Z(G(ρ))Uw̄ = U †Z(G(ρ))w = U †(γw) = γU †w.

�

Quantum Relative Entropy Optimization 15

8. Numerical Results

The techniques designed here have been used to improve the performance of the newest

version of the software package DDS [20] (namely DDS 2.2). The code can be downloaded from

the following website:

https://github.com/mehdi-karimi-math/DDS

DDS accepts every combination of the following function/set constraints: (1) symmetric cones

(LP, SOCP, and SDP); (2) quadratic constraints that are SOCP representable; (3) direct sums

of an arbitrary collection of 2-dimensional convex sets defined as the epigraphs of univariate

convex functions (including as special cases geometric programming and entropy programming);

(4) generalized Koecher (power) cone; (5) epigraphs of matrix norms (including as a special case

minimization of nuclear norm over a linear subspace); (6) vector relative entropy; (7) epigraphs

of quantum entropy and quantum relative entropy; and (8) constraints involving hyperbolic poly-

nomials.

In this section, we present several numerical examples of running DDS 2.2 for QRE program-

ming. We performed computational experiments using the software MATLAB R2022a, on a 1.7

GHz 12th Gen Intel Core i7 personal computer with 32GB of memory. All the numerical results

in this section are by using the default settings of DDS, including the tolerance of tol = 10−8.

8.1. Nearest correlation matrix. For a fixed matrix M ∈ S
n
+, the nearest correlation matrix

in the quantum sense is defined as a matrix YM with all diagonals equal to 1 that minimizes

qre(M,Y). In other words:

YM = argmin qre(M,Y)

Yii = 1, i ∈ {1, . . . , n}.
(43)

To make a comparison with Hypatia which uses the exact formulation for the Hessian, we consider

a fixed matrix M ∈ S
n and change n to see how DDS 2.2 and Hypatia scale in this problem. For

the numerical experiments, we assume that Y is a tridiagonal matrix with all the diagonals equal

to one. We consider two cases for M ; one M = 2I, and M is a random positive definite matrix.

Table 1 shows the iterations and time that both DDS 2.2 and Hypatia take to solve the

problem for different values of n. As can be seen, the running time explodes fast by increasing

the dimension of the matrices for Hypatia, where for DDS 2.2, the increase rate is more reasonable

due to the techniques used in the paper.

https://github.com/mehdi-karimi-math/DDS

16 KARIMI and TUNÇEL

Table 1. Results for problems involving Quantum Relative Entropy using DDS

2.2 ans Hypatia. Times are in seconds.

M = 2I Random M (average)

n DDS Itr/time Hypatia Itr/time DDS Itr/time Hypatia Itr/time

25 11/ 0.8 15 / 6.6 30/ 5 19/ 4

50 14/ 3.6 15/ 43 37/ 20 27 / 29

75 17/ 13.7 17/ 248 51 / 65 33 / 152

100 19/ 32 18/ 900 58 / 168 40 / 829

125 21/ 50.3 20/ 1993 62 / 375 43 / 2701

150 22/ 92.53 20 / 5627 66 / 693 46 / 6079

175 24/ 139.8 time > 104 71 / 1184 time > 104

200 26/ 237 time > 104 75 / 1760 time > 104

250 30/ 550 time > 104 78 / 3501 time > 104

300 32/ 1080 time > 104 80 / 6980 time > 104

8.2. QRE with other type of convex constraints. DDS is a software package for convex

optimization which accepts a combination of multiple conic and non-conic constraints [20]. Con-

sidering QRE programming, DDS lets us solve problems with QRE constraints combined with

several other constraints. As far as we know, DDS is the only available software that can solve

QRE problems of these sizes combined with other types of constraints. Moreover, DDS is the

only available code to handle some types of constraints such as the ones involving hyperbolic

polynomials. Preliminary results of QRE programming was reported for DDS 2.1 [20]. To com-

pare DDS 2.1 and 2.2 for QRE programming, we run the same table in [20] for DDS 2.1 and

re-run it for DDS 2.2. The results are given in Table 2.

Table 2. Results for problems involving Quantum Relative Entropy using DDS

2.1 ans DDS 2.2

Problem size of A Itr/time(sec) Itr/time(sec)

DDS 2.1 DDS 2.2

QuanReEntr-6 73 ∗ 13 9/ 1.0 12/ 0.8

QuanReEntr-10 201 ∗ 21 12/ 11.2 12/ 1.2

QuanReEntr-20 801 ∗ 41 15/ 34.4 15/ 1.2

QuanReEntr-LP-6 79 ∗ 13 29/ 1.7 25/ 0.7

QuanReEntr-LP-6-infea 79 ∗ 13 30/ 1.7 28/ 0.8

QuanReEntr-LP-10 101 ∗ 21 27/ 4.6 27/ 1.3

Quantum Relative Entropy Optimization 17

By improvements in DDS 2.2, we can now solve much larger instances. Consider an optimiza-

tion problem of the form

min qre
(

A0 +
∑k

i=1 xiAi, B0 +
∑k

i=1 xiBi

)

(I) x ≥ bL,

(II) ‖x− bN‖p ≤ α,

(III) p(x+ bH) ≥ 0

(44)

For the created examples, Ai and Bi, i ∈ {1, . . . , k}, are sparse 0-1 random symmetric matrices.

Table 3 shows the results of running DDS 2.2 on some instances of the form (44). QRE-LP

problems only have (I) as the constraint. QRE-LP-POW3 and QRE-LP-SOCP problems have

(I)-(II) as constraints, with respectively p = 3 and p = 2. The problems with infeas in the

name are infeasible. Exploiting duality in an efficient way makes DDS robust in detecting the

infeasibility of the problems [21, 20]. The problems QRE-Vamos has (III) as the constraint where

p is a hyperbolic polynomial created by Vamos-like matroids as explained in [20]. QRE-KL

problems are of the form:

min qre
(

A0 +
∑k

i=1 xiAi, B0 +
∑k

i=1 yiBi

)

KL(x, y) ≤ γ,
(45)

where KL is defined in (1).

8.3. two-phase methods for QRE programming. We proposed two-phase methods for QRE

programming in Section 6. For numerical experiments, we have synthesized some problems by

fixing r and n, and choosing a n-by-r matrix V which is all zero except the main diagonal is all

1. Let Ei ∈ S
r be a matrix of all zeros except a 1 on the ith diagonal entry. Consider problem

(28) where M := I and the linear constraints are xi ≤ 1 for i ∈ {1, . . . , k}. We define

Ai := V EiV
⊤, i ∈ {1, . . . , k}.

Table 4 shows the results of solving problem (28) using DDS 2.2 for different values of r and n.

As can be seen, the reformulated QRE after phase-I is not only smaller in size, but the much

fewer number of iterations shows that it is more well-conditioned. The overall running time of

the two-phase method is smaller than the 1-phase one, and the gap grows by increasing n.

8.4. Symmetric QRE. Handing symmetric QRE constraints using QRE ones discussed in Sec-

tion 5. Consider the following two optimization problems:

min qre
(

I +
∑k

i=1 xiAi, I +
∑k

i=1 xiBi

)

x ≥ ℓ,

min sqre
(

I +
∑k

i=1 xiAi, I +
∑k

i=1 xiBi

)

x ≥ ℓ,

18 KARIMI and TUNÇEL

Table 3. Results for problems involving Quantum Relative Entropy using DDS

2.2. The types of the constraints are included in the name of the problem. The

number is the size of the matrices in the QRE constraint. Vamos stands for

hyperbolic polynomials created by Vamos-like matroids.

Problem size of A Itr/time(sec)

DDS 2.1

QRE-LP-100 20101 × 101 17/ 42

QRE-LP-200-infeas 80201 × 201 50/ 966

QRE-LP-Pow3-20 842 × 21 37/ 6.7

QRE-LP-Pow3-20-infeas 842 × 21 25/ 3.8

QRE-LP-Pow3-100 20201 × 101 56/ 170

QRE-LP-Pow3-100-infeas 20201 × 101 44/ 74

QRE-LP-SOCP-20 842 × 21 39/ 4.2

QRE-LP-SOCP-20-infeas 842 × 21 24/ 3.9

QRE-LP-SOCP-100 20202 × 101 66/ 180

QRE-LP-SOCP-100-infeas 20202 × 101 28/ 90

QRE-LP-SOCP-200-infeas 80402 × 201 36/ 544

QRE-LP-SOCP-200 80402 × 201 103/ 1191

QRE-Vamos-20 811 × 6 22/ 3.6

QRE-Vamos-20-infeas 811 × 6 32/ 7.8

QRE-Vamos1-100 20011 × 6 27/ 48

QRE-Vamos2-100 20011 × 6 44/ 129

QRE-KL-100 20202 × 201 49/ 109

QRE-KL-100-infeas 20202 × 201 22/ 37

QRE-KL-200 80402 × 401 76/ 1153

QRE-KL-200-infeas 80402 × 401 25/ 278

where Ai ∈ S
n and Bi ∈ S

n, i ∈ {1, . . . , k}, are sparse 0-1 random matrices (each matrix is all

zero except for two off-diagonal entries). x = 0 is a feasible solution for both problems. We want

to compare the number of iterations and running time of solving these problems by changing n,

the size of matrices where we choose k = n. Let us choose ℓ = −21, where 1 is the vector of all 1.

Table 5 shows the results of the iteration count and running time for both problems using DDS

2.2. As can be seen, the iteration counts are almost the same, and the running times are almost

doubled for the SQRE.

Quantum Relative Entropy Optimization 19

Table 4. The effect of two-phase approach on the running time and condition of

the QRE problem.

n r two-phase method 1-phase method

Phase-I time iter/time iter/time

25 5 0.96 13 / 0.39 90/ 5.1

50 5 0.91 12 / 0.45 108/ 29

100 5 7.18 12 / 0.42 172/ 178

200 5 87 13 / 0.44 226/ 1527

25 10 1.1 14 / 0.6 78/ 4.0

50 10 0.9 14 / 0.56 97/ 26.6

100 10 11 15 / 0.51 164/ 180

200 10 84 15 / 0.53 214/ 1695

25 20 0.7 12 / 1.2 48/ 3.2

50 45 0.87 15 / 4.3 50/ 14

100 95 4.5 25 / 46 54/ 81.4

200 195 63 32 / 342 50/ 478

Table 5. Comparing SQRE and QRE using DDS 2.2

n Itr/time(sec) Itr/time(sec)

QRE SQRE

10 9 / 0.3 9 / 0.5

25 12 / 1.7 15 / 3.3

50 13 / 4.6 13 / 8.1

100 14 / 28 15 / 47

150 14 / 81 16 / 159

200 14 / 166 17 / 333

250 15 / 344 23 / 858

300 15 / 698 23 / 1712

8.5. Quantum key distribution rate. We developed a two-phase approach for calculating the

QKD rate in Section 7. In this section, we consider some QKD protocols such as some variants

of the Bennett-Brassard 1984 (BB84) protocol [1]: entanglement-based (ebBB84), prepare-and-

measure (pmBB84), and measurement-device-independent (mdiBB84) [23]. OpenQKDSecurity

20 KARIMI and TUNÇEL

is a platform for numerical key rate calculation of QKD [32], where several examples for different

regimes can be created. One protocol for QKD is Entanglement-Based BB84. The parameters

of the problem G, Z, and Γ are specified by two parameters: the probability of performing

measurement in one of the two possible basis pz, and the error rate e. As we use natural logarithm

in DDS, the key rate R for this protocol is calculated by the formula

R =
p

ln(2)
− δEC ,

where p is the optimal value of (30) and δEC is a constant caused by performing error-correction.

By applying the phase-I optimization discussed above and Lemma 7.2, we can not only sig-

nificantly reduce the size of the involved matrices, but also improve the condition of the problem.

Some examples are shown in Table 6. Without using Phase-I, the problem is ill-conditioned and

DDS cannot achieve the desired accuracy.

Table 6. The effect of phase-I and 7.2 on reducing the size of ρ

protocol (pz, e) (n, k) (n̄, k̄) Phase-I and Lemma 7.2 Just Lemma 7.2

Phase-I time iter/time iter/time

pmBB84 (0.5, .09) (32,8) (8,4) 1 19/ 2.7 81/14

pmBB84 (0.9, .09) (32,8) (8,4) 0.9 19/ 2.7 ill-conditioned

mdiBB84 (0.5, .09) (96,48) (8,12) 1.4 25/4.7 ill-conditioned

mdiBB84 (0.9, .09) (96,48) (8,12) 1.4 25/4.2 ill-conditioned

For the protocols eeBB84, pmBB84, and mdiBB84, the QRE program is setup by using two

parameters: pz is the probability of choosing the Z basis, and e is the observed error rate. The

iteration count and running time of using DDS 2.2 for solving the QRE optimization problems

for these three protocols are given in Tables 7, 8, and 9.

9. conclusion

We developed novel numerical techniques to enhance the performance of interior-point (IP)

methods which use the optimal self-concordant (s.c.) barrier function in (3). Extensive numerical

results demonstrate that DDS 2.2, which incorporates these techniques, can effectively solve

significantly larger instances compared to its predecessor, DDS 2.1, and Hypatia. The two-phase

approach proposed in this paper warrants further investigation in future research. The phase-

I problem can be tailored in various ways to modify the problem for phase-II. Currently, the

primary bottleneck in the speed of DDS 2.2 for QRE programming lies in calculating the matrix

S defined in (18). A significantly more efficient and numerically stable algorithm to implicitly or

Quantum Relative Entropy Optimization 21

Table 7. Numerical Report for ebBB84 Instances.

Protocol Parameters (pz, e) Size Iter Time

ebBB84 (0.5, .01) (16,4) 23 0.8

ebBB84 (0.5, .03) (16,4) 20 0.7

ebBB84 (0.5, .05) (16,4) 18 0.65

ebBB84 (0.5, .07) (16,4) 17 0.57

ebBB84 (0.5, .09) (16,4) 14 0.5

ebBB84 (0.7, .01) (16,4) 21 0.8

ebBB84 (0.7, .03) (16,4) 21 0.74

ebBB84 (0.7, .05) (16,4) 17 0.65

ebBB84 (0.7, .07) (16,4) 16 0.6

ebBB84 (0.7, .09) (16,4) 17 0.65

ebBB84 (0.9, .01) (16,4) 22 0.8

ebBB84 (0.9, .03) (16,4) 21 0.7

ebBB84 (0.9, .05) (16,4) 17 0.65

ebBB84 (0.9, .07) (16,4) 17 0.65

ebBB84 (0.9, .09) (16,4) 17 1.7

explicitly compute the matrix could significantly accelerate DDS and other IP solvers for QRE

programming. Additionally, exploring the duality setup for the QRE cone presents an intriguing

open question. A numerically robust characterization of the dual cone or the LF conjugate of the

s.c. barrier could be leveraged in DDS to further enhance its performance.

References

[1] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theo-
retical computer science, 560 (2014), pp. 7–11.

[2] D. Bertsimas, R. Cory-Wright, and J. Pauphilet, A new perspective on low-rank optimization, Mathe-
matical Programming, (2023), pp. 1–46.

[3] V. Chandrasekaran and P. Shah, Relative entropy optimization and its applications, Mathematical Pro-
gramming, 161 (2017), pp. 1–32.

[4] C. Coey, L. Kapelevich, and J. P. Vielma, Solving natural conic formulations with hypatia. jl, INFORMS
Journal on Computing, 34 (2022), pp. 2686–2699.

[5] T. M. Cover, Elements of information theory, John Wiley & Sons, 1999.
[6] N. Datta, M.-H. Hsieh, and M. M. Wilde, Quantum rate distortion, reverse shannon theorems, and

source-channel separation, IEEE Transactions on Information Theory, 59 (2012), pp. 615–630.
[7] C. Doersch, Tutorial on variational autoencoders, arXiv preprint arXiv:1606.05908, (2016).
[8] H. Fawzi and J. Saunderson, Optimal self-concordant barriers for quantum relative entropies, arXiv preprint

arXiv:2205.04581, (2022).

22 KARIMI and TUNÇEL

Table 8. Numerical Report for pmBB84 Instances.

Protocol Parameters (pz, e) Size Iter Time

pmBB84 (0.5, .01) (32,8) 24 1.8

pmBB84 (0.5, .03) (32,8) 22 1.4

pmBB84 (0.5, .05) (32,8) 21 1.3

pmBB84 (0.5, .07) (32,8) 18 1.3

pmBB84 (0.5, .09) (32,8) 17 1.1

pmBB84 (0.7, .01) (32,8) 24 1.6

pmBB84 (0.7, .03) (32,8) 22 1.4

pmBB84 (0.7, .05) (32,8) 20 1.4

pmBB84 (0.7, .07) (32,8) 18 1.3

pmBB84 (0.7, .09) (32,8) 18 1.1

pmBB84 (0.9, .01) (32,8) 25 1.6

pmBB84 (0.9, .03) (32,8) 23 1.5

pmBB84 (0.9, .05) (32,8) 21 1.1

pmBB84 (0.9, .07) (32,8) 20 1.1

pmBB84 (0.9, .09) (32,8) 21 1.4

[9] H. Fawzi, J. Saunderson, and P. A. Parrilo, Semidefinite approximations of the matrix logarithm, Foun-
dations of Computational Mathematics, 19 (2019), pp. 259–296.

[10] L. Faybusovich and C. Zhou, Long-step path-following algorithm in quantum information theory: Some
numerical aspects and applications, arXiv preprint arXiv:1906.00037, (2020).

[11] , Self-concordance and matrix monotonicity with applications to quantum entanglement problems, Applied
Mathematics and Computation, 375 (2020), p. 125071.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT press, 2016.
[13] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.2.

http://cvxr.com/cvx, Mar. 2020.
[14] P. E. Hart, D. G. Stork, and R. O. Duda, Pattern classification, Wiley Hoboken, 2000.
[15] K. He, J. Saunderson, and H. Fawzi, Efficient computation of the quantum rate-distortion function, arXiv

preprint arXiv:2309.15919, (2023).
[16] F. Hiai and D. Petz, Introduction to matrix analysis and applications, Springer Science & Business Media,

2014.
[17] N. J. Higham, Functions of matrices: theory and computation, SIAM, 2008.
[18] H. Hu, J. Im, J. Lin, N. Lütkenhaus, and H. Wolkowicz, Robust interior point method for quantum key

distribution rate computation, Quantum, 6 (2022), p. 792.
[19] H. Jeffreys, The theory of probability, OuP Oxford, 1998.
[20] M. Karimi and L. Tunçel, Domain-driven solver (DDS) version 2.1: a MATLAB-based software package for

convex optimization problems in Domain-Driven form, to appear in Mathematical Programming Computation,
arXiv preprint arXiv:1908.03075v2, (2023).

[21] M. Karimi and L. Tunçel, Status determination by interior-point methods for convex optimization problems
in Domain-Driven form, Mathematical Programming, 194 (2022), pp. 937–974.

http://cvxr.com/cvx

Quantum Relative Entropy Optimization 23

Table 9. Numerical Report for mdiBB84 Instances.

Protocol Parameters (pz, e) Size Iter Time

mdiBB84 (0.5, .01) (96,48) 31 3.0

mdiBB84 (0.5, .03) (96,48) 28 2.4

mdiBB84 (0.5, .05) (96,48) 28 3.1

mdiBB84 (0.5, .07) (96,48) 26 2.7

mdiBB84 (0.5, .09) (96,48) 18 1.6

mdiBB84 (0.7, .01) (96,48) 29 2.6

mdiBB84 (0.7, .03) (96,48) 23 2.2

mdiBB84 (0.7, .05) (96,48) 24 2.4

mdiBB84 (0.7, .07) (96,48) 27 2.6

mdiBB84 (0.7, .09) (96,48) 26 2.6

mdiBB84 (0.9, .01) (96,48) 31 3.2

mdiBB84 (0.9, .03) (96,48) 28 2.6

mdiBB84 (0.9, .05) (96,48) 24 2.3

mdiBB84 (0.9, .07) (96,48) 27 2.5

mdiBB84 (0.9, .09) (96,48) 26 2.7

[22] S. Kullback and R. A. Leibler, On information and sufficiency, The annals of mathematical statistics, 22
(1951), pp. 79–86.

[23] H.-K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Physical review
letters, 108 (2012), p. 130503.

[24] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019.
http://docs.mosek.com/9.0/toolbox/index.html.

[25] Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Programming, SIAM
Series in Applied Mathematics, SIAM: Philadelphia, 1994.

[26] D. Papp and S. Yıldız, Alfonso: Matlab package for nonsymmetric conic optimization, INFORMS Journal
on Computing, (2021).

[27] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The
security of practical quantum key distribution, Reviews of modern physics, 81 (2009), p. 1301.

[28] M. Stone. personal communication, 2022.
[29] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization

Methods and Software, 11 (1999), pp. 625–653.
[30] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3– a MATLAB software package for semidefinite

programming, version 1.3, Optimization Methods and Software, 11 (1999), pp. 545–581.
[31] T. Van Erven and P. Harremos, Rényi divergence and kullback-leibler divergence, IEEE Transactions on

Information Theory, 60 (2014), pp. 3797–3820.
[32] W. Wang and N. Lütkenhaus, OpenQKDSecurity platform. https://github.com/nlutkenhaus/openQKDsecurity,

2021.
[33] A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numerical key rates for quantum key distribution,

arXiv preprint arXiv:1710.05511v2, (2018).

http://docs.mosek.com/9.0/toolbox/index.html

24 KARIMI and TUNÇEL

[34] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure quantum key distribution with realistic devices,
Reviews of Modern Physics, 92 (2020), p. 025002.

	1. Introduction
	1.1. Notations

	2. Evaluating the derivatives for quantum relative entropy
	2.1. Other numerical techniques

	3. Solving the linear system
	4. Handling Complex Matrices
	5. Symmetric Quantum Relative Entropy
	6. Two-phase Methods
	7. Quantum key distribution rate
	7.1. Two-phase approach

	8. Numerical Results
	8.1. Nearest correlation matrix
	8.2. QRE with other type of convex constraints
	8.3. two-phase methods for QRE programming
	8.4. Symmetric QRE
	8.5. Quantum key distribution rate

	9. conclusion
	References

