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1 An example protocol

Here we describe a construction of strong coin-flipping protocols based on
quantum bit-commitment [1], [3], [11], [6] that consists of three messages. First,
Alice chooses a uniformly random bit a, creates a state of the form

ψa ∈ CA ⊗ CA
′
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and sends A to Bob, i.e., the first message consists of qubits corresponding to
the space CA. (For ease of exposition, we use this language throughout, i.e.,
refer to qubits by the labels of the corresponding spaces.) This first message
is the commit stage since she potentially gives some information about the bit
a, for which she may be held accountable later. Then Bob chooses a uniformly
random bit b and sends it to Alice. Alice then sends a and A′ to Bob. Alice’s
last message is the reveal stage. Bob checks to see if the qubits he received are
in state ψa (we give more details about this step below). If Bob is convinced
that the state is correct, they both output 0 when a = b, or 1 if a 6= b, i.e.,
they output the XOR of a and b.

This description can be cast in the form of a quantum protocol as presented
in [7]: we can encode 0 as basis state e0 and 1 as e1, we can simulate the
generation of a uniformly random bit by preparing a uniform superposition
over the two basis states, and we can “send” qubits by permuting their order (a
unitary operation) so that they are part of the message subsystem. In fact, we
can encode an entirely classical protocol using a quantum one in this manner.

We present a protocol from [6] which follows the above framework.

Definition 1 (Coin-flipping protocol example)
Let A := {0, 1, 2}, A′ := A, and let CA and CA′ be spaces for Alice’s two
messages.

• Alice chooses a ∈ {0, 1} uniformly at random and creates the state

ψa =
1√
2
ea ⊗ ea +

1√
2
e2 ⊗ e2 ∈ CA ⊗ CA

′
,

where {e0, e1, e2} are standard basis vectors. Alice sends the A part of ψa
to Bob.

• Bob chooses b ∈ {0, 1} uniformly at random and sends it to Alice.
• Alice reveals a to Bob and sends the rest of ψa, i.e., she sends A′.
• Bob checks to see if the state sent by Alice is ψa, i.e., he checks to see if

Alice has tampered with the state during the protocol. The measurement
on CA ⊗ CA′ corresponding to this check is

(Πaccept := ψaψ
∗
a, Πabort := I−Πaccept).

If the measurement outcome is “abort” then Bob aborts the protocol.
• Each player outputs the XOR of the two bits, i.e., Alice outputs a ⊕ b′,

where b′ is the bit she received in the second round, and if he does not
abort, Bob outputs a′ ⊕ b, where a′ is the bit received by him in the third
round.

In the honest case, Bob does not abort since 〈Πabort, ψaψ
∗
a〉 = 0. Fur-

thermore, Alice and Bob get the same outcome which is uniformly random.
Therefore, this is a well-defined coin-flipping protocol. We now sketch a proof
that this protocol has bias ε = 1/4.
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Bob cheating. We consider the case when Bob cheats towards 0; the
analysis of cheating towards 1 is similar. If Bob wishes to maximize the proba-
bility of outcome 0, he has to maximize the probability that the bit b he sends
equals a. In other words, he may only cheat by measuring Alice’s first message
to try to learn a, then choose b suitably to force the desired outcome. Define
ρa := TrA′ (ψaψ

∗
a). This is the reduced state of the A-qubits Bob has after the

first message. Recall Bob can learn the value of a with probability

1

2
+

1

2
∆(ρ0, ρ1) = 3/4 ,

and this bound can be achieved. This strategy is independent of the outcome
Bob desires, thus P ∗B,0 = P ∗B,1 = 3/4.

Alice cheating. Alice’s most general cheating strategy is to send a state in
the first message such that she can decide the value of a after receiving b, and
yet pass Bob’s cheat detection step with maximum probability. For example,
if Alice wants outcome 0 then she returns a = b and if she wants outcome 1,
she returns a = b̄. Alice always gets the desired outcome as long as Bob does
not detect her cheating. As a primer for more complicated protocols, we show
an SDP formulation for a cheating Alice based on the above cheating strategy
description. There are three important quantum states to consider here. The
first is Alice’s first message, which we denote as σ ∈ SA+. The other two states
are the states Bob has at the end of the protocol depending on whether b = 0

or b = 1, we denote them by σb ∈ SA⊗A
′

+ . Note that TrA′(σ0) = TrA′(σ1) = σ
since they are consistent with the first message σ—Alice does not know b when
σ is sent. However, they could be different on A′ because Alice may apply some
quantum operation depending upon b before sending the A′ qubits. Then Alice
can cheat with probability given by the optimal objective value of the following
SDP:

sup 1
2 〈ψ0ψ

∗
0 , σ0〉 + 1

2 〈ψ1ψ
∗
1 , σ1〉

subject to TrA′(σb) = σ, for all b ∈ {0, 1},
Tr(σ) = 1,

σ ∈ SA+,
σb ∈ SA⊗A

′

+ , for all b ∈ {0, 1},
recalling that the partial trace is trace-preserving, any unit trace, positive
semidefinite matrix represents a valid quantum state, and that two purifi-
cations of the same density matrix are related to each other by a unitary
transformation on the part that is traced out.

It has been shown [11], [3], [9] that the optimal objective function value of
this problem is

1

2
+

1

2

√
F(ρ0, ρ1) = 3/4

given by the optimal solution (σ0, σ1, σ) = (ψψ∗, ψψ∗,TrA′(ψψ
∗)), where

ψ =

√
1

6
e0 ⊗ e0 +

√
1

6
e1 ⊗ e1 +

√
2

3
e2 ⊗ e2 .
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Therefore, the bias of this protocol is

max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} − 1/2 = 3/4− 1/2 = 1/4.

Using the Fuchs-van de Graaf inequalities [5], it was shown in [3] that for any
ρ0 and ρ1, we have

max

{
1

2
+

1

2

√
F(ρ0, ρ1),

1

2
+

1

2
∆(ρ0, ρ1)

}
− 1/2 ≥ 1/4 .

Thus, we cannot improve the bias by simply changing the starting states in this
type of protocol, suggesting a substantial change of the form of the protocol
is necessary to find a smaller bias.

2 SDP characterization of cheating strategies

We start by formulating strategies for cheating Bob and cheating Alice as
semidefinite programs as proposed by Kitaev [7] restricting to the protocols
examined in this paper. The communication of such a protocol is depicted in
Figure 1, below.

Alice prepares ψ ∈ CA0×A′
0×A1×A2×A′

1×A′
2 Bob prepares φ ∈ CB0×B′

0×B1×B2×B′
1×B′

2

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′
0×A′

1×A′
2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′
0×B′

1×B′
2 (b ∈ {0, 1} and a copy of y1, y2)

Alice checks if Bob cheated Bob checks if Alice cheated

Alice and Bob output a ⊕ b if no cheating is detected

Fig. 1 A six-round protocol.

The extent to which Bob can cheat is captured by the following lemma.

Lemma 1 The maximum probability with which cheating Bob can force honest
Alice to accept c ∈ {0, 1} is given by the optimal objective value of the following
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SDP:

sup 〈 ρF , ΠA,c 〉
s.t. TrB1

(ρ1) = TrA1
(ψψ∗) ,

TrBj (ρj) = TrAj (ρj−1), ∀j ∈ {2, . . . , n},
TrB′×B′0(ρF ) = TrA′×A′0(ρn),

ρj ∈ SA0×A′0×B1×···×Bj×Aj+1×···×An×A′
+ , ∀j ∈ {1, . . . , n},

ρF ∈ SA0×B′0×B×B
′

+ .

Furthermore, an optimal cheating strategy for Bob may be derived from an
optimal feasible solution of this SDP.

Proof The matrix constraints in the SDP may readily be rewritten as linear
constraints on the variables ρj , so the optimization problem is an SDP. The
variables are the density matrices of qubits under Alice’s control after each of
Bob’s messages. The partial trace is trace-preserving, so any feasible solution
satisfies

Tr(ρF ) = Tr(ρn) = · · · = Tr(ρ1) = Tr(ψψ∗) = 1.

Since ρ1, . . . , ρn, ρF are constrained to be positive semidefinite, they are quan-
tum states.

Bob sends the B1 qubits to Alice replacing the A1 part already sent to
him. Being the density matrix Alice has after Bob’s first message, ρ1 satisfies

TrB1
(ρ1) = TrA1

(ψψ∗),

since the state of the qubits other than those in A1, B1 remains unchanged.
Similarly, we have the constraint

TrBj (ρj) = TrAj (ρj−1), for j ∈ {2, . . . , n},
for each ρj after Bob’s j’th message. Also ρF , the state Alice has at the end
of the protocol, satisfies

TrB′×B′0(ρF ) = TrA′×A′0(ρn).

She then measures ρF and accepts c with probability 〈ρF , ΠA,c〉.
These constraints are necessary conditions on the states under Alice’s con-

trol. We may further restrict the states to be real matrices: the real parts
of any complex feasible solution also form a feasible solution with the same
objective function value.

We now show that every feasible solution to the above problem yields
a valid cheating strategy for Bob with success probability equal to the ob-
jective function value of the feasible solution. He can find such a strategy
by maintaining a purification of each density matrix in the feasible solution.
For example, suppose the protocol starts in the state η := ψ ⊗ φ′, where
φ′ ∈ CK := CB0 ⊗CB′0 ⊗CB ⊗CB′ ⊗CK′ where CK′ is extra space Bob uses
to cheat. Consider τ ∈ CA0 ⊗CA′0 ⊗CA⊗CA′ ⊗CK a purification of ρ1. Since
TrB1

(ρ1) = TrA1
(ψψ∗), we have

TrA1×K(ττ∗) = TrB1
(ρ1) = TrA1

(ψψ∗) = TrA1×K(ηη∗).
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Alice prepares ψ ∈ CA0×A′
0×A1×A2×A′

1×A′
2 Bob does not follow protocol

Bob maintains purifications of ρ1, ρ2, ρF

ψψ∗

TrA1(ψψ
∗)

ρ1

TrA2(ρ1)

ρ2

TrA′
0×A′

1×A′
2
(ρ2)

ρF

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′
0×A′

1×A′
2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′
0×B′

1×B′
2 (b ∈ {0, 1} and a copy of y1, y2)

Alice checks if Bob cheated Bob simply outputs his desired outcome

Fig. 2 Bob cheating in a six-round protocol.

Thus, there exists a unitary U which acts on CA1 ⊗ CK which maps η to τ .
If Bob applies this unitary after Alice’s first message and sends the B1 qubits
back then he creates ρ1 under Alice’s control. The same argument can be
applied to the remaining constraints.

The states corresponding to honest Bob yield a feasible solution. Attain-
ment of an optimal solution then follows from continuity of the objective func-
tion and from the compactness of the feasible region. An optimal solution
yields an optimal cheating strategy. ut

We call the SDP in Lemma 1 Bob’s cheating SDP and depict Bob cheating,
and the context of the SDP variables, in a six-round protocol in Figure 2,
above.

In a similar fashion, we can formulate Alice’s cheating SDP.

Lemma 2 The maximum probability with which cheating Alice can force hon-
est Bob to accept c ∈ {0, 1} is given by the optimal objective value of the
following SDP:

sup
〈
σF , ΠB,c ⊗ IB′0×B′

〉
s.t. TrA1

(σ1) = φφ∗,
TrA2(σ2) = TrB1(σ1),

...
TrAn(σn) = TrBn−1(σn−1),

TrA′×A′0(σF ) = TrBn(σn),

σj ∈ SB0×B′0×A1×···×Aj×Bj×···×Bn×B′
+ ,∀j ∈ {1, . . . , n},

σF ∈ SB0×B′0×A
′
0×A×A

′×B′
+ .

Furthermore, we may derive an optimal cheating strategy for Alice from an
optimal feasible solution to this SDP.
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Alice does not follow protocol

Alice maintains purifications of σ1, σ2, σF

Bob prepares φ ∈ CB0×B′
0×B1×B2×B′

1×B′
2

φφ∗

σ1

TrB1(σ1)

σ2

TrB2(σ2)

σF

TrB′
0×B′

1×B′
2
(σF )

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′
0×A′

1×A′
2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′
0×B′

1×B′
2 (b ∈ {0, 1} and a copy of y1, y2)

Alice simply outputs her desired outcome Bob checks if Alice cheated

Fig. 3 Alice cheating in a six-round protocol.

The characterization of Alice’s cheating strategies is almost the same as
that for cheating Bob; we only sketch the parts that are different.

Proof There are two key differences from the proof of Lemma 1. One is that
Alice sends the first message and Bob sends the last, explaining the slightly
different constraints. Secondly, Bob measures only the CB0 ⊗CA′0 ⊗CA⊗CA′

part of his state after Alice’s last message, i.e., he measures TrB′0×B′(σF ). Note
that the adjoint of the partial trace can be written as

Tr∗B′0×B′(Y ) = Y ⊗ IB′0×B′ .

Therefore we have
〈
TrB′0×B′(σF ), ΠB,c

〉
=
〈
σF , ΠB,c ⊗ IB′0×B′

〉
, which ex-

plains the objective function. ut

We depict Alice cheating, and the context of her SDP variables, in a six-
round protocol in Figure 3 above.

Analyzing and solving these problems computationally gets increasingly
difficult and time consuming as n increases, since the dimension of the variables
increases exponentially in n. This is precisely why we develop the reduced
problems which are conceptually simpler and much easier to solve numerically.

3 Derivations of the reduced SDPs

We now show the derivation of Alice’s reduced cheating strategies (the deriva-
tion of Bob’s is very similar and the arguments are the same). We show that if
we are given an optimal solution to Alice’s cheating SDP, then we can assume
it has a special form while retaining the same objective function value. Then
we show this special form for an optimal solution can be written in the way
desired.
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We now discuss some of the tools used in the upcoming proofs.

Lemma 3 Suppose A is a finite set. Suppose p =
∑
x∈A

px ex ⊗ ex ∈ ProbA×A

and σ ∈ SA+ is a density matrix. Then we have

max
ρ∈SA×A+

{
〈√p√pT

, ρ〉 :TrA(ρ) = σ
}
≤ max
ρ∈SA×A+

{
〈√p√pT

, ρ〉 :TrA(ρ) = Diag(σ)
}
,

where Diag restricts to the diagonal of a square matrix. Moreover, an optimal
solution to the problem on the right is ρ :=

√
q
√
qT, where

q =
∑
x∈A

[σ]x,x ex ⊗ ex ∈ ProbA×A,

yielding an objective function value of F(p, q).

Proof Consider ρ̄ as defined in the statement of the lemma. Since we have
TrA(ρ̄) = Diag(σ), it suffices to show that for any density matrix ρ ∈ SA×A+

satisfying either TrA(ρ) = σ or TrA(ρ) = Diag(σ), we have〈√
p
√
p

T
, ρ
〉
≤
〈√

p
√
p

T
, ρ̄
〉

= F(p, q).

Expanding the first inner product, and using the Cauchy-Schwartz inequal-
ity, we get〈√

p
√
p

T
, ρ
〉

=
∑
x,y∈A

√
pxpy(ex ⊗ ex)Tρ (ey ⊗ ey)

≤
∑
x,y∈A

√
pxpy ‖

√
ρ (ex ⊗ ex)‖ · ‖√ρ (ey ⊗ ey)‖ .

We can simplify this by noting

‖√ρ (ex ⊗ ex)‖2 = (ex ⊗ ex)Tρ (ex ⊗ ex)

≤
∑
z∈A

(ez ⊗ ex)Tρ (ez ⊗ ex)

= eT
xTrA(ρ)ex

= [σ]x,x

implying

〈√
p
√
p

T
, ρ
〉
≤
∑
x,y∈A

√
pxpy ([σ]x,x[σ]y,y)

1
2 =

(∑
x∈A

√
px[σ]x,x

)2

= F(p, q),

as desired. ut
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Definition 2 We define the partial Diag operator over the subspace CA, de-
noted DiagA, as the operator that projects density matrices over CB ⊗ CA
onto the diagonal only on the subspace CA:

DiagA(ρ) =
∑
x∈A

(IB ⊗ eT
x ) ρ (IB ⊗ ex)⊗ exeT

x .

We may write DiagA as the superoperator I ⊗ DiagA, where I is the identity
superoperator acting on the rest of the space. Similarly, we may write the
partial trace over A as the superoperator TrA := I ⊗ Tr(·) where Tr(·) acts
only on CA. Using this perspective, we see that the partial trace and the
partial Diag operators commute when they act on different subspaces. Also,
TrA ◦DiagA = TrA since the trace only depends on the diagonal elements.

We also make use of the following lemma.

Lemma 4 Consider a matrix ρ ∈ SA×B+ . If TrA(ρ) = ψψ∗ for some vector
ψ ∈ CB, then ρ can be written as ρ = ρ̃⊗ ψψ∗, for some ρ̃ ∈ SA+.

This is easily proven using the fact that the half-line emanating through
a rank one positive semidefinite matrix forms an extreme ray of the cone
of positive semidefinite matrices, or more directly by expressing ρ using an
orthogonal basis for CB that includes ψ.

3.1 Derivation of Alice’s reduced cheating strategies

Assume (σ1, σ2, . . . , σn, σF ) is optimal for Alice’s cheating SDP. We now define
new variables (σ′1, σ

′
2, . . . , σ

′
n, σ

′
F ) from this optimal solution as

(σ1,DiagB′1(σ2), . . . ,DiagB′1×···×B′n−1
(σn),DiagB′×A′0(σF ))

and show it is also optimal. All we need to show is feasibility since the objective
function value is preserved because ΠB,c ⊗ IB′0×B′ is diagonal in the space

SB
′×A′0

+ . The context of this “reduced strategy” is very simple, Alice simply
changes the probability of which the next message is chosen, controlled on
the messages sent and received so far (doing so in superposition). This is a
very simple form, Alice’s cheating is certainly not limited to such a strategy.
However, here we show that such a strategy is optimal.

The first constraint is satisfied since σ′1 = σ1 is part of a feasible solution.
From Lemma 4, we can write σ′1 = φφ∗ ⊗ σ̃1 for some σ̃1 ∈ SA1

+ . We can write

TrB1
(σ′1) =

∑
y1∈B′1

ey1e
∗
y1 ⊗ φy1φ∗y1 ⊗ σ̃1,

where

φy1,...,yj :=
∑
b∈B0

∑
yj+1∈B′j+1

· · ·
∑

yn∈B′n

1√
2

√
βb,y eb⊗eb⊗eyj+1

⊗eyj+1
⊗· · ·⊗eyn⊗eyn ,
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which is in CB0×B′0×Bj+1×B′j+1×···×Bn×B
′
n . Therefore, TrB1(σ′1) is diagonal in

B′1 and

TrB1
(σ′1) = DiagB′1(TrB1

(σ′1))

= DiagB′1(TrB1
(σ1))

= DiagB′1(TrA2(σ2))

= TrA2(σ′2). (1)

Therefore, the second constraint is satisfied. Since σ′2 is diagonal in B′1 we can
write it as

σ′2 =
∑
y1∈B′1

ey1e
∗
y1⊗σ2,y1 , for some σ2,y1 ∈ SB0×B′0×A1×A2×B2×···×Bn×B′2×···×B

′
n

+ .

By feasibility,

TrA2(σ′2)=
∑
y1∈B′1

ey1e
∗
y1 ⊗ TrA2(σ2,y1)=TrB1(σ′1)=

∑
y1∈B′1

ey1e
∗
y1 ⊗ φy1φ∗y1 ⊗ σ̃1,

therefore σ′2 =
∑
y1∈B′1

ey1e
∗
y1 ⊗ φy1φ∗y1 ⊗ σ̃2,y1 , where σ̃2,y1 ∈ SB0×B′0×A1×A2

+

satisfies TrA2(σ̃2,y1) = σ̃1 for all y1 ∈ B′1. Using similar arguments, we may
show that the rest of the first n constraints are satisfied. For every j ∈ {3, . . . , n},
we have

σ′j =
∑
y1∈B′1

· · ·
∑

yj−1∈B′j−1

ey1e
∗
y1⊗· · ·⊗eyj−1

e∗yj−1
⊗φy1,...,yj−1

φ∗y1,...,yj−1
⊗σ̃j,y1,...,yj−1

,

where

σ̃j,y1,...,yj−1 ∈ SB0×B′0×A1×···×Aj
+ satisfies TrAj (σ̃j,y1,...,yj−1) = σ̃j−1,y1,...,yj−2

for each y1 ∈ B′1, . . . , yj−1 ∈ B′n−1. Note that

TrBn(σ′n) =
∑
y∈B′

eye
∗
y ⊗ φyφ∗y ⊗ σ̃n,y1,...,yn−1

which is helpful in proving feasibility of the last constraint. For the last con-
straint, we can use a similar reduction as in Equation (1) to show σ′F satisfies
TrA′×A′0(σ′F ) = TrBn(σ′n) proving (σ′1, . . . , σ

′
n, σ

′
F ) is feasible. We now use this

feasible solution to simplify the problem.
We can clean up σ′F by noting that it is diagonal in CB′ and CA′0 and write

it as

σ′F =
∑
a∈A′0

∑
y∈B′

eae
∗
a ⊗ eye∗y ⊗ σF,a,y, for some σF,a,y ∈ SB0×B′0×A×A

′

+ .

Thus,

TrA′×A′0(σ′F )=
∑
a∈A′0

∑
y∈B′

eye
∗
y⊗TrA′(σF,a,y)=

∑
y∈B′

eye
∗
y⊗

∑
a∈A′0

TrA′(σF,a,y)

 .
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Similarly, by feasibility, we have

TrA′×A′0(σ′F ) = TrBn(σ′n) =
∑
y∈B′

eye
∗
y ⊗ φyφ∗y ⊗ σn,y1,...,yn−1

.

Thus,

σ′F =
∑
a∈A′0

∑
y∈B′

eae
∗
a ⊗ eye∗y ⊗ φyφ∗y ⊗ σ̃F,a,y,

by writing σF,a,y = φyφ
∗
y ⊗ σ̃F,a,y where σ̃F,a,y ∈ SA×A

′

+ satisfies

∑
a∈A′0

TrA′(σ̃F,a,y) = σn,y1,...,yn−1

for all a ∈ A′0 and y ∈ B′.
The objective function becomes

〈
σ′F , ΠB,0 ⊗ IB′0×B′

〉
=

1

2

∑
a∈A′0

∑
y∈B′

βa,y 〈σ̃F,a,y, ψaψ∗a〉 .

At this point, we note that

〈
σ′F , ΠB,1 ⊗ IB′0×B′

〉
=

1

2

∑
a∈A′0

∑
y∈B′

βā,y 〈σ̃F,a,y, ψaψ∗a〉 ,

proving that evaluating Alice’s success probability of cheating towards 0 or 1
with this strategy is a matter of switching Bob’s two probability distributions.

Carrying on with P ∗A,0, we get the following SDP

sup 1
2

∑
a∈A′0, y∈B′

βa,y 〈σ̃F,a,y, ψaψ∗a〉

s.t. TrA1(σ̃1) = 1,
TrAj (σ̃j,y1,...,yj−1

) = σ̃j−1,y1,...,yj−2
, ∀j ∈ {2, . . . , n} ,
∀y1 ∈ B′1,

...
∀yj−1 ∈ B′j−1,∑

a∈A′0
TrA′(σ̃F,a,y) = σ̃n,y1,...,yn−1

, ∀y ∈ B′,
σ̃j,y1,...,yj−1 ∈ SA1×···×Aj

+ , ∀j ∈ {1, . . . , n},
∀y1 ∈ B′1,

...
∀yj−1 ∈ B′j−1,

σ̃F,a,y ∈ SA
′×A

+ , ∀a ∈ A′0, y ∈ B′.
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By Lemma 3, the following restrictions can only improve the objective function
value:

s1 := diag(σ̃1),

s
(y1)
2 := diag(σ̃2,y1), ∀y1 ∈ B′1,

...

s(y1,...,yn−1)
n := diag(σ̃n,y1,...,yn−1

), ∀y1 ∈ B′1, . . . , yn−1 ∈ B′n−1,

s(a,y) := diag(TrA′(σ̃F,a,y)), ∀a ∈ A′0, y ∈ B′,
TrA′(σ̃F,a,y) = Diag(s(a,y)), ∀a ∈ A′0, y ∈ B′,

where the superscripts are the restrictions of the vectors as before. With these
new variables, and using Lemma 3, we can write the new objective function
as

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa),

where (s1, . . . , sn, s) ∈ PA. Any feasible solution to the reduced SDP also gives
us a feasible solution to the original SDP, so their optimal values are equal. ut

This proof shows that the reduced cheating problem does not eliminate
all of the optimal solutions of the corresponding SDP. We can also show that
the reduced problems capture optimal solutions to the corresponding SDPs by
examining the dual SDPs. However, the primal SDPs are more important for
the purposes of this paper and this proof is more illustrative.

We note here that we can get similar SDPs and reductions if Alice chooses
a with a non-uniform probability distribution and similarly for Bob. It only
changes the multiplicative factor 1/2 in the reduced problems to something
that depends on a (or b) and the proofs are nearly identical. Note that this
causes the honest outcome probabilities to not be uniformly random and this
no longer falls into our definition of a coin-flipping protocol. However, some-
times such “unbalanced” coin-flipping protocols are useful, see [4].

4 Second-order cone programming formulations and analysis

Here we define second-order cone programs and discuss such formulations of
the optimal cheating probabilities for Alice and Bob.

The second-order cone (or Lorentz cone) in Rn, n ≥ 2, is defined as

SOCn := {(x, t) ∈ Rn : t ≥ ‖x‖2} .

A second-order cone program, denoted SOCP, is an optimization problem of
the form

(P) sup 〈c, x〉
subject to Ax = b,

x ∈ SOCn1 ⊕ · · · ⊕ SOCnk ,
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where A is an m× (
∑k
i=1 nk) matrix, b ∈ Rm, c ∈ R

∑k
i=1 nk , and k is finite.

A related cone, called the rotated second-order cone, is defined as

RSOCn :=
{

(a, b, x) ∈ Rn : a, b ≥ 0, 2ab ≥ ‖x‖22
}
.

Optimizing over the rotated second-order cone is also called second-order cone
programming because (x, t) ∈ SOCn if and only if (t/2, t, x) ∈ RSOCn+1 and
(a, b, x) ∈ RSOCn if and only if (x, a, b, a + b) ∈ SOCn+1 and a, b ≥ 0. In
fact, both second-order cone constraints can be cast as positive semidefinite
constraints:

t ≥ ‖x‖2 ⇐⇒
[
t xT

x t I

]
� 0 and a, b ≥ 0, 2ab ≥ ‖x‖22 ⇐⇒

[
2a xT

x b I

]
� 0.

Despite second-order cone programming being a special case of semidefinite
programming, there are some notable differences. One is that the algorithms
for solving second-order cone programs can be more efficient and robust than
those for solving semidefinite programs. We refer the interested reader to [12],
[13], [8], [2] and the references therein.

4.1 SOCP formulations for the reduced problems

We now show that the reduced SDPs can be modelled using second-order
cone programming. We elaborate on this below and explain the significance to
solving these problems computationally.

We start by first explaining how to model fidelity as an SOCP. Suppose
we are given the problem

max
q∈Rn+∩S

{√
F(p, q)

}
= max
q∈Rn+∩S

{
n∑
i=1

√
pi ti : t2i ≤ qi, ∀i ∈ {1, . . . , n}

}
,

where p ∈ Rn+ and S ⊆ Rn. We can replace t2i ≤ qi with the equivalent

constraint (1/2, qi, ti) ∈ RSOC3, for all i ∈ {1, . . . , n}. Therefore, we can
maximize the fidelity using n rotated second-order cone constraints.

For the same reason, we can use second-order cone programming to solve
a problem of the form

max


m∑
j=1

aj

√
F(pj , qj) : (q1, . . . , qm) ∈ Rmn+ ∩ S′

 ,

where a ∈ Rm+ and S′ ⊆ Rmn. However, this does not apply directly to the
reduced problems since we need to optimize over a linear combination of fi-
delities and f(x) = x2 is not a concave function. For example, Alice’s reduced
problem is of the form

max


m∑
j=1

aj F(pj , qj) : (q1, . . . , qm) ∈ Rmn+ ∩ S′
 .
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The root of this problem arises from the fact that the fidelity function, which
is concave, is a composition of a concave function with a convex function, thus
we cannot break it into these two steps. Even though the above analysis does
not work to capture the reduced problems as SOCPs, it does have a desirable
property that it only uses O(n) second-order cone constraints and perhaps this
formulation will be useful for future applications.

We now explain how to model the reduced problems as SOCPs directly.

Lemma 5 For p, q ∈ Rn+, we have

F(p, q)=max

 1√
2

n∑
i,j=1

√
pipj ti,j : (qi, qj , ti,j) ∈ RSOC3, ∀i, j ∈ {1, . . . , n}

 .

Proof For every i, j ∈ {1, , . . . , n}, we have (qi, qj , ti,j) ∈ RSOC3 if and only
if qi, qj ≥ 0, and 2qiqj ≥ t2i,j . Thus, ti,j =

√
2qiqj is optimal with objective

function value F(p, q). ut
This lemma provides an SOCP representation for the hypograph of the

fidelity function. Recall that the hypograph of a concave function is a convex
set. Also, the dimension of the hypograph of F(·, q) : Rn+ → R is equal to n
(assuming q > 0). Since the hypograph is O(n)-dimensional and convex, there
exists a so-called self-concordant barrier function for the set with complexity
parameter O(n), shown by Nesterov and Nemirovski [10]. The details of such
functions are not necessary for this paper, but we mention that such a function
allows the derivation of interior-point methods for the underlying convex opti-
mization problem which use O(

√
n log(1/ε)) iterations, where ε is an accuracy

parameter. The above lemma uses Ω(n2) second-order cone constraints and
the usual treatment of these “cone constraints” with optimal self-concordant
barrier functions lead to interior-point methods with an iteration complexity
bound of O(n log(1/ε)). It is conceivable that there exist better convex repre-
sentations of the hypograph of the fidelity function than the one we provided
in Lemma 5.

We can further simplify the reduced problems using fewer SOC constraints
than derived above. We first consider the dual formulation of the reduced
problems, so as to avoid the hypograph of the fidelity function.

Using the SDP characterization of the fidelity function, we write Alice’s
reduced problem for forcing outcome 0 as an SDP. The dual of this SDP is

inf z1

subject to z1 · eA1
≥ TrB1

(z2),
z2 ⊗ eA2

≥ TrB2
(z3),

...
zn ⊗ eAn ≥ TrBn(zn+1),

Diag(z
(y)
n+1) � 1

2βa,y
√
αa
√
αa

T, ∀a ∈ {0, 1} , y ∈ B ,
z1 ∈ R,
zi ∈ RA1×B1×···×Ai−1×Bi−1 , ∀i ∈ {2, . . . , n+ 1} ,

where z
(y)
n+1,x = zn+1,x1y1x2y2··· ,xnyn , ∀x ∈ A, y ∈ B .
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The only nonlinear constraint in the above problem is of the form

Diag(z) � √q√qT
,

for some fixed q ≥ 0. Recall that for z which is positive in every coordinate,
we have

Diag(z) � √q√qT ⇐⇒
〈
z−1, q

〉
≤ 1.

So, it suffices to characterize inverses using SOCP constraints which can be
done by considering

(zi, ri,
√

2) ∈ RSOC ⇐⇒ ri ≥ z−1
i .

With this observation, we can write the dual of Alice and Bob’s reduced
problems using O(n) RSOC constraints for each fidelity function in the ob-
jective function as opposed to Ω(n2) RSOC constraints had we combined the
reduced problems with Lemma 5 above.

4.2 Numerical performance of SDP formulation vs. SOCP formulation

Since the search algorithm designed in this paper examines the optimal cheat-
ing probabilities of many protocols (more than 1016) we are concerned with
the efficiency of solving the reduced problems. In this subsection, we discuss
the efficiency of this computation. Our computational platform is an SGI XE
C1103 with 2x 3.2 GHz 4-core Intel X5672 x86 CPUs processor, and 10 GB
memory, running Linux. The reduced problems were solved using SeDuMi 1.3,
a program for solving semidefinite programs and rotated second-order cone
programs in Matlab (Version 7.12.0.635) [12], [13].

Table 1 (on the next page) compares the computation of Alice’s reduced
problem in a four-round protocol for forcing an outcome of 0 with 5-dimensional
messages. The top part of the table presents the average running time, the
maximum running time, and the worst gap (the maximum of the extra time
needed to solve the problem compared to the other formulation (SOCP vs.
SDP)). The bottom part of the table presents the average number of itera-
tions, the average feasratio, the average timing (the time spent in preprocess-
ing, iterations, and postprocessing, respectively), and the average cpusec.

Table 1 suggests that solving the rotated second-order cone programs are
comparable to solving the semidefinite programs. However, before testing the
other three cheating probabilities, we test the performance of the two formula-
tions from Table 1 in a setting that appears more frequently in the search. In
particular, most the searches dealt with in this paper involve many protocols
with very sparse parameters. We retest the values in Table 1 when we force
the first entry of α0, the second entry of α1, the third entry of β0, and the
fourth entry of β1 to all be 0. The results are shown in Table 2.

As we can see, the second-order cone programming formulation stumbles
when the data does not have full support. Notice the feasratio in that scenario
is 0.5172, suggesting SeDuMi ran into some numerical problems. Since we
search over many vectors without full support, we use the SDP formulations
for the search algorithm.
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Table 1 Comparison of solving the SOCP formulation (the O(n) RSOC constraints version)
and the reduced SDP formulations for Alice forcing outcome 0 with 5-dimensional messages
in four-rounds (averaged over 1, 000 randomly selected protocols).

INFO parameters SOCP SDP

Average running time (s) 0.1551 0.1529
Max running time (s) 0.7491 0.2394

Worst gap (s) + 0.5098 + 0.0927

Average iteration 14.4420 12.2940
Average feasratio 0.9990 1.0000

Average timing [0.0270, 0.1267, 0.0010]T [0.0024, 0.1494, 0.0009]T

Average cpusec 0.9283 0.6588

Table 2 Comparison of solving the SOCP formulation (the O(n) RSOC constraints version)
and the reduced SDP formulations for Alice forcing outcome 0 with 5-dimensional messages
in four-rounds (averaged over 1, 000 randomly selected protocols with forced 0 entries).

INFO parameters SOCP SDP

Average running time (s) 0.4104 0.1507
Max running time (s) 0.7812 0.2084

Worst gap (s) + 0.6323 + 0

Average iterations 32.7370 12.2530
Average feasratio 0.5172 1.0000

Average timing [0.0279, 0.3814, 0.0010]T [0.0023, 0.1473, 0.0009]T

Average cpusec 2.4953 0.5605

5 Developing the strategies in the filter

5.1 Cheating Alice

We now reproduce Theorem 4, give brief descriptions of the cheating strategies,
then derive them and the corresponding bounds.
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Theorem 4 For a protocol parameterized by α0, α1 ∈ ProbA, β0, β1 ∈ ProbB,
we can bound Alice’s optimal cheating probability as follows:

P ∗A,0 ≥
1

2

∑
y∈B

conc {βa,yF(·, αa) : a ∈ {0, 1}} (v) (2)

≥ 1

2
λmax

(
η
√
α0
√
α0

T
+ τ
√
α1
√
α1

T
)

(3)

≥
(

1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
, (4)

where
η :=

∑
y∈B:

β0,y≥β1,y

β0,y and τ :=
∑
y∈B:

β0,y<β1,y

β1,y ,

and
√
v is the normalized principal eigenvector of η

√
α0
√
α0

T + τ
√
α1
√
α1

T.
Furthermore, in a six-round protocol, we have

P ∗A,0 ≥
1

2
λmax

(
η′
√

TrA2
(α0)

√
TrA2

(α0)
T

+τ ′
√

TrA2
(α1)

√
TrA2

(α1)
T
)

(5)

≥
(

1

2
+

1

2

√
F(TrA2

(α0),TrA2
(α1))

)(
1

2
+

1

2
∆(TrB2

(β0),TrB2
(β1))

)
(6)

where

η′ :=
∑
y1∈B1:

[TrB2
(β0)]y1

≥[TrB2
(β1)]y1

[TrB2(β0)]y1 and τ ′ :=
∑
y1∈B1:

[TrB2
(β0)]y1

<[TrB2
(β1)]y1

[TrB2(β1)]y1 .

We have analogous bounds for P ∗A,1, which are obtained by interchanging β0

and β1 in the above expressions.

We call (2) Alice’s improved eigenstrategy , (3) her eigenstrategy , and (4) her
three-round strategy . For six-round protocols, we call (5) Alice’s eigenstrategy
and (6) her measuring strategy .

Note that only the improved eigenstrategy is affected by switching β0 and
β1 (as long as we are willing to accept a slight modification to how we break
ties in the definitions of η, η′, τ, and τ ′).

We now briefly describe the strategies that yield the corresponding cheat-
ing probabilities in Theorem 4. Her three-round strategy is to prepare the
qubits AA′ in the state ψ′ = (ψ0 + ψ1)/ ‖ψ0 + ψ1‖ instead of ψ0 or ψ1, send
the first n messages accordingly, then measure the qubits received from Bob to
try to learn b, and reply with a bit a using the measurement outcome (along
with the rest of the state ψ′), to bias the coin towards her desired output. Her
eigenstrategy is the same as her three-round strategy, except that the first
message is further optimized. The improved eigenstrategy has the same first
message as in her eigenstrategy, but the last message is further optimized. For
a six-round protocol, Alice’s measuring strategy is to prepare the qubits AA′

in the following state ψ′ = (ψ′0 + ψ′1)/ ‖ψ′0 + ψ′1‖ where ψ′0 and ψ′1 are purifi-
cations of TrA2,A′(ψ0ψ

∗
0) and TrA2,A′(ψ1ψ

∗
1), respectively. She measures Bob’s
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first message to try to learn b, then depending on the outcome, she applies
a (fidelity achieving) unitary before sending the rest of her messages. Her
six-round eigenstrategy is similar to her measuring strategy, except her first
message is optimized in a way described in the proof.

Proof of Theorem 4. Recall Alice’s optimization problem

P ∗A,0 = max

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 .

To get a feasible solution, suppose Alice guesses b before she reveals a in
the following way. If Bob reveals y ∈ B, then Alice guesses b = 0 if β0,y ≥ β1,y

and b = 1 if β0,y < β1,y. Let Alice’s guess be denoted by f(y), so

f(y) = arg max
a
{βa,y} ∈ {0, 1} ,

and we set f(y) = 0 in the case of a tie. We have chosen a way to satisfy the
last constraint in Alice’s cheating polytope, but we can choose how Alice sends
her first n messages s1, . . . , sn. We make one more restriction, we set sn =
d⊗ eB1×···×Bn−1

and optimize over d ∈ ProbA. We can easily satisfy the rest
of the constraints given any d by choosing each variable as the corresponding
marginal probability distribution.

Under these restrictions, we have that Alice’s reduced problem can be
written as

max
d∈ProbA

1

2

∑
y∈B

βf(y),yF(d, αf(y))

 = max
d∈ProbA

{η F(d, α0) + τ F(d, α1)} .

We can simplify this using the following lemma.

Lemma 6 For nonnegative vectors {z1, . . . , zn} ⊂ Rn+, we have that

max

{
n∑
i=1

F(p, zi) : p ∈ Probn

}
= λmax

(
n∑
i=1

√
zi
√
zi

T

)
.

Furthermore, an optimal solution is the entry-wise square of the normalized
principal eigenvector.

Proof Since

n∑
i=1

F(p, zi)=

n∑
i=1

〈√
p
√
p

T
,
√
zi
√
zi

T
〉

=
√
p

T

(
n∑
i=1

√
zi
√
zi

T

)
√
p,

where
√· is the entry-wise square root, the maximization problem reduces to

max

{
√
p

T

(
n∑
i=1

√
zi
√
zi

T

)
√
p : p ∈ Probn

}
.
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Let x̂ ∈ Rm be the restriction of a vector x onto ∪ni=1supp(zi). Then the
optimal objective value of the above optimization problem is equal to that of

max

{√
p̂

T

(
n∑
i=1

√
ẑi
√
ẑi

T

)√
p̂ : p̂ ∈ Prob∪

n
i=1supp(zi)

}
.

If the nonnegativity constraint were not present, the optimum value would be
attained by setting

√
p̂ to be the normalized principal eigenvector of the matrix∑n

i=1

√
ẑi
√
ẑi

T
. Because

∑n
i=1

√
ẑi
√
ẑi

T
has positive entries, we know the prin-

cipal eigenvector is also positive by the Perron-Frobenius Theorem. Since this
does not violate the nonnegativity constraint in the problem, p̂, where

√
p̂ is the

normalized principal eigenvector, is an optimal solution yielding an optimal

objective value of λmax

(∑n
i=1

√
ẑi
√
ẑi

T
)

. Notice that
∑n
i=1

√
ẑi
√
ẑi

T
is the

matrix obtained by removing the zero rows and columns from
∑n
i=1

√
zi
√
zi

T

and thus has the same largest eigenvalue. �

Using this lemma, Alice can cheat with probability

1

2
λmax

(
η
√
α0
√
α0

T
+ τ
√
α1
√
α1

T
)
,

which we call Alice’s eigenstrategy.
We can find a lower bound on this value using the following two lemmas.

Lemma 7 For β0, β1, η, and τ defined above, we have η+ τ = 1 +∆(β0, β1).

Proof Notice that we can write
∑
y∈B

max
a∈{0,1}

{βa,y}+
∑
y∈B

min
a∈{0,1}

{βa,y} = 2 and

we can also write
∑
y∈B

max
a∈{0,1}

{βa,y} −
∑
y∈B

min
a∈{0,1}

{βa,y} = 2∆(β0, β1). With

this, we can conclude that η + τ =
∑
y∈B

max
a∈{0,1}

{βa,y} = 1 + ∆(β0, β1), as

desired. ut

The above lemma can be restated as
∑
y∈B

max
a∈{0,1}

{βa,y} = 1 +∆(β0, β1) for

any probability distributions β0 and β1. This is helpful when looking at Bob’s
cheating strategies as well.

Lemma 8 For η, τ ∈ R and p, q ∈ Probn, we have

λmax

(
η
√
p
√
p

T
+ τ
√
q
√
q

T
)

=
1

2

(
η + τ +

√
(η − τ)2 + 4ητ F(p, q)

)
.

Proof Since we can write F(p, q) =
(√

pT√q
)2

, we can apply a unitary to both
√
p and

√
q and both sides of the equality we want to prove are unaffected.

Choose a unitary U such that

U
√
p = [1, 0, 0, . . . , 0]T and U

√
q = [sin θ, cos θ, 0, . . . , 0]T,



20 A. Nayak, J. Sikora, L. Tunçel

for some θ ∈ [0, 2π). Then we can write F(p, q) = sin2 θ. Let λmax be the largest
eigenvalue of the matrix η

√
p
√
pT + τ

√
q
√
qT, or equivalently, of the matrix

ηU
√
p
√
pTU∗ + τU

√
q
√
qTU∗, and let λ2 be the second largest eigenvalue.

Then

λmax + λ2 = Tr(η
√
p
√
p

T
+ τ
√
q
√
q

T
) = η + τ

and, by taking the determinant of the only nonzero block, we get

λmax · λ2 = ητ cos2 θ = ητ(1− F(p, q))

implying λmax = 1
2

(
η + τ +

√
(η − τ)2 + 4ητF(p, q)

)
, as desired. ut

Note that Lemma 8 shows that switching the roles of η and τ does not affect
the largest eigenvalue.

Using the above two lemmas, we have

1

2
λmax

(
η
√
α0
√
α0

T
+ τ
√
α1
√
α1

T
)

=
1

4

(
η + τ +

√
(η − τ)2 + 4ητ F(α0, α1)

)
≥ 1

4

(
η + τ +

√
(η − τ)2 F(α0, α1) + 4ητ F(α0, α1)

)
=

1

4

((
1 +

√
F(α0, α1)

)
(η + τ)

)
=

(
1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
.

This lower bound has a natural interpretation. This is the strategy where
Alice ignores all of Bob’s messages until CBn is sent. Then she measures it
to learn b with probability 1

2 + 1
2∆(β0, β1). Conditioned on having the correct

value for b, she tries to get past Bob’s cheat detection and can do so with
probability 1

2 + 1
2

√
F(α0, α1). We call this Alice’s three-round strategy since it

combines optimal strategies for the three-round protocol example in Subsec-
tion 1. It makes sense that this is a lower bound on the success probability
of Alice’s eigenstrategy since her eigenstrategy is optimized from the same
restrictions that apply to her three-round strategy.

We can also examine how Alice can choose her last message optimally
supposing she has already sent her first n messages in a particular way. I.e.,
suppose sn := c⊗ eB1×···×Bn−1

for some c ∈ ProbA (as in the eigenstrategy).
From this we can find s1, . . . , sn−1 satisfying the first n− 1 constraints of her
cheating polytope by taking the corresponding marginal distributions of c. We
want to optimize over s satisfying TrA′0(s) = sn ⊗ eBn = c⊗ eB . In this case,

this constraint can be written as
∑
a∈{0,1} s

(a,y) = c, for each y ∈ B, where

again, s(a,y) is the restriction of s with a and y fixed. Now we get the following
optimization problem
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max 1
2

∑
a∈{0,1}

∑
y∈B βa,y F(s(a,y), αa)

subject to
∑
a∈{0,1} s

(a,y) = c, for all y ∈ B,
s(a,y) ≥ 0,

where c is now constant. If we rewrite this as

max 1
2

∑
y∈B

∑
a∈{0,1} F(s(a,y), βa,yαa)

subject to
∑
a∈{0,1} s

(a,y) = c, for all y ∈ B,
s(a,y) ≥ 0,

we have a separable problem over y ∈ B. That is, for each fixed ỹ ∈ B, Alice
needs to solve the optimization problem

Gỹ(c) :=max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0,∀a ∈ {0, 1}

 .

This optimization problem has a special structure.

Definition 3 The infimal convolution of the convex functions f1, f2, . . . , fn,
where
f1, . . . , fn : Rm → R ∪ {∞}, is

(f1�f2� · · ·�fn)(d) := inf
x1,...,xn∈Rm

{
n∑
i=1

fi(xi) :

n∑
i=1

xi = d

}
.

We do not need to worry about the nonnegativity constraints on the vari-
ables since we can define our convex function −F(p, q) = +∞ if p or q is not
nonnegative. Note for every p ∈ Rm+ , that −F(p, ·) is a proper, convex function,
i.e., it is convex and −F(p, q) < +∞ for some q ∈ Rm+ and −F(p, q) > −∞
for every q ∈ Rm+ . Proper, convex functions have many useful properties as
detailed in this section. Using these properties and the fact that −F(p, ·) is
positively homogeneous, we show a way to express Gỹ.

Recall that for proper, convex functions f1, . . . , fn : Rm → R ∪ {∞},
the convex hull of {f1, . . . , fn} is the greatest convex function f such that
f(x) ≤ f1(x), . . . , fn(x) for every x ∈ Rm. To write down explicitly what the
convex hull is, we use the following lemma.

Lemma 9 ([Roc70, page 37]) Let f1, . . . , fn : Rm → R ∪ {∞} be proper,
convex functions. Then we have

conv {f1, . . . , fn} (d) = inf

{
n∑
i=1

λifi(xi) :

n∑
i=1

λixi = d

}
.
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For a positively homogeneous function f , we have λ f
(
λ−1x

)
= f(x), for

λ > 0. Therefore, we have the following corollary.

Corollary 1 Let f1, . . . , fn : Rm → R ∪ {∞} be positively homogeneous,
proper, convex functions. Then we have

conv {f1, . . . , fn} = f1�f2� · · ·�fn.
Therefore, we can write Alice’s cheating probability using concave hulls as

shown below

Gỹ(c) = max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0, ∀a


= −min

−1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0, ∀a


= −

(
−1

2
F(·, β0,ỹα0)

)
�

(
−1

2
F(·, β1,ỹα1)

)
(c)

= −conv

{−1

2
β0,ỹF(·, α0),

−1

2
β1,ỹF(·, α1)

}
(c)

= conc

{
1

2
β0,ỹF(·, α0),

1

2
β1,ỹF(·, α1)

}
(c).

Thus, for each c ∈ ProbA, we can write Alice’s cheating probability as∑
y∈B

conc

{
1

2
β0,yF(·, α0),

1

2
β1,yF(·, α1)

}
(c).

Note this way of optimizing the last message works for any strategy. For a
general strategy, we would have a different c for every y1, . . . , yn−1.

Thus, we have Alice’s improved eigenstrategy which is when Alice chooses
her first n messages according to her eigenstrategy, yet reveals a optimally.

Cheating Alice in six-round protocols. In six-round protocols, Alice’s
goal is to maximize the objective function

1

2

∑
a∈{0,1}

∑
y1∈B1

∑
y2∈B2

βa,y1y2F(s(a,y1y2), αa)

over (s1, s2, s) satisfying:

TrA1(s1) = 1,
TrA2

(s2) = s1 ⊗ eB1
,

TrA′0(s) = s2 ⊗ eB2
,

s1 ∈ RA1
+ ,

s2 ∈ RA1×B1×A2
+ ,

s ∈ RA1×A2×B1×B2×A′0
+ .
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We suppose that Alice chooses her commitment a based on the most likely
choice of b after seeing y1 from Bob’s first message. Let

f ′(y1) = arg max
a∈A′0

{[TrB2
(βa)]y1}

and 0 in the case of a tie. The last constraint can be written as the sum∑
a∈A′0

s(a,y1y2) = s
(y1)
2 , for all y1 ∈ B1, where s

(y1)
2 is the projection of s2 with

the index y1 fixed. We set s(a,y1,y2) = s
(y1)
2 , if a = f ′(y1), and 0 otherwise.

Now we set s
(y1)
2 = s0

2, if f ′(y1) = 0, and s
(y1)
2 = s1

2, if f ′(y1) = 1, where we
optimize s0

2, s
1
2 ∈ RA1×A2

+ . The new objective function can be written as

1

2

∑
a∈A′0

∑
y1∈B1,y2∈B2

βa,y1y2F(s(a,y1y2), αa)

=
1

2

∑
y1∈B1

 ∑
y2∈B2

βf ′(y1),y1y2

F(s
f ′(y1)
2 , αf ′(y1))

=
1

2
η′ F(s0

2, α0) +
1

2
τ ′ F(s1

2, α1).

Since the only constraints remaining are TrA2
(s0

2) = s1 = TrA2
(s1

2), we now
optimize over each choice of s0

2 and s1
2 separately using the following lemma.

Lemma 10 For α ∈ RA1×A2
+ and c ∈ RA1

+ , we have

max {F(p, α) : TrA2(p) = c, p ≥ 0} ≥ F(c,TrA2(α)).

The inequality can be shown to hold with equality by Uhlmann’s theorem.
However, we prove the inequality by exhibiting a feasible solution which is
also useful for the analysis of cheating Bob.

Proof For each x1 ∈ A1, x2 ∈ A2, define px1,x2
as

px1,x2
:=


cx1

αx1,x2
[TrA2

(α)]x1
if [TrA2(α)]x1 > 0,

cx1

1
|A2| if [TrA2(α)]x1 = 0.

Then we have p ≥ 0 is feasible since [TrA2
(p)]x1

= cx1
and it has objective

function value F(p, α) = F(c,TrA2(α)), as desired. ut

Using the lemma, we can write the problem as

max
c∈ProbA1

η′ F(c,TrA2(α0)) + τ ′ F(c,TrA2(α1))

which has optimal value

1

2
λmax

(
η′
√

TrA2
(α0)

√
TrA2

(α0)
T

+ τ ′
√

TrA2
(α1)

√
TrA2

(α1)
T
)
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and is lower bounded by(
1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
.

Again, this last quantity has context. This is the strategy where Alice measures
the first message to learn b early and then tries to change the value of a. She
can learn b with probability 1

2 + 1
2∆(TrB2

(β0),TrB2
(β1)). She can successfully

change the value of a with probability 1
2 + 1

2

√
F(TrA2(α0),TrA2(α1)). Thus,

she can cheat with probability at least(
1

2
+

1

2

√
F(TrA2

(α0),TrA2
(α1))

)(
1

2
+

1

2
∆(TrB2

(β0),TrB2
(β1))

)
.

5.2 Cheating Bob

We now turn to cheating Bob. We reproduce Theorem 5, give brief descriptions
of the cheating strategies, then derive them and the corresponding bounds.

Theorem 5 For a protocol parameterized by α0, α1 ∈ ProbA, β0, β1 ∈ ProbB,
we can bound Bob’s optimal cheating probability as follows:

P ∗B,0 ≥
1

2
+

1

2

√
F(β0, β1), (7)

and

P ∗B,0 ≥
1

2
+

1

2
∆(TrA2×···×An(α0),TrA2×···×An(α1)). (8)

In a four-round protocol, we have

P ∗B,0 ≥
1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,xvx, βa

)
(9)

≥ 1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 (10)

≥ max

{
1

2
+

1

2
∆(α0, α1),

1

2
+

1

2

√
F(β0, β1)

}
,

where
√
vx is the normalized principal eigenvector of

∑
a∈{0,1} αa,x

√
βa
√
βa

T
.

In a six-round protocol, we have

P ∗B,0 ≥
1

2

∑
a∈A′0

F

(∑
x∈A

αa,x p̃2
(x), βa

)
(11)

≥ 1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ζ
√

TrB2(β1)
√

TrB2(β1)
T
)

(12)

≥
(

1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
, (13)
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where

[p̃2
(x)]y1,y2 :=


cy1

βg(x),y1,y2
[TrB2

(βg(x))]y1
if [TrB2

(βg(x))]y1 > 0 ,

cy1
1
|B2| if [TrB2

(βg(x))]y1 = 0 ,

κ =
∑
x∈A:

α0,x≥α1,x

α0,x , ζ =
∑
x∈A:

α0,x<α1,x

α1,x , g(x) = arg max
a
{αa,x} ,

and
√
c is the normalized principal eigenvector of

1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)
.

Furthermore, if |Ai| = |Bi| for all i ∈ {1, . . . , n}, then

P ∗B,0 ≥
1

2

∑
a∈{0,1}

F(αa, βa) . (14)

We get analogous lower bounds for P ∗B,1 by switching the roles of β0 and
β1 in the above expressions.

We call (7) Bob’s ignoring strategy and (8) his measuring strategy . For four-
round protocols, we call (9) Bob’s eigenstrategy and (10) his eigenstrategy lower
bound . For six-round protocols, we call (11) Bob’s six-round eigenstrategy , (12)
his eigenstrategy lower bound , and (13) his three-round strategy . We call (14)
Bob’s returning strategy .

Note that the only strategies that are affected by switching β0 and β1 are
the eigenstrategy and the returning strategy.

We now briefly describe the strategies that yield the corresponding cheat-
ing probabilities in Theorem 5. Bob’s ignoring strategy is to prepare the
qubits BB′ in the state φ′ = (φ0 + φ1)/ ‖φ0 + φ1‖ instead of φ0 or φ1, send
the first n messages accordingly, then send a value for b that favours his de-
sired outcome (along with the rest of φ′). His measuring strategy is to measure
Alice’s first message, choose b according to his best guess for a and run the
protocol with φb. His returning strategy is to send Alice’s messages right back
to her. For the four-round eigenstrategy, Bob’s commitment state is a princi-
pal eigenvector depending on Alice’s first message. For a six-round protocol,
Bob’s three-round strategy is to prepare the qubits BB′ in the following state
φ′ = (φ′0 + φ′1)/ ‖φ′0 + φ′1‖ where φ′0 and φ′1 are purifications of TrB2,B′(φ0φ

∗
0)

and TrB2,B′(φ1φ
∗
1), respectively. He measures Alice’s second message to try

to learn a, then depending on the outcome, he applies a (fidelity achieving)
unitary before sending the rest of his messages. His six-round eigenstrategy is
similar to his three-round strategy except that the first message is optimized
in a way described in the proof.
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Proof of Theorem 5. Bob’s returning strategy is to send Alice’s messages
right back to her (if the dimensions agree). This way, the state that Alice checks
at the end of the protocol is her own state. This is a good strategy when Alice
and Bob share the same starting states, i.e., for a protocol with parameters
α0 = β0 and α1 = β1. To calculate the cheating probability of this strategy,
for any choice of parameters, it is easier to use the original cheating SDP as
opposed to the reduced cheating SDP. This cheating strategy corresponds to
the feasible solution

ρ̄1 = ρ̄2 = · · · = ρ̄n = ρ̄F = ψψ∗

which has success probability given by the objective function value

〈ρ̄F , ΠA,0〉 = 〈ψψ∗, ΠA,0〉 =
1

2

∑
a∈{0,1}

F(αa, βa).

This is clearly optimal when α0 = β0 and α1 = β1.
Recall Bob’s reduced problem below

P ∗B,0 = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)Tpn, βa

)
: (p1, . . . , pn) ∈ PB

 .

There is a strategy for Bob that works for any n and is very important in the
search algorithm. This is the strategy where Bob ignores all of Alice’s messages
and tries to choose b after learning a from Alice. By ignoring Alice’s messages,
he effectively sets pn = eA⊗d, for some d ∈ ProbB , which we optimize. Under
this restriction, he can cheat with probability

max
d∈ProbB

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)T(eA ⊗ d), βa

)
= max

d∈ProbB

1

2

∑
a∈{0,1}

F (d, βa)

=
1

2
λmax

(√
β0

√
β0

T
+
√
β1

√
β1

T
)

=
1

2
+

1

2

√
F(β0, β1)

using Lemma 6 and Lemma 8. Note this is similar to the three-round case
(discussed in Subsection 1). The reason this strategy is important is that it is
easy to compute, only depends on half of the parameters, and is effective in
pruning sub-optimal protocols. We call this Bob’s ignoring strategy.

Another strategy for Bob is to measure Alice’s first message, choose b
accordingly, then play honestly. This is called Bob’s measuring strategy and
succeeds with probability

1

2
+

1

2
∆(TrA2×···×An (α0) ,TrA2×···×An (α1)),

when n ≥ 2.
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Cheating Bob in four-round protocols. There are cheating strategies
that apply to four-round protocols, that do not extend to a larger number
of rounds. For example, Bob has all of Alice’s CA space before he sends any
messages. We show that Bob can use this to his advantage. One example is
Bob’s measuring strategy, which leads to a cheating probability of

1

2
+

1

2
∆(α0, α1) .

Similar to cheating Alice, we can develop an eigenstrategy for Bob. For the
special case of four-round protocols, notice that Bob’s cheating polytope con-
tains only the constraints TrB(p) = eA and p ∈ RA×B+ . This can be rewritten

as px ∈ ProbB for all x ∈ A. Also, F
(
(αa ⊗ IB)Tpn, βa

)
can be written as

F
(∑

x∈A αa,xp
(x)
n , βa

)
, where p

(x)
n is the projection of pn with x fixed. Thus,

we can simplify Bob’s reduced problem as

P ∗B,0 = max

1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,xp
(x)
n , βa

)
: p(x)

n ∈ ProbB , for all x ∈ A

 .

Since fidelity is concave, we have that

F

(∑
x∈A

αa,xp
(x)
n , βa

)
≥
∑
x∈A

αa,x F(p(x)
n , βa).

Therefore Bob’s optimal cheating probability is bounded below by

max

1

2

∑
x∈A

∑
a∈{0,1}

αa,x F(p(x)
n , βa) : p(x)

n ∈ ProbB , for all x ∈ A


which separates over x ∈ A. That is, we choose each p

(x)
n ∈ ProbB sepa-

rately to maximize
∑

a∈{0,1}

αa,x F(p(x)
n , βa), which has optimal objective value

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 using Lemma 6. Thus, we know that

P ∗B,0 ≥
1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 .

Since we use the concavity of the objective function, the bound we get
may not be tight. Notice that solving the smaller separated problems yields a
solution which is feasible for the original problem. Therefore, we can substitute
this into the original objective function to get a better lower bound on Bob’s
optimal cheating probability. We call this Bob’s eigenstrategy.
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Since eigenvalues are expensive to compute, we can bound this quantity by

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T


≥ min

β0,β1∈ProbB

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T


=

1

2

∑
x∈A

max
a∈{0,1}

{αa,x}

=
1

2
+

1

2
∆(α0, α1) ,

where the last equality follows from Lemma 7.
Since λmax(X + Y ) ≤ λmax(X) + λmax(Y ) for all matrices X and Y , we

have that

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 ≥ 1

2
λmax

∑
x∈A

∑
a∈{0,1}

αa,x
√
βa
√
βa

T


=

1

2
λmax

 ∑
a∈{0,1}

√
βa
√
βa

T


=

1

2
+

1

2

√
F(β0, β1) .

Therefore, Bob’s eigenstrategy performs better than both his measuring strat-
egy and ignoring strategy.

Cheating Bob in six-round protocols. In six-round protocols, Bob’s
goal is to maximize the objective function

1

2

∑
a∈{0,1}

F((αa ⊗ IB1×B2)Tp2, βa)

over (p1, p2) satisfying:

TrB1(p1) = eA1 ,
TrB2

(p2) = p1 ⊗ eA2
,

p1 ∈ RA1×B1
+ ,

p2 ∈ RA1×B1×A2×B2
+ .

Like in four-round protocols, we can lower bound the objective function as

1

2

∑
a∈A′0

F

(∑
x∈A

αa,xp
(x)
2 , βa

)
≥ 1

2

∑
x∈A

∑
a∈A′0

F(p
(x)
2 , αa,xβa)

and focus our attention on optimizing the function
∑
a∈A′0

F(p
(x)
2 , αa,xβa). We

use the following lemma.
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Lemma 11 For β0, β1 ∈ RB1×B2
+ and c ∈ RB1

+ , we have

max

 ∑
a∈{0,1}

F(p, βa) : TrB2(p) = c, p ≥ 0

 ≥ F(c,TrB2(βã)),

for any ã ∈ {0, 1}.

Proof Fix any ã and choose p ∈ arg max {F(p, βã) : TrB2(p) = c, p ≥ 0}. Since
the fidelity is nonnegative, the result follows by Lemma 10. ut

By setting p1 = c ⊗ eA1
, we have the constraint TrB2

(p(x)) = c for all
x ∈ A. We now apply Lemma 11 to get

max
p
(x)
2

∑
a∈A′0

F(p
(x)
2 , αa,xβa)

 ≥ αg(x),x F(c,TrB2(βg(x))),

where g(x) := arg maxa∈A′0 {αa,x}, and 0 in the case of a tie.
Substituting this into the relaxed objective function above, we have

max
c∈ProbB1

κ

2
F(c,TrB2

(β0)) +
ζ

2
F(c,TrB2

(β1))

=
1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)

(15)

≥
(

1

2
+

1

2
∆(α0, α1)

)(
1

2
+

1

2

√
F(TrB2

(β0),TrB2
(β1))

)
. (16)

The quantity (16) corresponds to the strategy where Bob measures Alice’s
second message to try to learn a early, then tries to change the value of b.
He can learn a after Alice’s second message with probability 1

2 + 1
2∆(α0, α1).

He can change the value of b with probability 1
2 + 1

2

√
F(TrB2

(β0),TrB2
(β1)).

Thus, he can cheat with probability at least(
1

2
+

1

2

√
F(TrB2

(β0),TrB2
(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
.

We call this Bob’s three-round strategy.
Although we used many bounds in developing the quantity (12), such as

concavity and the lower bound in Lemma 11, we can recover some of the losses
by generating its corresponding feasible solution and computing its objective
function value for the original objective function. For example, we can calculate
c as the entry-wise square of the normalized principal eigenvector of

1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)
,

then calculate p
(x)
2 for each value of x from the construction of the feasible

solution in the proof of Lemma 10. We call this Bob’s eigenstrategy.
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6 Computer aided bounds on bias

The search algorithm has the potential to give us computer aided proofs that
certain coin-flipping protocols have bias within a small interval. In this section,
we describe the kind of bound we can deduce under the assumption that the
software provides us an independently verifiable upper bound on the additive
error in terms of the objective value.

We begin by showing that any state ξ ∈ RD of the form used in the
protocols is suitably close to a state given by the mesh used in the search
algorithm. For an integer N ≥ 1, let MN = {j/N : j ∈ Z, 0 ≤ j ≤ N}.

Lemma 12 Let N ≥ 1 be an integer. Consider the state ξ =

D∑
i=1

√
γi ei in RD,

where γ ∈ ProbD. Then there is a probability distribution γ′ ∈ ProbD ∩MD
N

such that the corresponding state ξ′ =

D∑
i=1

√
γ′i ei satisfies ξ∗ξ′ ≥ 1−D/2N .

Proof Let γ̃i = bγiNc /N for i ∈ {1, 2, . . . , D}. Note that
∑D
i=1 γ̃i ≤ 1, and

that

1−
D∑
i=1

γ̃i =

D∑
i=1

γi −
D∑
i=1

γ̃i = j/N,

for some j ∈ {0, 1, 2, . . . , D}. We may obtain γ′ by adding 1/N to j coordinates
of γ̃. For concreteness, let γ′i = γ̃i + 1/N for i ∈ {1, 2, . . . , j} and γ′i = γ̃i
for i ∈ {j + 1, . . . , D}. We therefore have ‖γ − γ′‖1 ≤ D/N , and

ξ∗ξ′ = F(γ, γ′)1/2 ≥ 1− D

2N
,

by a Fuchs-van de Graaf inequality [5]. ut
The above lemma helps us show that any protocol in the family we consider

is approximated by one given by the mesh.

Lemma 13 Consider a bit-commitment based coin-flipping protocol A with
bias ε of the form considered in this paper. Suppose A is specified by the 4-
tuple (α0, α1, β0, β1), where αi, βi ∈ ProbD. Then there is a protocol A′ with
bias ε′ of the same form, defined by a 4-tuple (α′0, α

′
1, β
′
0, β
′
1), satisfying the

two conditions |ε− ε′| ≤ 2
√
D/N and α′i, β

′
i ∈ ProbD ∩MD

N .

Proof The statement of the lemma is vacuous if 1−D/2N < 0, we therefore
assume 1 −D/2N ≥ 0. We show that ε′ ≤ ε + 2

√
D/N (the other inequality

ε ≤ ε′ + 2
√
D/N follows similarly).

Without loss in generality, assume that bias ε′ is achieved when Bob cheats
towards 0 in protocol A′. Recall

ψ =
1√
2

(e0 ⊗ e0 ⊗ ψ0 + e1 ⊗ e1 ⊗ ψ1) , and

ΠA,0 =
∑

b∈{0,1}

ebe
∗
b ⊗ ebe∗b ⊗ φbφ∗b .
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Let the probability distributions α′0, α
′
1, β
′
0, β
′
1 and states ψ′0, ψ

′
1, φ
′
0, φ
′
1 corre-

sponding to the distributions α0, α1, β0, β1, respectively, be the ones guaran-
teed by Lemma 12. Let

ψ′ =
1√
2

(e0 ⊗ e0 ⊗ ψ′0 + e1 ⊗ e1 ⊗ ψ′1) , and

Π ′A,0 =
∑

b∈{0,1}

ebe
∗
b ⊗ ebe∗b ⊗ φ′b(φ′b)∗ .

We have ψ∗ψ′ ≥ 1− D
2N , by Lemma 12, and

‖ψ′(ψ′)∗ − ψψ∗‖∗ ≤ 2
(
1− (ψ∗ψ′)2

)1/2
≤ 2
√
D/N ,

by a Fuchs-van de Graaf inequality [5]. Further,

∥∥Π ′A,0 −ΠA,0

∥∥
op
≤ max

{
‖φ′0(φ′0)∗ − φ0φ

∗
0‖op , ‖φ′1(φ′1)∗ − φ1φ

∗
1‖op

}
≤
√
D/N ,

using the identity ‖vv∗ − uu∗‖op =
(
1− (v∗u)2

)1/2
for normalized real vectors

v and u. Here, ‖X‖op denotes the operator norm of X, namely the largest
singular value of the matrix X.

For this analysis, we assume that the protocol A′ is of the form ana-
lyzed in this paper and the two parties start with joint initial state e⊗4n

0 ,
apply U1, U2, . . . , U2n alternately, and finally measure their parts of the sys-
tem to obtain the output.

Consider Bob’s cheating strategy towards 0 (which we assumed achieves
bias ε′). As in the proof of Lemma 1, it follows that there are spaces Hi and
corresponding unitary operations U ′i on them for even i ≤ 2n that characterize
his cheating strategy. When Alice measures ζ ′ = (U ′2nU2n−1U

′
2n−2 · · ·U1)e⊗4n

0 ,

she obtains outcome 0 with probability
∥∥Π ′A,0ζ ′∥∥2

2
= 1

2 + ε′. (In the expression

for the final state ζ ′, we assume that the unitary operations extend to the
combined state space by tensoring with identity over the other part.)

We consider the same cheating strategy for Bob in the protocol A, in
which Alice starts with the commitment state ψ, and performs the measure-
ment {ΠA,0, ΠA,1, ΠA,abort} . This corresponds to a different initial unitary
transformation for Alice instead of U1. Let ζ be the corresponding final joint
state. Note that ψ is mapped to ζ using the same unitary transformation that
maps ψ′ to ζ ′ since Bob is using the same cheating strategy. The probability
of outcome 0 is ‖ΠA,0ζ‖22 ≤ 1

2 +ε, as the protocol A has bias ε. We may bound
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the difference in probabilities as follows.

ε′ − ε ≤ Tr
(
Π ′A,0ζ

′(ζ ′)∗
)
− Tr (ΠA,0ζζ

∗)

= Tr
(
(Π ′A,0 −ΠA,0)ζ ′(ζ ′)∗

)
+ Tr (ΠA,0(ζ ′(ζ ′)∗ − ζζ∗))

≤
∥∥Π ′A,0 −ΠA,0

∥∥
op

+
1

2
‖ζζ∗ − ζ ′(ζ ′)∗‖∗

=
∥∥Π ′A,0 −ΠA,0

∥∥
op

+
1

2
‖ψψ∗ − ψ′(ψ′)∗‖∗

≤ 2
√
D/N ,

as claimed. ut

We may infer bounds on classes of protocols using the search algorithm
and the lemma above. Suppose the computational approximation to the bias
obtained by the algorithm has net additive error τ due to the protocol filter
and SDP solver and the finite precision arithmetic used in the computations. If
the algorithm reports that there are no protocols with bias at most ε∗ given by
a mesh with precision parameter N , then it holds that there are no 4-tuples,
even outside the mesh, with bias at most ε∗ − 2

√
D/N − τ . Here D is the

dimension of Alice’s (or Bob’s) first n messages (i.e., commitment states used,
or equivalently, the size of the support of an element of the 4-tuple).

A quick calculation with ε∗ = 0.2499 and τ ≈ 0 shows that mesh fineness
parameter N ≥ 2185 × d for four-round protocols and N ≥ 2185 × d2 for
six-round protocols with message dimension d, would be sufficient for us to
conclude that such protocols do not achieve optimal bias ≈ 0.2071. A slightly
finer mesh would be needed if one were to expect τ to be somewhat larger
than 0. We would then obtain computer aided lower bounds for new classes of
bit-commitment based protocols. Thus, a refinement of the search algorithm
that allows finer meshes for messages of larger dimension and over more rounds
would be well worth pursuing.

7 New bounds for four-round qubit protocols

We can derive analytical bounds on the bias of four-round protocols using the
strengthened Fuchs-van de Graaf inequality for qubit states, below:

Proposition 1 ([11]) For any quantum states ρ1, ρ2 ∈ S2
+, i.e., qubits, we

have

1 ≤ ∆(ρ1, ρ2) + F(ρ1, ρ2) .

Recall from Section 5 that Bob can cheat in a four-round protocol with
probability bounded below by

P ∗B,0 ≥ 1

2
+

1

2

√
F(β0, β1) (17)
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and

P ∗B,0 ≥ 1

2
+

1

2
∆(α0, α1) (18)

and Alice can cheat with probability bounded below by

P ∗A,0 ≥
(

1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
. (19)

If β0, β1 ∈ Prob2, then by (17) and Proposition 1, we have

∆(β0, β1) ≥ 4P ∗B,0(1− P ∗B,0)

and if α0, α1 ∈ Prob2, then from (18) and Proposition 1, we have

F(α0, α1) ≥ 2− 2P ∗B,0.

Combining these two bounds with (19), we get

4P ∗A,0 ≥
(

1 +
√

2− 2P ∗B,0

) (
1 + 4P ∗B,0(1− P ∗B,0)

)
which is a decreasing function of P ∗B,0. Setting this lower bound equal to P ∗B,0
and solving for P ∗B,0, we can show max{P ∗A,0, P ∗B,0} ≥ 0.7487 > 1/

√
2 ≈ 0.7071.

In fact, using the regular Fuchs-van de Graaf inequalities [5], we can get bounds
when they are not both two-dimensional. If β0, β1 are two-dimensional and
α0, α1 are not, we get a lesser bound of max{P ∗A,0, P ∗B,0} ≥ 0.7140 > 1/

√
2.

On the other hand, if α0, α1 are two-dimensional and β0, β1 are not, then we
get max{P ∗A,0, P ∗B,0} ≥ 0.7040 6> 1/

√
2, so we do not rule out the possibility of

protocols with bias 1/
√

2 − 1/2 with such parameters. Note that tests where
α0, α1 are two-dimensional are subsumed in the higher-dimensional tests we
performed. However, future experiments could include computationally testing
the case where Alice’s first message is two-dimensional and Bob’s first message
has dimension 10 or greater.

8 Random offset

We would like to test more protocols, and also avoid anomalies that may
have arisen in the previous tests due to the structure of the mesh we use and
also any special relation the protocol states may have with each other due
to low precision. The six-round searches take a long time, which restricts the
precision ν we can use. The resulting mesh is also highly structured. We would
like to test protocol parameters that do not necessarily have such regular
entries. With this end in mind, we offset all of the values in the search by
some random additive term δ > 0. For example, say the entries of α0, α1, β0,
and β1 have been selected from the set {0, ν, 2ν, . . . , 1− ν, 1}. With an offset
parameter δ ∈ (0, ν/2), we use the range

{δ, δ + ν, δ + 2ν, . . . , δ + 1− ν} .



34 A. Nayak, J. Sikora, L. Tunçel

Table 3 The percentage of protocols that get stopped by each strategy in the worst case
after 100 random instances of offset parameter δ.

d = 2 ν = 1/3 ν = 1/4 ν = 1/5 ν = 1/6

G1 71.87% 82.35% 84.06% 86.63%
G2 17.18% 29.80% 15.80% 24.15%
G3 8.17% 10.73% 13.46% 12.12%
G4 51.45% 49.68% 53.99% 48.44%
G5 70.00% 83.29% 78.02% 82.86%
G6 0% 0% 0% 0%
G7 75.00% 92.43% 87.32% 94.35%
G8 100% 100% 49.10% 100%
G9 0%

G10 0%
SDPB0 100%

Table 4 The percentage of protocols that get stopped by each strategy in the average case
after 100 random instances of offset parameter δ.

d = 2 ν = 1/3 ν = 1/4 ν = 1/5 ν = 1/6

G1 85.75% 87.30% 89.42% 90.47%
G2 17.18% 29.80% 15.80% 24.15%
G3 10.85% 13.15% 14.53% 12.35%
G4 62.49% 52.53% 55.34% 53.03%
G5 70.00% 87.11% 93.46% 93.29%
G6 0% 0% 0% 0%
G7 98.70% 99.01% 96.58% 98.77%

Note that this destroys index symmetry. The simplest way to see this is to
consider the 2-dimensional probability distributions created in this way. They
are {[

δ
1− δ

]
,

[
δ + ν

1− δ − ν

]
,

[
δ + 2ν

1− δ − 2ν

]
, . . . ,

[
δ + 1− ν
ν − δ

]}
.

We see that the set of first entries is not the same as the set of second entries
when δ > 0. We choose the last entry in each vector to be such that the
entries add to 1. Since we generate all four of the probability distributions in
the same manner, we can still apply the symmetry arguments to suppose α0

has the largest entry out of both α0 and α1 and similarly for β0 and β1.
Tables 3 and 4 show how well each strategy in the filter performs after

testing 100 random choices of offset parameter δ ∈ [0, 1/100]. The percentages
in the table entries correspond to the amount of protocols that particular
strategy stopped from the ones surviving the previous filter strategies. For
each random choice of δ, a percentage is calculated and Table 3 presents the
least percentage and Table 4 presents the average percentage.

Observations on the random offset tests. We notice that G6 performs
very poorly on these tests. We need finer precision to see the effects of G6 in
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the filter. Also, G1 performs generally better as the filter precision increases.
We see from the previous tables that it should stay at roughly 90%. We see
that G5 and G7 perform very well. G7 sometimes filters out the rest (this is
why the average case table only displays up to G7). G8 performs well most of
the time, except in the ν = 1/5 case in the worst case table. Few protocols
made it past the entire filter, and only SDPB0 needed to be solved of the four
SDPs. No protocols with bias at most 0.2499 were found.

9 Zoning-in tests

The computational tests that we performed so far suggest that there are no
protocols with cheating probabilities less than 0.7499 (at least for the values
of the parameters used in the tests) which is slightly less than the best known
constructions. The tests also show that the number of protocols grows very
large as the mesh precision increases. This poses the question of whether there
are protocols that have optimal cheating probabilities just slightly less than
3/4 when one considers increased mesh precisions. In this section, we focus on
searching for such protocols.

There are a few obstacles to deal with in such a search. The first is that in-
creasing the precision of the mesh drastically increases the number of protocols
to be tested. To deal with this, we restrict the set of parameters to be tested by
only considering protocols which are close to optimal, i.e., near-optimal proto-
cols. In other words, we “zone in” on some promising protocols to see if there
is any hope of improving the bias by perturbing some of the entries. To do
this, we fix a near-optimal protocol and create a mesh over a small ball around
the entries in each probability vector. We would like a dramatic increase in
precision, so we use a ball of radius 2 ν (unless stated otherwise), yielding up to
5 increments tested around each entry. This gives us the advantage of having
a constant number of protocols to check, independent of the mesh precision.
However, this comes at the cost that we lose symmetry, since we do not wish
to permute the entries nor the probability distributions defining the protocol.

Another challenge is to find the near-optimal protocols. The approach we
take is to keep track of the best protocol found, updating the filter threshold
accordingly. There are two issues with this approach. One is that increasing
the threshold decreases the efficiency of the filter, so we are not able to search
over the same mesh precisions given earlier in this section. The second is that
there is an abundance of protocols with cheating probabilities exactly equal to
3/4. As was done in the protocol example section (Section 1), we can embed
an optimal three-round protocol with optimal cheating probabilities 3/4 into
a four-round (or six-round) protocol. One way to do this is to set α0 = α1 (i.e.
Alice’s first n messages contain no information) or by setting β0 ⊥ β1 (i.e.
Bob’s first message reveals b, making the rest of his messages meaningless). So
we already know many protocols with cheating probabilities equal to 3/4, but
can we find others? We now discuss the structure of near-optimal protocols in
the case of four-round and six-round protocols, and how we zone in on them.
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Four-round version. For the four-round search, we fix a message dimen-
sion d = 5 and use precision parameters ν ∈ {1/7, 1/8, 1/9, 1/10, 1/11}. This
search yields a minimum (computer verified) bias of ε = 0.2647 when we rule
out protocols with α0 = α1 or β0 ⊥ β1. In other words, we have that all of the
protocols tested had one of the following three properties:

• α0 = α1,
• 〈β0, β1〉 = 0,
• max

{
P ∗A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1

}
≥ 0.7647.

This suggests that near-optimal four-round protocols behave similarly to opti-
mal three-round protocols. We now zone in on two protocols, one representing
each of the first two conditions above. The first protocol is

α0 =
1

2
[0, 0, 0, 1, 1]

T
, α1 =

1

2
[0, 0, 1, 0, 1]

T
,

β0 = [0, 0, 0, 0, 1]
T
, β1 = [0, 0, 0, 1, 0]

T

which satisfies β0 ⊥ β1 = 0 and has all four (computationally verified) cheating
probabilities equal to 3/4. The second protocol is

α0 = [0, 0, 0, 0, 1]
T
, α1 = [0, 0, 0, 0, 1]

T
,

β0 =
1

2
[0, 0, 0, 1, 1]

T
, β1 =

1

2
[0, 0, 1, 0, 1]

T

which satisfies α0 = α1 and has all four (computationally verified) cheating
probabilities equal to 3/4. Tables 5 and 6 display the zoning-in searches for
these two protocols with threshold exactly 3/4. Note we use mesh precisions
up to 10−16 which, by Lemma 13, can guarantee us a change in bias up to
4× 10−8. A (computationally verified) change in bias of this magnitude could
be argued to be an actual decrease in bias and not an error due to finite
precision arithmetic.

Observations on the four-round tests. Note that not all filter strate-
gies are useful in the zoning-in tests. For example, if F1 ≈ 1/2 < 3/4 for the
protocol we are zoning-in on, then it never filters out any protocols with the
precisions considered. Considering this, and by examining the tables, we see
that most strategies filter out many protocols, or none at all. Also from the
tables, we see that no protocols get through the entire filter. Notice that we
needed to use more strategies than were needed in previous tables, namely
F9 and F10. In the previous searches, F8 was the last filter strategy needed,
thus demonstrating some protocols which F8 fails to filter out (noting a larger
threshold was used here than in the previous tests). It is worth noting the
efficiency of the four-round filter. The algorithm did not need to solve for any
optimal cheating values in any of the four-round zoning-in tests.

These tables suggest that perturbing the entries of the parameters defining
these two near-optimal protocols does not yield better bias.
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Six-round version. For the six-round search, we fix a message dimension
d = 2 and use precision parameters ν ∈ {1/7, 1/8, 1/9, 1/10, 1/11, 1/12}. For
ν > 1/12, the test results were similar to the four-round version, that all of
the protocols tested had one of the following three properties:

• α0 = α1,
• 〈β0, β1〉 = 0,
• max

{
P ∗A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1

}
≥ 0.7521.

We choose the following two near-optimal protocols to represent the first
two conditions:

α0 =
1

2
[0, 0, 1, 1]

T
, α1 =

1

2
[0, 1, 0, 1]

T
,

β0 = [0, 0, 0, 1]
T
, β1 = [0, 0, 1, 0]

T
,

which satisfies β0 ⊥ β1 = 0, and

α0 = [0, 0, 0, 1]
T
, α1 = [0, 0, 0, 1]

T
,

β0 =
1

2
[0, 0, 1, 1]

T
, β1 =

1

2
[0, 1, 0, 1]

T
,

which satisfies α0 = α1. Both of these protocols have all four (computationally
verified) cheating probabilities equal to 3/4.

However, when ν = 1/12, we found several protocols with a (computa-
tionally found) bias of 0.25. We therefore searched for all protocols with bias
0.2501 or less. We discovered the following 4 protocols, no two of which are
equivalent to each other with respect to symmetry. Note that these protocols
bear no resemblance to any bias 1/4 protocols previously discovered. These
protocols are below:

α0 =
1

3
[0, 1, 1, 1]

T
, α1 =

1

3
[1, 1, 0, 1]

T
,

β0 =
1

12
[0, 3, 0, 9]

T
, β1 =

1

12
[0, 3, 9, 0]

T

and

α0 =
1

3
[0, 1, 1, 1]

T
, α1 =

1

3
[1, 1, 0, 1]

T
,

β0 =
1

12
[1, 2, 0, 9]

T
, β1 =

1

12
[1, 2, 9, 0]

T

and

α0 =
1

3
[0, 1, 1, 1]

T
, α1 =

1

3
[1, 1, 1, 0]

T
,

β0 =
1

12
[0, 3, 0, 9]

T
, β1 =

1

12
[0, 3, 9, 0]

T

and

α0 =
1

3
[0, 1, 1, 1]

T
, α1 =

1

3
[1, 1, 1, 0]

T
,
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β0 =
1

12
[1, 2, 0, 9]

T
, β1 =

1

12
[1, 2, 9, 0]

T
.

Note that these four protocols have the property that all the filter strategies
for them have cheating probabilities strictly less than 3/4. Since many of these
strategies are derived from optimal three-round strategies, this property makes
them especially interesting. (Other six-round protocols were found. However,
these were equivalent to the ones above via symmetry.)

We now zone-in on these six protocols as indicated in the following tables.
Note that we decrease the radius of the balls to ν for the third, fourth, fifth,
and sixth protocol (compared to 2ν for the other protocols). This is for two
reasons. One is that most the entries are bounded away from 0 or 1, making the
intersection of the ball and valid probability vectors large. Second, the filter
has to work harder in this case since many of the filter cheating probabilities
are bounded away from 3/4 and thus more computationally expensive cheating
probabilities need to be computed.

Preliminary tests show that when zoning-in on some of these 6 protocols,
the default SDP solver precision is not enough to determine whether the bias
is strictly less than 3/4, or whether it is numerical round-off. To provide a fur-
ther test, we add an extra step for those protocols that get through the filter
and SDPs, we increase the SDP solver accuracy (set pars.eps = 0 in SeDuMi)
and let the solver run until no more progress is being made. The row “Better
Accuracy” shows how many protocols get through this added step. Further-
more, we use the maximum of the primal and dual values when calculating the
optimal cheating values since we are not guaranteed exact feasibility of both
primal and dual solutions in these computational experiments.

Observations on the six-round tests. We see in Tables 7, 8, and 9 that
zoning-in on the six protocols yields no protocols with bias less than 1/4. The
zoning-in tests for the second near-optimal protocol are the only ones where
we needed the added step of increasing the SDP solver accuracy. We see that
this added step removed the remaining protocols.

We remark on the limitations of using such fine mesh precisions. For ex-
ample, when zoning-in on the fourth and sixth protocol, only two strategies
were used, G1 and SDPB0. These are both strategies for Bob which suggests
that there are some numerical precision issues. We expect that some pertur-
bations would decrease Bob’s cheating probability, for example when α0 and
α1 become “closer” and β0 and β1 remain the same. However, the precisions
used in these searches do not find any such perturbations.

From the outcome of the zoning-in tests, along with the computational
evidence from all the other tests we conducted, we conjecture that any strong
coin-flipping protocol based on bit-commitment as considered in this paper
has bias at least 1/4.
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10 Full data for the systematic searches for four and six-round
protocols

We present in this section the full data for the searches we conducted for four
and six-round protocols for various message dimensions d and precisions ν.
Tables are on the following pages.
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