
A COMPREHENSIVE ANALYSIS

OF

POLYHEDRAL LIFT-AND-PROJECT METHODS

YU HIN AU AND LEVENT TUNÇEL

Abstract. We consider lift-and-project methods for combinatorial optimization problems and
focus mostly on those lift-and-project methods which generate polyhedral relaxations of the con-
vex hull of integer solutions. We introduce many new variants of Sherali–Adams and Bienstock–
Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project op-
erators in a way which makes all of them more transparent, easier to relate to each other, and
easier to analyze. We provide new techniques to analyze the worst-case performances as well as
relative strengths of these operators in a unified way. In particular, using the new techniques and
a result of Mathieu and Sinclair from 2009, we prove that the polyhedral Bienstock–Zuckerberg
operator requires at least

√
2n− 3

2
iterations to compute the matching polytope of the (2n+ 1)-

clique. We further prove that the operator requires approximately n
2

iterations to reach the
stable set polytope of the n-clique, if we start with the fractional stable set polytope. Lastly,
we show that some of the worst-case instances for the positive semidefinite Lovász–Schrijver
lift-and-project operator are also bad instances for the strongest variants of the Sherali–Adams
operator with positive semidefinite strengthenings, and discuss some consequences for integrality
gaps of convex relaxations.

1. Introduction

Given a polytope P ⊆ [0, 1]n, we are interested in its integer hull (i.e., the convex hull of 0, 1
vectors in P), PI := conv (P ∩ {0, 1}n). While it is impossible to efficiently find a description
of PI for a general P (unless P = NP), we may use properties that we know are satisfied by
points in PI to derive inequalities that are valid for PI but not P .

Lift-and-Project methods provide a systematic way to generate a sequence of convex relax-
ations of PI , converging to the integer hull PI . These methods go back to work by Balas and
others in the late 1960s and the early 1970s. Some of the most attractive features of these
methods are:

• Convex relaxations of PI obtained after O(1) iterations of the procedure are tractable
provided P is tractable. Here, tractable may mean either that the underlying linear opti-
mization problem is polynomial-time solvable, say due to the existence of a polynomial-
time weak separation oracle for P ; or, more strongly, that P has an explicitly given,

Date: December 2, 2015.
Key words and phrases. combinatorial optimization, lift-and-project methods, design and analysis of algorithms

with discrete structures, integer programming, semidefinite programming, convex relaxations.
Some of the material in this manuscript appeared in a preliminary form in IPCO 2011 Proceedings, see [AT11]

and in the first author’s PhD Thesis [Au14].
Yu Hin Au: Research of this author was supported in part by a Tutte Scholarship, a Sinclair Scholarship, an

NSERC scholarship, research grants from University of Waterloo and Discovery Grants from NSERC. Department
of Mathematics, Milwaukee School of Engineering, Milwaukee, Wisconsin, U.S.A. E-mail: au@msoe.edu.

Levent Tunçel: Research of this author was supported in part by research grants from University of Waterloo
and Discovery Grants from NSERC. Department of Combinatorics and Optimization, Faculty of Mathematics,
University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada. E-mail: ltuncel@uwaterloo.ca.

1

2 YU HIN AU AND LEVENT TUNÇEL

polynomial size representation by linear inequalities (we will distinguish between these
two versions of tractability, starting with the strength chart given in Figure 1).
• Many of these methods use lifted (higher dimensional) representations for the relaxations.

Such representations sometimes allow compact (polynomial size in the input) convex
representations of exponentially many facets.
• Most of these methods allow easy addition of positive semidefiniteness constraints in

the lifted space. This feature can make the relaxations much stronger in some cases,
without sacrificing polynomial-time solvability (perhaps only approximately). Moreover,
these semidefiniteness constraints can represent an uncountable family of defining linear
inequalities, such as those of the theta body of a graph.
• Systematic generation of tighter and tighter relaxations converging to PI in at most n

rounds makes the strongest of these methods good candidates for utilization in generating
polynomial-time approximation algorithms for hard problems, or for proving large inte-
grality gaps (hence providing a negative result about approximability in the underlying
hierarchy of relaxations).

In the last two decades, many lift-and-project operators have been proposed (see, for exam-
ple, [SA90], [LS91], [BCC93], [Las01] and [BZ04]), and have been applied to various discrete
optimization problems (see, for example, [SL96], [dKP02], [PVZ07] and [GL07]). Many families
of facets of the stable set polytope of graphs are shown to be easily generated by these proce-
dures [LS91, LT03]. Also studied are their performances on max-cut [Lau02], set covering [BZ04],
k-constraint satisfiability problems [Sch08], knapsack [KMN11], sparsest cut [GTW13], directed
Steiner tree [FKKK+14], set partitioning [SL96], TSP relaxations [CD01, Che05, CGGS13], and
matching [ST99, ABN04, MS09]. For general properties of these operators and some comparisons
among them, see [GT01], [Lau03] and [HT08].

BCC LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 1. A strength chart of lift-and-project operators.

Figure 1 provides a glimpse of the spectrum of polyhedral lift-and-project operators, as well
as their semidefinite strengthened counterparts. The operators BCC (due to Balas, Ceria and
Cornuéjols [BCC93]); LS0,LS and LS+ (due to Lovász and Schrijver [LS91]); SA (due to Sherali
and Adams [SA90]); and BZ,BZ+ (due to Bienstock and Zuckerberg [BZ04]) will be formally
defined in the subsequent sections. The Las operator is due to Lasserre [Las01]. The boldfaced
operators in the figure are the new ones proposed in the current paper, and each solid arrow
in the chart denotes “is dominated by” (i.e., the operator that is at the head of an arrow is

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 3

stronger than that at the tail). For instance, when applied to the same set P , the LS0 operator
yields a relaxation that is at least as tight as that obtained by applying the BCC operator.

Observe that BCC is dominated by every other operator in Figure 1. Since BCC admits a
very short and elegant proof that it returns PI after n iterations for every P ⊆ [0, 1]n, it follows
immediately that every operator in Figure 1 converges to PI in at most n iterations. More
generally, if one can prove an upper-bound result for any operator Γ in Figure 1, then the same
result applies to all operators in the diagram that can be reached from Γ by a directed path.
On the other hand, any lower-bound result on the BZ′ operator implies the same result for all
polyhedral lift-and-project operators in Figure 1. Likewise, to obtain a lower bound result for all
lift-and-project operators shown in the diagram, it suffices to show that the result holds for BZ′+
and Las. (For some bad instances for Las, see [Lau02] and [Che07]. See also [Sch08] and [Tul09]
for some integrality gap results on Las relaxations.)

As seen in Figure 1, the strongest polyhedral lift-and-project operators known to date are
LS,SA and BZ. We are interested in these strongest operators because they provide the strongest
tractable relaxations obtained this way. On the other hand, if we want to prove that some com-
binatorial optimization problem is difficult to attack by lift-and-project methods, then we would
hope to establish them on the strongest existing hierarchy for the strongest negative results.
For example, some of the non-approximability results on vertex cover are based on the LS+

operator [GMPT10, STT07], and some other integrality gap results are based on SA [CMM09].
Furthermore, it was shown in [CLRS13] that non-approximability results for the SA relax-

ations of approximate constraint satisfaction problems can be extended to lower bound results
on the extension complexity (i.e., the smallest number of variables needed to represent a given
set as the projection of a tractable set in higher dimension) of the max-cut and max 3-sat poly-
topes. The reader may refer to [Yan91] for the first major progress on the extension complexity
of polytopes that arise from combinatorial optimization problems, and [Goe15, FMP+12, Rot14]
for some of the recent breakthroughs in this line of work.

Therefore, by understanding the more powerful lift-and-project operators, we could either
obtain better approximations for hard combinatorial optimization problems, or lay some of
the groundwork for yet stronger non-approximability results. Moreover, we shall see that these
analyses typically also lead to other crucial information about the underlying hierarchy of convex
relaxations, such as their integrality gaps.

This paper will be organized as follows. In Section 2, we introduce many of the existing lift-
and-project methods, as well as SA′ and BZ′ — strengthened variants of SA and BZ, respectively.
In particular, BZ is a substantial procedure with many complicated details, and we believe that
our version BZ′ is simpler to present and analyze. We will mostly use BZ′ to establish lower-
bound results. Since BZ′ dominates BZ, it follows that all of these lower-bound results also
apply to BZ. We shall also see that these operators can all be seen as lifting to sets of matrices
whose rows and columns indexed by subsets of {0, 1}n, a framework exposed by Lovász and
Schrijver [LS91] and extensively used by Bienstock and Zuckerberg [BZ04].

In Section 3, we introduce notions such as admissible lift-and-project operators and measure
consistency for matrices and vectors, and identify situations in which some variables in the lifted
space do not help generate cuts. This provides a template that can streamline the analyses of
the worst-case performances as well as relative strengths of various lift-and-project methods. We
show that, under certain conditions, the performance of SA′ and BZ are closely related to each
other. Since SA′ inherits many properties from the well-studied SA operator, this connection
provides another venue to understanding and analyzing BZ. Next, we utilize the tools we have
established and prove that the BZ operator requires at least

√
2n− 3

2 iterations to compute the
matching polytope of the (2n+ 1)-clique, and approximately n

2 iterations to compute the stable

4 YU HIN AU AND LEVENT TUNÇEL

set polytope of the n-clique. This establishes the first examples in which BZ requires more than
O(1) iterations to reach the integer hull.

Next, in Section 4, we turn our focus to lift-and-project operators that utilize positive semidef-
initeness constraints. We construct two strong, semidefinite versions of the Sherali–Adams op-
erator that we call SA+ and SA′+. There are other weaker versions of these operators in the
recent literature called Sherali–Adams SDP which have been previously studied, among oth-
ers, by Chlamtac and Singh [CS08] and Benabbas et al. [BGM10, BM10, BCGM11, BGMT12],
even though our versions are the strongest yet. Using techniques developed in Section 3, we
relate the performance of SA′+ and BZ+ (the BZ operator enhanced with an additional positive
semidefiniteness constraint) under certain conditions. Next, we develop some tools for proving
upper-bound results, and show that SA′+ and BZ′+ (a strengthened and simplified version of

BZ+) require at most n −
⌊√

2n+1−1
2

⌋
and

⌈√
2n+ 1

4 −
1
2

⌉
iterations, respectively, to compute

the matching polytope of the (2n+ 1)-clique. We then show that positive semdefiniteness con-
straints do not help in some cases, and prove that some well-known worst-case instances for LS
and LS+ extend to give worst-case instances for SA and SA+.

Finally, we conclude the paper by illustrating how the analyses and the tools we provided may
be used to prove integrality gaps for various classes of relaxations obtained from lift-and-project
operators with some desirable invariance properties. The details of the original BZ and BZ+

operators, as well as their relationships with our new variants, are given in the Appendix.
Several of our results can be seen as “approximate converses” of the dominance relationship

among various lift-and-project operators. Such relationships are represented by dashed arrows
in Figure 2. As we shall see, sometimes a weaker operator can be guaranteed to perform at
least as well as a stronger one, by an appropriate increase of iterate number and/or certain
assumptions on the given polytope P . These reverse dominance results, together with the new
operators we define and other tools we provide, fill the spectrum of lift-and-project operators in
a way which makes all of them more transparent, easier to relate to each other, and easier to
analyze.

BCC LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las
Thm. 10

Thm. 5Prop. 2

Cor. 16

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 2. An illustration of several restricted reverse dominance results (dashed
arrows) in this paper.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 5

2. Preliminaries

In this section, we describe several lift-and-project operators that produce polyhedral relax-
ations, and establish some notation. One of the most fundamental ideas behind the lift-and-
project approach is convexification, which can be traced back to Balas’ work on disjunctive cuts
in the 1970s. For convenience, we denote the set {1, 2, . . . , n} by [n] herein. Observe that, given

P ⊆ [0, 1]n, if we have mutually disjoint sets Q1, . . . , Q` ⊆ P such that their union,
⋃`
i=1Qi,

contains all integral points in P , then we can deduce that PI is contained in conv
(⋃`

i=1Qi

)
,

which therefore is a potentially tighter relaxation of PI than P . Perhaps the simplest way to
illustrate this idea is via the operator devised by Balas, Ceria and Cornuéjols [BCC93] which
we call the BCC operator. Given P ⊆ [0, 1]n and an index i ∈ [n], define

BCCi(P) := conv ({x ∈ P : xi ∈ {0, 1}}) .

Moreover, we can apply BCCi followed by BCCj to a polytope P to make progress. In fact, it
is well-known that for every P ⊆ [0, 1]n,

BCC1(BCC2(· · · (BCCn(P)) · · ·)) = PI .

This establishes that for every polytope P , one can obtain its integer hull with at most n
applications of the BCC operator.

While iteratively applying BCC in all n indices is intractable (unless P = NP), applying
them simultaneously to P and intersecting them is not. Furthermore, it is easy to see that PI
is contained in the intersection of these n sets. Thus,

LS0(P) :=
⋂
i∈[n]

BCCi(P),

devised by Lovász and Schrijver [LS91], is a relaxation of PI that is at least as tight as BCCi(P)
for all i ∈ [n]. Figure 3 illustrates how BCC and LS0 operate in two dimensions.

1

1

0

P

1

1

0

BCC1(P)

1

1

0

BCC2(P)

1

1

0

LS0(P)

Figure 3. An illustration of BCC and LS0 in two dimensions.

Before we look into operators that are even stronger (and more sophisticated), it is helpful
to understand the following alternative description of LS0. Given x ∈ [0, 1]n, let x̂ denote the

vector

(
1
x

)
in Rn+1, where the new coordinate is indexed by zero. Let ei denote the ith unit

vector (of appropriate size), and for any square matrix M , let diag(M) denote the vector formed
by the diagonal entries of M . Next, given P ⊆ [0, 1]n, define the cone

K(P) :=

{(
λ
λx

)
∈ Rn+1 : λ ≥ 0, x ∈ P

}
.

6 YU HIN AU AND LEVENT TUNÇEL

Then, it is not hard to check that

LS0(P) =
{
x ∈ Rn : ∃Y ∈ R(n+1)×(n+1), Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n],

Y e0 = Y >e0 = diag(Y) = x̂
}
.

To see that LS0(P) ⊇ PI in this perspective, observe that given any integral vector x ∈ P , the
matrix Y := x̂x̂> is a matrix which “certifies” that x ∈ LS0(P). Then PI ⊆ LS0(P) follows from
the fact that the latter is obviously a convex set.

Now, observe that x̂x̂> is symmetric for all x ∈ {0, 1}n. Thus, if we let Sn denote the set of
n-by-n real, symmetric matrices, then

LS(P) :=
{
x ∈ Rn : ∃Y ∈ Sn+1, Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n], Y e0 = diag(Y) = x̂

}
also contains PI . By enforcing a symmetry constraint on the matrices in the lifted space (and
still retaining all integral points in P), we see that LS(P) is a potentially tighter relaxation than
LS0(P). We can also apply these operators iteratively to a polytope P to gain progressively
tighter relaxations. Let LSk0(P) (resp. LSk(P)) denote the set obtained from applying LS0

(resp. LS) to P iteratively for k times. Since it is apparent from their definitions that LS(P) ⊆
LS0(P) ⊆ BCCi(P), for every i ∈ [n], it follows that LSn0 (P) = LSn(P) = PI , for every
P ⊆ [0, 1]n.

In the two aforementioned Lovász–Schrijver operators, the certificate matrices all have dimen-
sion (n+1) by (n+1). We next look into the potential of lifting the initial relaxation P ⊆ [0, 1]n

to sets of even higher dimensions. From here on, we denote {0, 1}n by F , and define A := 2F ,
the power set of F . For each x ∈ F , we define the vector xA ∈ RA where

xAα =

{
1 if x ∈ α;
0 otherwise.

That is, each coordinate of A corresponds to a subset of the vertices of the n-dimensional unit
hypercube, and xAα = 1 if and only if the point x is contained in the set α. It is not hard to see
that for all x ∈ F , we have xAF = 1, and xA{y∈F :yi=1} = xi,∀i ∈ [n]. Another important property

of xA is that, given disjoint subsets α1, α2, . . . , αk ⊆ β ⊆ F , we know that

(1) xAα1
+ xAα2

+ · · ·+ xAαk ≤ x
A
β ,

and equality holds if {α1, α2, . . . , αk} partitions β.
Thus, for any given x ∈ F , if we define Y x

A := xA(xA)>, then the entries of Y x
A have consid-

erable structure. Most notably, the following must hold:

(P1) Y x
AeF = (Y x

A)>eF = diag(Y x
A) = xA;

(P2) Y x
Aeα ∈

{
0, xA

}
, ∀α ∈ A;

(P3) Y x
A ∈ SA;

(P4) Y x
A [α, β] = 1 ⇐⇒ x ∈ α ∩ β;

(P5) if α1 ∩ β1 = α2 ∩ β2, then Y x
A [α1, β1] = Y x

A [α2, β2];
(P6) every row and column of Y x

A satisfies (1).

Of course, Y x
A has double-exponential size (in n), and explicitly constructing elements in a

lifted space of such a high dimension could yield an intractable structure, which makes the
underlying algorithm no better than simply enumerating the integral points in P . Nevertheless,
we can try to obtain a tight relaxation by only working with polynomial-size submatrices of Y x

A ,
and imposing constraints that are relaxations of the conditions (P1) to (P6), in hope of capturing
some important inequalities that are valid for PI but not P . Zuckerberg [Zuc03] showed that
most of the existing lift-and-project operators can be interpreted under this common theme.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 7

We next express the operators devised by Sherali and Adams [SA90] in this language. Given
a set of indices S ⊆ [n] and t ∈ {0, 1}, we define

S|t := {x ∈ F : xi = t, ∀i ∈ S} .

Note that ∅|0 = ∅|1 = F . Also, to reduce cluttering, we write i|t instead of {i} |t. Next, given
any integer ` ∈ {0, 1, . . . , n}, we define A` := {S|1 ∩ T |0 : S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ `}
and A+

` := {S|1 : S ⊆ [n], |S| ≤ `}. For instance,

A1 = {F , 1|1, 2|1, . . . , n|1, 1|0, 2|0, . . . , n|0} ,

while

A+
1 = {F , 1|1, 2|1, . . . , n|1} .

Also, given any vector y ∈ RA′ for some A′ ⊆ A which contains F and i|1 for all i ∈ [n], we
let x̂(y) := (yF , y1|1 , . . . , yn|1)>. To relate these vectors with the x̂ vectors defined previously,

sometimes we may also alternatively index the entries of x̂(y) as (y0, y1, . . . , yn)>.
For any fixed integer k ∈ [n], the SAk operator can be defined as follows:

(1) Let S̃A
k
(P) denote the set of matrices Y ∈ RA

+
1 ×Ak which satisfy all of the following

conditions:
(SA 1) Y [F ,F] = 1.
(SA 2) Y eα ∈ K(P), for every α ∈ Ak.
(SA 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T).

(SA 4) For all α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.

(SA 5) For all α1, α2 ∈ A+
1 , β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

(2) Define

SAk(P) :=
{
x ∈ Rn : ∃Y ∈ S̃A

k
(P), Y eF = x̂

}
.

The SAk operator was originally described by linearizing polynomial inequalities, as follows:
given an inequality

∑n
i=1 aixi ≤ a0 that is valid for P , disjoint subsets of indices S, T ⊆ [n] such

that |S|+ |T | ≤ k, SAk generates the inequality

(2)

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)(
n∑
i=1

aixi

)
≤

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)
a0,

and obtains a linear inequality by replacing the monomial xji with xi (for all j ≥ 2) in all terms,
and then by using a new variable to represent each nontrivial product of monomials. In our
definition of SAk, the linearized inequality would be

n∑
i=1

aiY [i|1, S|1 ∩ T |0] ≤ a0Y [F , S|1 ∩ T |0],

which is enforced by (SA 2) on the column of Y indexed by the set S|1 ∩ T |0. Also, for any
set of indices U ⊆ [n], the product of monomials

∏
i∈U xi could appear multiple times in the

original formulation when we generate (2) using different S and T . Then SAk identifies them
all by the variable xU in the linearized formulation. This requirement is enforced by (SA 5) in
our definition. Also observe that (SA 3) ensures the matrix entries representing the products
xj
(∏

i∈S xi
)∏

i∈T (1− xi) and (1− xj)
(∏

i∈S xi
)∏

i∈T (1− xi) do sum up to that representing(∏
i∈S xi

)∏
i∈T (1− xi). Finally, notice that the monomial xj(1− xj) = xj − x2

j vanishes after

8 YU HIN AU AND LEVENT TUNÇEL

linearizing. Thus, if S, T are not disjoint, the product
(∏

i∈S xi
)∏

i∈T (1− xi) vanishes, and
(SA 4) enforces that the corresponding matrix entries take on value zero.

It is not hard to see that SA1(P) = LS(P). In general, SA obtains extra strength over LS
by lifting P to a set of matrices of higher dimension, and using some properties of sets in A to
identify variables in the lifted space. For a comparison of SA and LS, see Laurent [Lau03].

Finally, we look into the polyhedral lift-and-project operator devised by Bienstock and Zucker-
berg [BZ04]. Recall that the idea of convexification requires a collection of disjoint subsets of P
whose union contains all integral points in P . So far, every operator that we have seen obtains
these sets by intersecting P with faces of [0, 1]n. However, sometimes it is beneficial to allow
more flexibility in choosing the way we partition the integral points in P . For example, consider

P :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n−
1

2

}
.

In this case, SAn−1(P), a relaxation obtained from using convexification with exponentially
many sets that are all intersections of P and faces of [0, 1]n, still strictly contains PI . On the
other hand, if we define

Qj :=

{
x ∈ P :

n∑
i=1

xi = j

}
,

for every j ∈ {0, 1, . . . , n}, then every integral point in P is contained in Qj for some j, and

PI = conv

(
n⋃
i=0

Qj

)
.

We will see in the next section that, given any set P ⊆ [0, 1]n, the set conv (
⋃n
i=0Qj) can be

described as the projection of a set of dimension O(n2) that is tractable as long as P is.
Bienstock and Zuckerberg [BZ04] utilized this type of ideas and invented operators that use

variables inA that were not exploited by the operators proposed earlier, in conjunction with some
new constraints. We will denote their polyhedral operator by BZ, but we also present variants of
it called BZ′ and BZ′′. These modified operators have the advantage of being stronger, and are
also simpler to present. Moreover, since we are mostly interested in applying these operators to
polytopes that arise from set packing problems (such as the stable set and matching problems
of graphs), we will state versions of these operators that only apply to lower-comprehensive
polytopes. We will discuss this in more detail after stating the elements of their operators.

Suppose we are given a polytope P := {x ∈ [0, 1]n : Ax ≤ b}, where A ∈ Rm×n is nonnegative
and b ∈ Rm is positive (this implies that P is lower-comprehensive). The BZ′ operator can be
viewed as a two-step process. The first step is refinement. Given a vector v, let supp(v) denote
the support of v. Also, for every i ∈ [m], let Ai denote the ith row of A. If O ⊆ [n] satisfies

• O ⊆ supp(Ai);
•
∑

j∈O A
i
j > bi; and

• |O| ≤ k + 1 or |O| ≥ |supp(Ai)| − (k + 1)

for some i ∈ [m], then we call O a k-small obstruction. Let Ok denote the collection of all k-small
obstructions of P (or more precisely, of the system Ax ≤ b). Notice that, for every obstruction
O ∈ Ok, and integral vector x ∈ P , the inequality

∑
i∈O xi ≤ |O| − 1 holds. Thus,

Ok(P) :=

{
x ∈ P :

∑
i∈O

xi ≤ |O| − 1, ∀O ∈ Ok

}
is a relaxation of PI that is potentially tighter than P .

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 9

The second step of the BZ′k operator is lifting. Before we give the details of this step, we
need another intermediate set of indices, called walls. For every k ≥ 1, we define

Wk :=

 ⋃
i,j∈[`],i 6=j

(Oi ∩Oj) : O1, . . . , O` ∈ Ok, 2 ≤ ` ≤ k + 1

 ∪ {{1} , . . . , {n}} .
That is, each subset of up to (k + 1) k-small obstructions generate a wall, which is the set of
elements that appear in at least two of the given obstructions. We also ensure that the singleton
sets of indices are walls. Next, we define the collection of tiers

Tk :=

S ⊆ [n] : ∃Wi1 , . . . ,Wik ∈ Wk, S ⊆
k⋃
j=1

Wij

 .

That is, we define a set of indices S to be a tier if there exist k walls whose union contains
S. Note that every subset of [n] of size up to k is a tier. Finally, given a set U ⊆ [n] and a
nonnegative integer r, we define

U |<r :=

{
x ∈ F :

∑
i∈U

xi ≤ r − 1

}
.

We shall see that the elements in A that are being generated by BZ′ all take the form
S|1 ∩ T |0 ∩ U |<r, where S, T, U are disjoint sets of indices. Next, we describe the lifting step of
BZ′k:

(1) Define A′ to be the set consisting of the following. For each tier S ∈ Tk, include:

• (S \ T)|1 ∩ T |0,

for all T ⊆ S such that |T | ≤ k;

• (S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |),

for every T,U ⊆ S such that U ∩ T = ∅, |T | < k and |U |+ |T | > k.

We say these variables (indexed by the above sets) are associated with the tier S.

(2) Let B̃Z
′k

(P) denote the set of matrices Y ∈ SA′ that satisfy all of the following conditions:
(BZ′ 1) Y [F ,F] = 1.
(BZ′ 2) For every column y of the matrix Y ,

(i) 0 ≤ yα ≤ yF , for all α ∈ A′.
(ii) x̂(y) ∈ K(Ok(P)).

(iii) yi|1 + yi|0 = yF , for every i ∈ [n].
(iv) For each α ∈ A′ of the form of S|1 ∩ T |0 impose the inequalities

yi|1 ≥ yα, ∀i ∈ S;(3)

yi|0 ≥ yα, ∀i ∈ T ;(4)

yα + y(S∪{i})|1∩(T\{i})|0 = yS|1∩(T\{i})|0 , ∀i ∈ T ;(5) ∑
i∈S

yi|1 +
∑
i∈T

yi|0 − yα ≤ (|S|+ |T | − 1)yF .(6)

10 YU HIN AU AND LEVENT TUNÇEL

(v) For each α ∈ A′ of the form S|1 ∩ T |0 ∩ U |<r, impose the inequalities

yi|1 ≥ yα, ∀i ∈ S;(7)

yi|0 ≥ yα, ∀i ∈ T ;(8) ∑
i∈U

yi|0 ≥ (|U | − (r − 1))yα;(9)

yα = yS|1∩T |0 −
∑

U ′⊆U,|U ′|≥r

y(S∪U ′)|1∩(T∪(U\U ′))|0 .(10)

(BZ′ 3) For all α, β ∈ A′ such that conv(α) ∩ conv(β) ∩ P = ∅, Y [α, β] = 0.
(BZ′ 4) For all α1, β1, α2, β2 ∈ A′ such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

(3) Define

BZ′k(P) :=
{
x ∈ Rn : ∃Y ∈ B̃Z

′k
(P), x̂(Y eF) = x̂

}
.

Similar to the case of SAk, BZ′k can be seen as creating columns that correspond to sets that
partition F . While SAk only generates a partition for each subset of up to k indices, BZ′k does
so for every tier, which is a much broader collection of indices. For a tier S up to size k, it does
the same as SAk and generates 2|S| columns corresponding to all possible complementations of
indices in S. However, for S of size greater than k, it generates a column for (S \ T)|1 ∩ T |0
for each T ⊆ S of size up to k, and a column for S|<|S|−k. This can be seen intuitively as a
“k-deep” partition of F corresponding to S — sets that can be obtained from starting with
S|1 and complementing no more than k entries in S are each represented by a matrix column
in the lifted space, while all other sets that are more than k complementations away from S|1
is represented by a single column in the matrix. For example, suppose BZ′1 is applied to a
polytope and S = {1, 2, 3} is a tier. Then the algorithm would generate columns corresponding
to the sets

{1, 2, 3} |1, {2, 3} |1 ∩ {1} |0, {1, 3} |1 ∩ {2} |0, {1, 2} |1 ∩ {3} |0, {1, 2, 3} |<3.

Note that the five sets given above partition F . In fact, given a tier S and T ⊆ S such that
|T | < k, BZ′k also generates a (k − |T |)-deep partition of this set for each U ⊆ S \ T such that
|U |+ |T | > k. First, the column for

(S \ (T ∪ U ′))|1 ∩ (T ∪ U ′)|0
is generated for all U ′ ⊆ U of size ≤ k − |T | (i.e. if the set is at no more than k − |T |
complementations away from (S \ (T ∪ U))|1 ∩ T |0). Then BZ′k also generates

(S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |)

to capture the remainder of the partition.
Since each singleton index set is a wall, we see that every index set of size up to k is a

tier. Thus, A′ contains Ak, and it is not hard to see that BZ′k(P) ⊆ SAk(Ok(P)) in general.
(BZ′k also dominates SA′k, a stronger version of SAk that will be defined after the next theorem.)
Furthermore, notice that in BZ′, we have generated exponentially many variables, whereas in the
original BZ only polynomially many are selected. The role of walls is also much more important
in selecting the variables in BZ, which we have intentionally suppressed in BZ′ to make our
presentation and analysis more transparent. Most of our lower-bound results are established on
the stronger operator BZ′, which implies that similar lower-bound results hold for all operators
dominated by BZ′, such as BZ and SA. Some of the details of the relationships between these
modified operators and the original Bienstock–Zuckerberg operators are given in the Appendix.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 11

While Bienstock and Zuckerberg’s original definition of BZk accepts any polytope as input,
they showed that their operator works particularly well on certain instances of set covering
problems. One of their main results is the following: Given an inequality a>x ≥ a0 such that
a ≥ 0 and a0 > 0, its pitch is defined to be the smallest positive integer j such that

S ⊆ supp(a), |S| ≥ j ⇒
∑
i∈S

ai ≥ a0.

Let ē denote the all-ones vector of suitable size. Then Bienstock and Zuckerberg showed the
following powerful result:

Theorem 1 (Bienstock and Zuckerberg [BZ04]). Suppose P := {x ∈ [0, 1]n : Ax ≥ ē} where A
is a 0, 1 matrix. Then for every k ≥ 1, every valid inequality of PI that has pitch at most k + 1
is valid for BZk(P).

Note that if all coefficients of an inequality are integral and at most k, then the pitch of the
inequality is no more than k.

One major distinction between the Bienstock–Zuckerberg operators and the earlier ones is
that they may generate different variables for different input set P . In fact, the performance of
BZ can vary upon different algebraic descriptions of the given set P , even if they geometrically
describe the same set. For instance, adding a redundant inequality to the system Ax ≤ b could
make many more sets qualify as k-small obstructions. This could increase the dimension of the
lifted set as more walls and tiers are generated, and as a result possibly strengthen the operator.
We provide examples that illustrate this phenomenon in the Appendix.

Next, we take a closer look into the condition (BZ′ 3), which is one of the conditions used in the
Bienstock–Zuckerberg operators that were not explicitly imposed by the earlier lift-and-project
operators. Observe that, for every x ∈ P ∩ {0, 1}n,

Y x
A [α, β] = xAαx

A
β = 0

whenever α ∩ β ∩ P = ∅. Thus, imposing Y [α, β] = 0 whenever conv(α) ∩ conv(β) ∩ P = ∅ still
preserves all matrices in the lifted space which correspond to integral points in P . Also, note
that this condition can be efficiently checked for the variables that may be selected in BZ′. For
instance, for α = S|1 ∩ T |0 ∩ U |<r,

conv(α) =

{
x ∈ [0, 1]n : xi = 1,∀i ∈ S, xi = 0, ∀i ∈ T,

∑
i∈U

xi ≤ r − 1

}
.

Thus, checking if x ∈ conv(α) ∩ conv(β) ∩ P for any specific pair of α, β amounts to verifying
if x satisfies O(n) linear equations and inequalities (in addition to verifying membership in P),
which is tractable.

Since we will relate the performance of BZ′ and BZ′+ to other operators (such as SA), it is
worthwhile to investigate how this new condition impacts the overall strength of an operator.
Given P ⊆ [0, 1]n, and integer k ≥ 1, define

SA′k(P) :=
{
x ∈ Rn : ∃Y ∈ S̃A

′k
(P) : Y eF = x̂

}
,

where S̃A
′k

(P) is the set of matrices in S̃A
k
(P) that satisfy

(SA′ 4) For all α ∈ A+
1 , β ∈ Ak such that conv(α) ∩ conv(β) ∩ P = ∅, Y [α, β] = 0.

Note that SA′k yields a tractable algorithm when k = O(1), since the condition (SA′ 4) — as
with (BZ′ 3), as explained above — can be verified efficiently (assuming P is tractable), and is
only checked polynomially many times. Also, since (SA′ 4) is more restrictive than (SA 4), it is

12 YU HIN AU AND LEVENT TUNÇEL

apparent that SA′k(P) ⊆ SAk(P) for every set P ⊆ [0, 1]n. However, it turns out that in the
case of SA, this extra condition would “save” at most one iteration.

Proposition 2. For every P ⊆ [0, 1]n and every k ≥ 1,

SAk+1(P) ⊆ SA′k(P).

Proof. Let x ∈ SAk+1(P), and let Y ∈ S̃A
k+1

(P) such that Y eF = x̂. Define Y ′ ∈ RA
+
1 ×Ak such

that Y ′[α, β] = Y [α, β], ∀α ∈ A+
1 , β ∈ Ak (i.e., Y ′ is a submatrix of Y). Since Y ′eF = Y eF = x̂,

it suffices to show that Y ′ ∈ S̃A
′k

(P).

By construction, it is obvious that Y ′ ∈ S̃A
k
(P). Thus, we just need to show that Y ′ satisfies

(SA′ 4). Given α ∈ A+
1 , β ∈ Ak, suppose α = i|1, and β = S|1 ∩ T |0 for S, T ⊆ [n]. Now

α ∩ β = (S ∪ {i})|1 ∩ T |0 ∈ Ak+1, and thus the entry Y [F , α ∩ β] exists.
Since Y eα∩β ∈ K(P) by (SA 2), Y [F , α ∩ β] > 0 would imply that the point

y :=
1

Y [F , α ∩ β]
(Y [1|1, α ∩ β], Y [2|1, α ∩ β], . . . , Y [n|1, α ∩ β])>

is in P . By (SA 5), we know that Y [j|1, α ∩ β] = Y [F , α ∩ β] if j ∈ S ∪ {i}, and by (SA 3),
we have Y [j|1, α ∩ β] = 0 if j ∈ T . Thus, it follows that y belongs to conv(α) and conv(β).
Therefore, (SA′ 4) holds as conv(α) ∩ conv(β) ∩ P 6= ∅, and our claim follows. �

Proposition 2 establishes the dashed arrow from SA′ to SA in Figure 2, and assures that if
one can provide a performance guarantee for SA′ on a polytope P , then the same can be said of
the weaker SA operator by using one extra iteration. The meanings for the other four dashed
arrows in Figure 2 are similar in nature — for some linear or quadratic function of the iterate
number, the weaker operator can be at least as strong as the stronger operator. However, they
are much more involved than Proposition 2, and sometimes depend on the properties of the
given set P . We will address them in detail in the subsequent sections.

3. Identifying Unhelpful Variables in the Lifted Space

As we have seen in the previous section, one way to gain additional strength in devising a
lift-and-project operator is to lift to a space of higher dimension, and obtain a potentially tighter
formulation by using more variables (and new constraints), albeit at a computational cost. In
this section, we provide conditions on sets and higher dimensional liftings which do not lead to
strong cuts. As a result, we show in some cases, BZ′k performs no better than SA′` for some
suitably chosen pair k and `.

3.1. A General Template. Recall that F = {0, 1}n, and A is the power set of F . A common
theme among all lift-and-project operators we have looked at so far is that their lifted spaces
can all be interpreted as sets of matrices whose columns and rows are indexed by elements in
A. Moreover, they all impose a constraint in the tune of “each column of the matrix belongs
to a certain set linked to P” (e.g. conditions (SA 2) and (BZ′ 2)). This provides a natural way
of partitioning the constraints of a lift-and-project operator into two categories: those that are
present (and identical) for every matrix column, and the remaining constraints that cannot be
captured this way.

Let Γ be a lift-and-project operator which lifts a given set P to Γ̃(P), and then projects it
back onto the space where P lives, resulting in the output relaxation Γ(P). We say that Γ is
admissible if it possesses all of the following properties:

(I1) Given a convex set P ⊆ [0, 1]n, Γ lifts P to a set of matrices Γ̃(P) ⊆ RS×S′ , such that

A+
1 ⊆ S ⊆ S

′ ⊆ A.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 13

(I2) There exist a column constraint function f that maps elements in A to subsets of RS ,
and a cross-column constraint function g that maps sets contained in [0, 1]n to sets of

matrices in RS×S′ , such that

Γ̃(P) =
{
Y ∈ g(P) : Y eS′ ∈ f(S′), ∀S′ ∈ S ′

}
.

Furthermore, f has the property that, for every pair of disjoint sets S, T ∈ S ′:
(1) f(S) ∪ f(T) ⊆ f(S ∪ T);
(2) f(S) = f(T) if S ∩ P = T ∩ P .

(I3)

Γ(P) :=
{
x ∈ Rn : ∃Y ∈ Γ̃(P), Y [F ,F] = 1, x̂(Y eF) = x̂

}
.

Loosely speaking, an admissible operator returns a relaxation Γ(P) that is a projection of some

set of matrices Γ̃(P) whose rows and columns are indexed by entries in A, with some structures
that are captured by the functions f and g. As we will see in subsequent results, the intention
of the definition is to try to capture as much of Γ as possible with f by using it to describe the
constraints Γ places on every column of the matrices in the lifted space, and only include the
remaining constraints in g. Thus, we want f to be maximal, and g to be minimal in this sense.
For instance, we can show that SAk is admissible by defining f(S) := K(P ∩ conv(α)), ∀α ∈ A
and g(P) to be the set of matrices in RA

+
1 ×Ak that satisfy (SA 3), (SA 4) and (SA 5). All named

operators mentioned in this manuscript can be shown to be admissible in this fashion — using f
to describe that each matrix column has to be in some lifted set determined by P , and letting g
capture the remaining constraints. On the other hand, for any lift-and-project operator Γ that
satisfies (I1), we can show that it is admissible by letting g(P) := Γ̃(P) and f(α) := RS for all
α ∈ A (i.e., we define f to be trivial and “shove” all constraints of Γ under g). Thus, the notion
of admissible operators is extremely broad, and the framework that we present here might also
be applicable to the analyses of future lift-and-project operators that are drastically different
from the existing ones.

For many known operators, these “other” constraints placed by g are relaxations of the
set theoretical properties (P5) and (P6) of Y x

A . For instance, (SA 5) is in place to make sure
the variables in the linearized polynomial inequalities that would be identified in the original

description of SAk would in fact have the same value in all matrices in S̃A
k
(P). Likewise, (SA 3)

and (SA 4) are also needed to capture the relationship between the variables that would be
established naturally in the original description with polynomial inequalities.

Furthermore, sometimes using matrices to describe the lifted space and assigning set the-
oretical meanings to their columns and rows has advantages over using linearized polynomial
inequalities directly. For instance, we again consider the set

P :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n−
1

2

}
.

We have seen that if we define

Qj :=

{
x ∈ P :

n∑
i=1

xi = j

}
,

for every j ∈ {0, 1, . . . , n}, then PI = conv
(⋃n

j=0Qj

)
. However, if we attempt to construct a

formulation by linearizing polynomial inequalities as in the original description of SA, then to

14 YU HIN AU AND LEVENT TUNÇEL

capture the constraints for Qj one would need to linearize∑
S,T :S∪T=[n],
S∩T=∅,|S|=j

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)(
n∑
i=1

aixi

)
≤

∑
S,T :S∪T=[n],
S∩T=∅,|S|=j

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)
a0

for all inequalities
∑n

i=1 aixi ≤ a0 that are valid for P . Of course, when j ≈ n
2 , the above

constraint would have exponentially many terms.
However, we can obtain an efficient lifted formulation by doing the following: for each j ∈

{0, 1, . . . , n}, define Rj ∈ A where

Rj =

{
x ∈ F :

n∑
i=1

xi = j

}
,

and let S = {F , R0, R1, . . . , Rn}. We now define Γ to be the lift-and-project operator as follows:

(1) Given P ⊆ [0, 1]n, let Γ̃(P) denote the set of matrices Y ∈ RA
+
1 ×S such that

(i) Y [F ,F] = 1.
(ii) Y eRj ∈ K(P ∩ conv(Rj)), ∀j ∈ {0, . . . , n}.
(iii) Y eF =

∑n
j=0 Y eRj .

(2) Define

Γ(P) :=
{
x ∈ Rn : ∃Y ∈ Γ̃(P), Y eF = x̂

}
.

Then it is not hard to see that Γ(P) = conv (
⋃n
i=0Qj) for every set P ⊆ [0, 1]n. Note that

we used constraint (iii) to enforce that the entries in the matrix behave consistently with their
corresponding set theoretical meanings — since R0, . . . , Rn partition F , we require that the
columns indexed by the sets R0, . . . , Rn sum up to that representing F .

Thus, the following notions are helpful when we attempt to analyze cross-column constraint
functions g more systematically. First, given S,S ′ ⊆ A, we say that S ′ refines S if for all S ∈ S,
there exist mutually disjoint sets in S ′ that partition S. Equivalently, given S ⊆ A, let Y x

S
denote the A × S submatrix of Y x

A consisting of the columns indexed by sets in S. Then S ′
refines S if and only if every column Y x

S is contained in the cone generated by the column vectors
of Y x

S′ , for every x ∈ F . For instance, S ′ refines S whenever S ⊆ S ′ (and thus Ak refines A+
k for

all k ≥ 0, and Ak refines A` whenever k ≥ `). Note that the notion of refinement is transitive
— if S ′′ refines S ′ and S ′ refines S, then S ′′ refines S.

Next, given Y1 ∈ RS1×S′1 and Y2 ∈ RS2×S′2 where S1,S ′1,S2,S ′2 ⊆ A, we say that Y1 and Y2 are
consistent if, given collections of mutually disjoint sets {S1i ∩ S′1i : i ∈ [k]} and {S2i ∩ S′2i : i ∈ [`]},

k⋃
i=1

(
S1i ∩ S′1i

)
=
⋃̀
i=1

(
S2i ∩ S′2i

)
⇒

k∑
i=1

Y1[S1i, S
′
1i] =

∑̀
i=1

Y2[S2i, S
′
2i].

Also, given a vector y ∈ RS where S ⊆ A, we can think of it as a |S|-by-1 matrix whose single
column is indexed by F . Then we can extend the above notion to define whether two vectors are
consistent with each other, and whether a matrix and a vector are consistent with each other.
For example, consider

Y :=

 Y [F ,F] Y [F , 1|1] Y [F , 2|1]
Y [1|1,F] Y [1|1, 1|1] Y [1|1, 2|1]
Y [2|1,F] Y [2|1, 1|1] Y [2|1, 2|1]

 =

 1 0.7 0.4
0.7 0.7 0.2
0.4 0.2 0.4

 ,

and
y := (y[{1, 2} |1], y[1|1 ∩ 2|0], y[2|1 ∩ 1|0], y[{1, 2} |0])> = (0.2, 0.5, 0.2, 0.1)>.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 15

Then Y is consistent with y. For example, notice that

(1|1 ∩ 2|0) ∪ ({1, 2} |1) = 1|1.
Accordingly, the corresponding entries in Y and y satisfy

y[1|1 ∩ 2|0] + y[{1, 2} |1] = Y [F , 1|1] = 0.7.

We remark that our notion of consistency is closely related to some similar notions used by
Zuckerberg [Zuc03].

Next, we say that a matrix Y ∈ RS×S′ , where S,S ′ ⊆ A, is overall measure consistent
(OMC) if it is consistent with itself. All matrices in the lifted spaces of SAk, SA′k and BZ′k

satisfy (OMC), for all k ≥ 1. For instance, a matrix Y in S̃A
1
(P) where P ⊆ [0, 1]n takes the

form

Y =

Y [F ,F] Y [F , 1|1] · · · Y [F , n|1] Y [F , 1|0] · · · Y [F , n|0]
Y [1|1,F] Y [1|1, 1|1] · · · Y [1|1, n|1] Y [1|1, 1|0] · · · Y [1|1, n|0]

...
...

. . .
...

...
. . .

...
Y [n|1,F] Y [n|1, 1|1] · · · Y [n|1, n|1] Y [n|1, 1|0] · · · Y [n|1, n|0]

 .

Then (SA 3) enforces consistencies such as

Y [i|1,F] = Y [i|1, j|1] + Y [i|1, j|0]

for all indices i, j, while equations such as

Y [F , i|1] = Y [i|1, i|1] + Y [i|1, i|0]

follow from (SA 4) (which enforces Y [i|1, i|0] = 0 as i|1 ∩ i|0 = ∅) and (SA 5) (which enforces
Y [F , i|1] = Y [i|1, i|1] as F ∩ i|1 = i|1 ∩ i|1 = i|1). One notable observation is the following:

Suppose x ∈ RS′ satisfies (OMC) and S ′ refines S. Now for every α ∈ S, define Iα ⊆ S ′ to be a
collection of disjoint sets in S ′ that partitions α. Then, if we define y ∈ RS where

y[α] :=
∑
β∈Iα

x[β]

for every α ∈ S, then y is the unique vector in RS that is consistent with x.
Finally, we are ready to formally describe some variables that we will show are unhelpful in

the lifted space under this framework. Given an admissible operator Γ and P ⊆ [0, 1]n, suppose

Γ̃(P) ⊆ RS×S′ . If T = {T1, . . . , Tk} ⊆ S ′ is a collection of sets where

(1) the set
⋃k
i=1 Ti is itself an element in (S ′ \ T); and

(2) there exists a unique ` ∈ [k] such that P ∩ conv(Tj) 6= ∅.
Then we say that the sets T1, . . . , Tk are P -useless.

What does it mean for variables to be P -useless? For example, consider SA2 applied to a set
P ⊆ [0, 1]3 in which no point satisfies x3 = 1. Then let T = {T1, T2} = {{1, 3} |1, 1|1 ∩ 3|0}.
Now consider any matrix Y ∈ S̃A

2
(P). Since P ∩ T1 = ∅, Y eT1 ∈ K(P) (enforced by (SA 2))

implies that the entire column of Y indexed by T1 is zero. Next, let R := T1 ∪T2 = 1|1, which is
itself a variable generated by SA2. By (SA 3), we know that Y eT1 + Y eT2 = Y eR. Since we just

argued that Y eT1 is the zero vector, we obtain that Y eT2 = Y eR for all matrices Y ∈ S̃A
2
(P).

Since the column for T1 is uniformly zero, and the column T2 is redundant (it is identical to
the column for R), we can deem the variables T1, T2 P -useless, and not generate their columns
when computing SA2(P).

Geometrically, useless variables correspond to unfruitful partitions in the convexification pro-
cess. Recall the idea that, given P and Qi’s are disjoint subsets of P whose union contains all

16 YU HIN AU AND LEVENT TUNÇEL

integral points in P , then the convex hull of these Qi’s give a potentially tighter relaxation of
PI than P . Now, if we have a set of indices T where the subcollection {Qi : i ∈ T } has exactly
one nonempty set, then we can replace that subcollection of Qi’s by the single set

⋃
i∈T Qi, and

be assured that the convex hull of the reduced collection of Qi’s would be the same as that of
the original collection.

With the notion of P -useless variables, we can show the following:

Proposition 3. Let Γ1,Γ2 be two admissible lift-and-project operators, P ⊆ [0, 1]n, and suppose

Γ̃1(P) ⊆ RS1×S′1 and Γ̃2(P) ⊆ RS2×S′2. Also, let f1, g1 and f2, g2 be the corresponding constraint
functions of Γ1 and Γ2 respectively, and let U be a set of P -useless variables in S ′2. Further
suppose that the following conditions hold:

(i) Every matrix in Γ̃1(P) satisfies (OMC).
(ii) {S ∩ S′ : S ∈ S1, S

′ ∈ S ′1} refines {S ∩ S′ : S ∈ S2 \ U, S′ ∈ S ′2 \ U}, and S ′1 refines
S ′2 \ U .

(iii) Let Y ∈ Γ̃1(P), and S ∈ S ′2. If y ∈ RS2×{S} is consistent with Y , then y ∈ f2(S).

(iv) If Y1 ∈ g1(P) and Y2 ∈ RS2×S′2 is consistent with Y1, then Y2 ∈ g2(P).

Then, Γ1(P) ⊆ Γ2(P).

Intuitively, the above conditions are needed so that given a point x ∈ Γ1(P) and its certificate

matrix Y ∈ Γ̃1(P), we know enough structure about the entries and set theoretic meanings of

Y to construct a matrix Y ′ in R(S2\U)×(S′2\U) that is consistent with Y . Then using the fact
that the variables in U are P -useless, we can extend Y ′ to a matrix Y ′′ in RS2×S′2 that certifies
x’s membership in Γ2(P). Also, for y ∈ RS2×{S}, we are referring to a vector with |S2| entries
that are indexed by elements of {T ∩ S : T ∈ S2}. Since we will be talking about whether y is
consistent with another vector or matrix, we will need to specify not only the entries of y, but
also these entries’ corresponding sets.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. Suppose x ∈ Γ1(P). Let Y ∈ RS1×S′1 be a matrix in Γ̃1(P) such that

x̂(Y eF) = x̂. First, we construct an intermediate matrix Y ′ ∈ R(S2\U)×(S′2\U). For each α ∈ S2\U
and β ∈ S ′2 \ U , we know (due to (ii)) that there exists a set of ordered pairs

Iα,β ⊆
{

(S, S′) : S ∈ S1, S
′ ∈ S ′1

}
such that the collection {S ∩ S′ : (S, S′) ∈ Iα,β} partitions α ∩ β. Next, we construct Y ′ such
that

Y ′[α, β] :=
∑

(S,S′)∈Iα,β

Y [S, S′].

Note that by (OMC), the entry Y ′[α, β] is invariant under the choice of Iα,β. Also, since {(F ,F)}
is a valid candidate for IF ,F , we see that Y ′[F ,F] = Y [F ,F] = 1, and x̂(Y ′eF) = x̂(Y eF) = x̂.

Next, we construct Y ′′ ∈ Γ̃2(P) from Y ′. For each α ∈ U for which P ∩conv(α) 6= ∅, we define
a set h(α) ∈ S ′2 \ U such that conv(α) ∩ P = conv(h(α)) ∩ P . This can be done as follows: by
the definition of α being P -useless, there must be a collection T = {T1, . . . , Tk, α} ⊆ U where

conv(Ti) ∩ P = ∅ for all i ∈ [k], and a set R :=
(⋃k

i=1 Ti

)
∪ α ∈ S ′1 that satisfies R 6∈ T and

conv(α)∩P = conv(R)∩P . If R 6∈ U , then we can let h(α) = R. Otherwise, since R is itself P -
useless, we can repeat the argument and find a yet larger setR′ where conv(R′)∩P = conv(R)∩P .
Since U is finite, we can eventually find a set h(α) ∈ S ′2 \U that has the desired property. Note
that h(α) may not be unique, but any eligible choice would do.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 17

Next, we define V 1 ∈ R(S2\U)×S2 as follows:

V 1(eα) :=

 eα if α ∈ S2 \ U ;
eh(α) if α ∈ U and conv(α) ∩ P 6= ∅;
0 otherwise.

Similarly, we define V 2 ∈ R(S′2\U)×S′2 as follows:

V 2(eα) :=

 eα if α ∈ S ′2 \ U ;
eh(α) if α ∈ U and conv(α) ∩ P 6= ∅;
0 otherwise.

We show that Y ′′ := V 1Y ′(V 2)> ∈ Γ̃2(P). Since our map from Y to Y ′′ preserves (OMC), Y ′′ is
consistent with Y , and thus by (iv) it satisfies all constraints in g2. Also, by (iii) it satisfies all

column constraints in f2 as well. Thus, Y ′′ ∈ Γ̃2(P). Since x̂(Y ′′eF) = x̂, we are finished. �

We note that, in some cases, we can relate the performance of two lift-and-project operators by
assuming a condition slightly weaker than (OMC). Given a matrix Y ∈ RS×S′ , where S,S ′ ⊆ A,
we say that it is row and column measure consistent (RCMC) if every column and row of Y
satisfies (OMC). As is apparent in its definition, (RCMC) is less restrictive than (OMC). For
example, consider

Y :=

 Y [F ,F] Y [F , 1|1] Y [F , 2|1] Y [F , 1|0] Y [F , 2|0]
Y [1|1,F] Y [1|1, 1|1] Y [1|1, 2|1] Y [1|1, 1|0] Y [1|1, 2|0]
Y [2|1,F] Y [2|1, 1|1] Y [2|1, 2|1] Y [2|1, 1|0] Y [2|1, 2|0]

 =

 1 0.7 0.4 0.3 0.6
0.7 0.7 0.2 0 0.5
0.4 0.3 0.4 0.1 0

 .

Then Y satisfies (RCMC), but not (OMC) since Y [1|1, 2|1] 6= Y [2|1, 1|1]. It is not hard to check
that all matrices in the lifted space of all named lift-and-project operators mentioned in this
paper satisfy (RCMC). Next, we prove a result that is the (RCMC) counterpart of Proposition 3:

Proposition 4. Let Γ1,Γ2 be two admissible lift-and-project operators, P ⊆ [0, 1]n, and suppose

Γ̃1(P) ⊆ RS1×S′1 and Γ̃2(P) ⊆ RS2×S′2. Also, let f1, g1 and f2, g2 be the corresponding constraint
functions of Γ1 and Γ2 respectively, and let U be a set of P -useless variables in S ′2. Further
suppose that all of the following conditions hold:

(i) Every matrix in Γ̃1(P) satisfies (RCMC).
(ii) S1 refines S2 \ U , and S ′1 refines S ′2 \ U .

(iii) Let S ∈ S ′2. If x ∈ RS1×{S} is contained in f1(S) and y ∈ RS2×{S} is consistent with x,
then y ∈ f2(S).

(iv) If Y1 ∈ g1(P) and Y2 ∈ RS2×S′2 is consistent with Y1, then Y2 ∈ g2(P).

Then, Γ1(P) ⊆ Γ2(P).

Proof. The result can be shown by following the same outline as in the proof of Proposition 3.
Suppose x ∈ Γ1(P) and Y ∈ RS1×S′1 is a certificate matrix for x. For each α ∈ S2 \U , define Iα
to be a collection of sets in S1 that partitions α. Since S1 refines S2 \U , such a collection must
exist. Likewise, for all α ∈ S ′2 \U , we define I ′α to be a collection of sets in S ′1 that partitions α.

Next, we define Y ′ ∈ R(S2\U)×(S′2\U) such that

Y ′[α, β] :=
∑

S∈Iα,S′∈I′β

Y [S, S′].

Since Y satisfies (RCMC), Y ′[α, β] is invariant under the choices of Iα and I ′β. From here on,

we can define V1, V2 and Y ′′ ∈ RS2×S′2 as in the proof of Proposition 3, and apply the same

18 YU HIN AU AND LEVENT TUNÇEL

reasoning therein to show that it is in Γ̃2(P). Now since x̂(Y ′′eF) = x̂(Y eF) = x̂, we conclude
that x ∈ Γ2(P). �

3.2. Implications and Applications. Next, we look into several implications of Proposition 3
and Proposition 4. First, it is apparent that given two operators Γ1,Γ2 and a set P such that
Γ1(P) ⊆ Γ2(P), the integrality gap of Γ1(P) is no more than that of Γ2(P) with respect to
any chosen direction. We will formally define integrality gaps and discuss these results in more
depth in Section 5.

Next, we relate the performance of BZ′ and SA′ under some suitable conditions. First, we
define a tier S ∈ Tk to be P -useless if all variables associated with S are P -useless. Then we
have the following:

Theorem 5. Suppose there exists ` ∈ [n] such that all tiers S generated by BZ′k of size greater
than ` are P -useless. Then

BZ′k(P) ⊇ SA′2`(Ok(P)).

Proof. Let Γ1 = SA′2`(Ok(·)) and Γ2 = BZ′k(·). We prove our assertion by checking all conditions
listed in Proposition 3.

First of all, for every set P ⊆ [0, 1]n, all matrices in the lifted space of SA′2`(Ok(P)) satisfy
(OMC). Next, since S1 = A+

1 and S ′1 = A2`, we see that {S ∩ S′ : S ∈ S1, S
′ ∈ S ′1} refines A2`.

On the other hand, since every tier of size greater than ` is P -useless, we see that A` refines both
S2 \ U and S ′2 \ U . Thus, A2` = {S ∩ S′ : S, S′ ∈ A`} refines {S ∩ S′ : S ∈ S2 \ U, S′ ∈ S ′2 \ U}.
Also, it is apparent that S ′1 = A2` refines S ′2 \ U , so (ii) holds.

For (iii), we let f1(S) = K(Ok(P) ∩ conv(S)), ∀S ∈ A, and

f2(S) :=
{
y ∈ RS

′
2 : x̂(y) ∈ K(Ok(P) ∩ conv(S)), y satisfies (BZ′ 2)

}
.

Note that all conditions in (BZ′ 2) are relaxations of constraints in (P5) and (P6), and thus are

implied by (OMC). Let Y ∈ S̃A
′2`

(Ok(P)), and Y ′′ be the matrix obtained from the construction
in the proof of Proposition 3. Since Y satisfies (OMC), so does Y ′′ (as it is consistent with Y).
Also, since all conditions in (BZ′ 2) are implied by (OMC), the columns of Y ′′ must satisfy
(BZ′ 2).

To check (iv), we see that g2(P) would be the set of matrices in the lifted space that satisfy
(BZ′ 3) and (BZ′ 4). It is easy to see that (BZ′ 4) is implied by (OMC). For (BZ′ 3), suppose
S ∈ S2, S

′ ∈ S ′2, and conv(S) ∩ conv(S′) ∩ Ok(P) = ∅. If Y ′′[S, S′] 6= 0, then we know that
P ∩ conv(S) 6= ∅ and P ∩ conv(S′) 6= ∅, by the construction of Y ′′. Thus, define α := S if S 6∈ U ,
and α := h(S) if S ∈ U . Likewise, define β := S′ if S′ 6∈ U , and β := h(S′) if S′ ∈ U . In all
cases, we have now obtained α ∈ S2 \ U, β ∈ S ′2 \ U such that Y ′′[α, β] = Y ′′[S, S′].

Since

Y ′′[α, β] = Y ′[α, β] =
∑

(T,T ′)∈Iα,β

Y [T, T ′],

we obtain T ∈ A+
1 , T

′ ∈ Ak such that Y [T, T ′] 6= 0. Then by (SA′ 4), conv(T)∩conv(T ′)∩P 6= ∅.
This implies that conv(S) ∩ conv(S′) ∩ P 6= ∅, and so (BZ′ 3) holds. �

We remark that, with a little more care and using the same observation as in the proof of
Proposition 2, one can slightly sharpen Theorem 5 and show that SA2`(Ok(P)) ⊆ BZ′k(P) under
these assumptions.

Next, we look into the lift-and-project ranks of a number of relaxations that arise from
combinatorial optimization problems. For any lift-and-project operator Γ and polytope P , we
define the Γ-rank of P to be the smallest integer k such that Γk(P) = PI . The notion of rank

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 19

gives us a measure of how close P is to PI with respect to Γ. Moreover, it is useful when
comparing the performance of different operators applied to the same P .

Given a simple, undirected graph G = (V,E), we define

MT (G) :=

x ∈ [0, 1]E :
∑

j:{i,j}∈E

xij ≤ 1, ∀i ∈ V

 .

Then MT (G)I is the matching polytope of G, and is exactly the convex hull of incidence vectors
of matchings of G.

While there exist efficient algorithms that solve the matching problem (e.g. Edmonds’ seminal
blossom algorithm [Edm65]), many lift-and-project operators have been shown to require expo-
nential time to compute the matching polytope starting with MT (G). In particular, MT (K2n+1)
is known to have LS+-rank n [ST99] and BCC-rank n2 [ABN04]. More recently, Mathieu and
Sinclair [MS09] showed that the SA-rank of MT (K2n+1) is 2n − 1. Using their result and
Theorem 5, we can show that this polytope is also a bad instance for BZ′.

Theorem 6. The BZ′-rank of MT (K2n+1) is at least
⌈√

2n− 3
2

⌉
.

Proof. Let G = K2n+1 and P = MT (G). We first identify the tiers generated by BZ′k that are
P -useless. Observe that a set O ⊆ E is a k-small obstruction generated by BZ′k if there is a
vertex that is incident with all edges in O, and that 2 ≤ |O| ≤ k + 1 or |O| ≥ 2n − k. Now
suppose W ∈ Wk is a wall, and let {e1, e2, . . . , ep} be a maximum matching contained in W .
Notice that for e1 = {u1, v1} to be in W , it has to be contained in at least two obstructions and
each of these obstructions has to originate from the u1- or v1-constraint in the formulation of
MT (G). Now suppose e2 = {u2, v2}. By the same logic, we deduce that the obstructions that
allow e2 to be in W have to be different from those that enabled e1 to be in W . Since each wall
is generated by at most k+1 obstructions, we see that p ≤ k+1

2 . Therefore, for every tier S ∈ Tk
(which has to be contained in the union of k walls), the maximum matching contained in S has

at most k(k+1)
2 edges.

Hence, if a tier S has size greater than k(k+1)
2 + k, then S \ T is not a matching for any set

T ⊆ S of size up to k, which implies conv(S \ T)|1 ∩ P = ∅, and so conv(S \ T)|1 ∩ T |0 ∩ P = ∅.
Thus, the only variables α associated with S such that conv(α) ∩ P 6= ∅ take the form α =
(S \ (T ∪U))|1∩T |0 ∩U |<|U |−(k−|T |) for some disjoint sets U, T where |T | < k and |U |+ |T | > k.
Next, observe that (S \ (T ∪ U))|1 ∩ T |0 is partitioned by α and the sets

(11) (S \ (T ∪ U))|1 ∩ T |0 ∩ U ′|1 ∩ (U \ U ′)|0

where U ′ ≥ |U | − (k − |T |). Also, since S is a tier generated by BZ′k, so is its subset S \ U ,
and we see that the variable (S \ (T ∪ U))|1 ∩ T |0 is present. Thus, every set in (11), together
with α, are P -useless. Since this argument applies for all α’s in the above form, we see that all
variables associated with S are P -useless.

Since it was shown in [MS09] that P has SA-rank 2n− 1, it follows from Proposition 2 that
the SA′-rank of P is at least 2n − 2. Thus, by Theorem 5, for BZ′k(P) to be equal to PI , we

need 2
(
k(k+1)

2 + k
)
≥ 2n− 2. Therefore, k ≥

√
2n− 3

2 . �

The best upper bound we know for the BZ′-rank of MT (K2n+1) is 2n−1 (due to Mathieu and
Sinclair’s result, and the fact that BZ′k dominates SAk). We shall see in the next section that
strengthening BZ′ by an additional positive semidefiniteness constraint decreases the current
best upper bound to roughly

√
2n.

20 YU HIN AU AND LEVENT TUNÇEL

We next look at the stable set problem of graphs. Given a graph G = (V,E), its fractional
stable set polytope is defined to be

FRAC(G) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1, ∀ {i, j} ∈ E

}
.

Then the stable set polytope STAB(G) := FRAC(G)I is precisely the convex hull of incidence
vectors of stable sets of G. Since there is a bijection between the set of matchings in G and the
set of stable sets in its line graph L(G), the next result follows readily from Theorem 6.

Corollary 7. Let G be the line graph of K2n+1. Then the BZ′-rank of FRAC(G) is at least⌈√
2n− 3

2

⌉
.

Proof. First, it is not hard to see that MT (H) ⊆ FRAC(L(H)), for every graph H. Also, since
the collection of k-small obstructions of FRAC(G) is exactly the set of edges of G for all k ≥ 1,
we see that FRAC(G) = Ok(FRAC(G)). Therefore,

Ok(MT (K2n+1)) ⊆MT (K2n+1) ⊆ FRAC(G) = Ok(FRAC(G)).

This, together with the fact that every k-small obstruction of FRAC(G) is also a k-small
obstruction of MT (K2n+1), implies that BZ′k(MT (K2n+1)) ⊆ BZ′k(FRAC(G)). Thus, the
BZ′-rank of FRAC(G) is at least that of MT (K2n+1), and our claim follows. �

Thus, we obtain from Corollary 7, a family of graphs on n vertices whose fractional stable set
polytope has BZ′-rank Ω(n1/4).

We next turn to the complete graph G := Kn. It is well known that FRAC(G) has rank
Θ(n) with respect to SA (and as a result, all weaker operators such as LS and LS0). We show
that this is also true for BZ′.

Theorem 8. The BZ′-rank of FRAC(Kn) is between
⌈
n
2

⌉
− 2 and

⌈
n+1

2

⌉
, for all n ≥ 3. The

same bounds apply for the BZ-rank.

The proof of Theorem 8 will be provided in the Appendix. Thus, we see that, like all other
popular polyhedral lift-and-project operators, BZ′ (which is already stronger than BZ) performs
poorly on the fractional stable set polytope of complete graphs.

4. Tools for analyzing Lift-and-Project Operators
with Positive Semidefiniteness

Up to this point, we have looked exclusively at lift-and-project operators that produce poly-
hedral relaxations, where the main tool operators use to gain strength is to lift a given relaxation
to a higher dimensional space. In this section, we turn our focus to operators that do not pro-
duce polyhedral relaxations. In particular, we will introduce several lift-and-project operators
that utilize positive semidefiniteness, and look into the power and limitations of these additional
constraints.

4.1. Lift-and-Project Operators with Positive Semidefiniteness. Perhaps the most ele-
mentary operator of this type is the LS+ operator defined in [LS91]. Recall that one way to see
why PI ⊆ LS(P) in general is to observe that for any integral point x ∈ P , x̂x̂> is a matrix that
certifies x’s membership in LS(P). Since x̂x̂> is positive semidefinite for all x, if we let Sn+ ⊂ Sn
denote the set of symmetric, positive semidefinite n-by-n matrices, then it is easy to see that

LS+(P) :=
{
x ∈ Rn : ∃Y ∈ Sn+1

+ , Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n], Y e0 = diag(Y) = x̂
}

contains PI as well. Also, by definition, LS+(P) ⊆ LS(P) for all P ⊆ [0, 1]n, and thus LS+

potentially obtains a tighter relaxation than LS(P) in general.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 21

Likewise, we can also define positive semidefinite variants of SA. Given any positive integer
k, we define the operators SAk

+ and SA′k+ as follows:

(1) Let S̃A
k
+(P) denote the set of matrices Y ∈ SAk+ that satisfy all of the following conditions:

(SA+ 1) Y [F ,F] = 1.
(SA+ 2) For every α ∈ Ak:

(i) x̂(Y eα) ∈ K(P);
(ii) Y eα ≥ 0.

(SA+ 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T).

(SA+ 4) For all α, β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.
(SA+ 5) For all α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

(2) Let S̃A
′k
+(P) be the set of matrices S̃A

k
+(P) that also satisfy:

(SA′+ 4) For all α, β ∈ Ak such that conv(α) ∩ conv(β) ∩ P = ∅, Y [α, β] = 0.
(3) Define

SAk
+(P) =

{
x ∈ Rn : ∃Y ∈ S̃A

k
+(P), x̂(Y eF) = x̂

}
,

and

SA′k+(P) :=
{
x ∈ Rn : ∃Y ∈ S̃A

′k
+(P), x̂(Y eF) = x̂

}
.

The SAk
+ and SA′k+ operators extend the lifted space of the SAk operator to a set of square

matrices, and impose an additional positive semidefiniteness constraint. What sets these two
new operators apart is that SA′k+ utilizes a (BZ′ 3)-like constraint to potentially obtain additional

strength over SAk
+. While we have seen in their polyhedral counterparts SA′ and SA that adding

this additional constraint could decrease the rank of a polytope by at most one, we shall provide
an example later in this section in which the SA′+-rank of a polytope is lower than the SA+-rank
by Θ(n).

Note that in (SA+ 2) we have imposed that all certificate matrices in S̃A
k
+(P) (which contains

S̃A
′k
+(P)) have nonnegative entries, which obviously holds for matrices lifted from integral points.

In contrast with (SA 2), the nonnegativity condition was not explicitly stated there as it is
implied by the fact that P ⊆ [0, 1]n.

It is well known that SAk(P) ⊆ LS(SAk−1(P)) for all polytopes P ⊆ [0, 1]n and for all k ≥ 1
(see, for instance, Theorem 12 in [Lau03] for a proof). It then follows that SAk dominates
LSk for all k ≥ 1. Using very similar ideas, we prove an analogous result for the semidefinite
counterparts of these operators:

Proposition 9. For every polytope P ⊆ [0, 1]n and every integer k ≥ 1,

SAk
+(P) ⊆ LS+(SAk−1

+ (P)).

Proof. Suppose Y ∈ S̃A
k
+(P) and x̂(Y eF) = x̂. Let Y ′ be the (n + 1)-by-(n + 1) symmetric

minor of Y , with rows and columns indexed by elements in A+
1 . To adapt to the notation for

LS+, we index the rows and columns of Y ′ by 0, 1, . . . , n (instead of F , 1|1, . . . , n|1). It is obvious
that Y ′ ∈ Sn+1

+ , and Y ′e0 = diag(Y ′) = x̂. Thus, it suffices to show that Y ′ei, Y
′(e0 − ei) ∈

K(SAk−1
+ (P)), ∀i ∈ [n].

22 YU HIN AU AND LEVENT TUNÇEL

We first show that Y ′ei ∈ K(SAk−1
+ (P)). If (Y ′ei)0 = 0, then Y ′ei is the zero vector and the

claim is obviously true. Next, suppose (Y ′ei)0 > 0. Define the matrix Y ′′ ∈ SAk−1 , such that

Y ′′[α, β] =
1

(Y ′ei)0
Y [α ∩ i|1, β ∩ i|1], ∀α, β ∈ Ak−1.

Notice that Y ′′ is a positive scalar multiple of a symmetric minor of Y , and thus is positive
semidefinite. Moreover, it satisfies (SA+ 1) by construction, and inherits the properties (SA+ 2)

to (SA+ 5) from Y . Thus, Y ′′ ∈ S̃A
k−1
+ (P) and x̂(Y ′′eF) = 1

(Y ′ei)0
Y ′ei ∈ K(SAk−1

+ (P)). The

argument for Y ′(e0 − ei) is analogous. �

It follows immediately from Proposition 9 that SAk
+(P) ⊆ LSk+(P), and thus SAk

+ dominates

LSk+. The SA+ and SA′+ operators will be useful in simplifying our analysis and improving our
understanding of the Bienstock–Zuckerberg operator enhanced with positive semidefiniteness,
which is defined as

BZ′k+(P) :=
{
x ∈ Rn : ∃Y ∈ B̃Z

′k
+(P), x̂(Y eF) = x̂

}
,

where B̃Z
′k
+(P) := B̃Z

′k
(P) ∩ SA′+ .

4.2. Unhelpful variables in PSD relaxations. We see that in Proposition 4, in the special
case of comparing two lift-and-project operators whose lifted spaces are both square matrices
(i.e. S1 = S ′1 and S2 = S ′2), the construction of Y ′ and Y ′′ preserves positive semidefiniteness of
Y . Thus, this framework can be applied even when g1 and g2 enforce positive semidefiniteness
constraints in their respective lifted spaces. The following is an illustration of such an application:

Theorem 10. Suppose there exists ` ∈ [n] such that all tiers S generated by BZ′k+ of size greater
than ` are P -useless. Then

BZ′k+(P) ⊇ SA′`+(Ok(P)).

Proof. We prove our claim by verifying the conditions in Proposition 4. First, every matrix in
the lifted space of SA′`+ satisfies (OMC), which implies (RCMC). Next, since S1 = S ′1 = A` and

every tier of BZ′k+ that is not useless has size at most `, we see that (ii) holds as well.
For (iii), note that we can let

f1(S) =
{
y ∈ RS

′
1 : x̂(y) ∈ K(P ∩ conv(S)), y satisfies (OMC)

}
,

and

f2(S) =
{
y ∈ RS

′
2 : x̂(y) ∈ K(P ∩ conv(S)), y satisfies (BZ′ 2)

}
.

As mentioned before, all conditions in (BZ′ 2) are implied by (OMC) constraints and the fact
that A` refines S2. Thus, (iii) is satisfied.

For (iv), we see that g2(P) would be the set of matrices in SS2+ that satisfy (BZ′ 3) and (BZ′ 4).
It is easy to see that (BZ′ 4) is implied by (OMC). Also, (BZ′ 3) is implied by (SA′+ 4). Thus,
we are finished. �

4.3. Utilizing `-establishing variables. Somewhat complementary to the notion of useless
variables, here we look into instances where the presence of a certain set of variables in the lifted
space provides a guarantee on the overall performance of the operator. Given j ∈ {0, 1, . . . , n},
let [n]j denote the collection of subsets of [n] of size j. Suppose Y ∈ SA′ for some A′ ⊆ A, and
there exists a positive integer ` where all of the following conditions hold:

(`1) Y [F ,F] = 1.
(`2) Y � 0.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 23

(`3) A+
` ⊆ A

′.

(`4) For all α, β, α′, β′ ∈ A+
` such that α ∩ β = α′ ∩ β′, Y [α, β] = Y [α′, β′].

(`5) For all α, β ∈ A+
` , Y [F , β] ≥ Y [α, β].

Then we say that such a matrix Y is `-established. Notice that all matrices in S̃A
k
+(P) (which

contains S̃A
′k
+(P)) are `-established, for all P ⊆ [0, 1]n. A matrix in B̃Z

′k
+(P) is `-established if

all subsets of size up to ` are generated as tiers. Given such a matrix, we may define a vector

y whose entries are indexed by the sets
⋃2`
i=0[n]i such that yS = Y [S′|1, S′′|1], where S′, S′′ are

subsets of [n] of size at most ` such that S′ ∪ S′′ = S. Note that such choices of S′, S′′ must
exist by (`3), and by (`4) the value of yS is invariant under the choices of S′ and S′′.

Finally, we define Z ∈ R2`+1 such that

Zi :=
∑
S⊆[n]i

yS , ∀i ∈ {0, 1, . . . , 2`} .

Note that Z0 is always equal to 1 (by (`1)), and Z1 =
∑n

i=1 Y [i|1,F]. Also, observe that the
entries of Z are related to each other. For example, if x̂(Y eF) is an integral 0,1 vector, then by
(`5) we know that yS ≤ 1 for all S, and yS > 0 only if y{i} = 1, ∀i ∈ S. Thus, we can infer that

Zj =
∑
S∈[n]j

yS ≤
(
Z1

j

)
, ∀j ∈ [2`].

We next show that the positive semidefiniteness of Y also forces the Zi’s to relate to each other,
somewhat similarly to the above. The following result would be more intuitive by noting that(
p
i+1

)
/
(
p
i

)
= p−i

i+1 .

Proposition 11. Suppose Y ∈ SA′+ is `-established, and y, Z are defined as above. If there exists
an integer p ≥ ` such that

Zi+1 ≤
(
p− i
i+ 1

)
Zi, ∀i ∈ {`, `+ 1, . . . , 2`− 1} ,

then Zi ≤
(
p
i

)
, ∀i ∈ [2`]. In particular, Z1 ≤ p.

Proof. We first show that Z` ≤
(
p
`

)
. Given i ∈ [`], define the vector v(i) ∈ RA′ such that

v(i)α :=

(
p
i

)
if α = F ;

−1 if α = S|1 where S ∈ [n]i;
0 otherwise.

By the positive semidefiniteness of Y , we obtain

(12) 0 ≤ v(`)>Y v(`) =

(
p

`

)2

− 2

(
p

`

)
Z` +

∑
S,S′∈[n]`

Y [S|1, S′|1].

Notice that for every T ∈ [n]`+j , the number of sets T ′, T ′′ ∈ [n]` such that T ′ ∪ T ′′ = T is(
`
j

)(
`+j
`

)
. Hence, this is the number of times the term yT appears in

∑
S,S′∈[n]`

Y [S|1, S′|1]. We

also know by assumption

(13) Z`+j ≤
(
p− j − `+ 1

j + `

)(
p− j − `+ 2

j + `− 1

)
· · ·
(
p− `
`+ 1

)
Z` =

(
p−`
j

)(
`+j
`

)Z`

24 YU HIN AU AND LEVENT TUNÇEL

for all j ∈ [`]. Note that if p < 2`, then by assumption we have Zp+1 ≤ p−p
p+1Zp = 0. As a result,

Z2` = Z2`−1 = · · · = Zp+2 = Zp+1 = 0. In such cases, (13) still holds as
(
p−`
j

)
would evaluate to

zero. Then we have, ∑
S,S′∈[n]`

Y [S|1, S′|1] =
∑̀
j=0

∑
S∈[n]`+j

(
`+ j

`

)(
`

j

)
yS

=
∑̀
j=0

(
`+ j

`

)(
`

j

)
Z`+j

≤
∑̀
j=0

(
`+ j

`

)(
`

j

)(p−`
j

)(
`+j
`

)Z`
=

(
p

`

)
Z`.

Therefore, we conclude from (12) that 0 ≤
(
p
`

)2 − (p`)Z`, which implies that Z` ≤
(
p
`

)
. Together

with (13), this implies that Z`+j ≤
(
p
`+j

)
, ∀j ∈ {0, 1, . . . , `}.

It remains to show that Zi ≤
(
p
i

)
, ∀i ∈ [` − 1]. To do that, it suffices to show that Zi ≤

(
p
i

)
can be deduced from assuming Zi+j ≤

(
p
i+j

)
, ∀j ∈ [i]. Then applying the argument recursively

would yield the result for all i. Observe that∑
S,S′∈[n]i

Y [S|1, S′|1] =
i∑

j=0

∑
S∈[n]i+j

(
i+ j

i

)(
i

j

)
yS

≤ Zi +

i∑
j=1

(
i+ j

i

)(
i

j

)(
p

i+ j

)

= Zi −
(
p

i

)
+

i∑
j=0

(
i+ j

i

)(
i

j

)(
p

i+ j

)

= Zi −
(
p

i

)
+

(
p

i

) i∑
j=0

(
i

j

)(
p− i
j

)
= Zi −

(
p

i

)
+

(
p

i

)2

.

Hence,

0 ≤ v(i)>Y v(i) ≤
(
p

i

)2

− 2

(
p

i

)
Zi +

(
Zi −

(
p

i

)
+

(
p

i

)2
)

=

(
2

(
p

i

)
− 1

)((
p

i

)
− Zi

)
,

and we conclude that Zi ≤
(
p
i

)
. �

An immediate but noteworthy implication of Proposition 11 is the following:

Corollary 12. Suppose Y ∈ SA′ is `-established, and y, Z are defined as before. If Zi = 0,
∀i > `, then Z1 ≤ `.

Proof. Since Zi = 0 for all i ∈ {`+ 1, . . . , 2`}, we can apply Proposition 11 with p = ` and

deduce that Zi ≤
(
`
i

)
, ∀i ∈ [2`]. In particular, Z1 ≤ `. �

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 25

Note that Corollary 12 is somewhat similar in style to Theorem 13 in [KMN11], which decom-
poses and reveals some structure of solutions in Lasserre relaxations using the fact that certain
entries of the matrix in the lifted space are known to be zero. These results were independently
obtained.

We now employ the upper-bound proving techniques presented earlier and the notion of `-
established matrices to prove the following result on the matching polytope of graphs.

Theorem 13. The SA′+-rank of MT (K2n+1) is at most n−
⌊√

2n+1−1
2

⌋
.

Proof. LetG = K2n+1 and P = MT (G). Let Y ∈ S̃A
′k
+(P). Since Y is k-established, it suffices to

show that Zi+1 ≤
(
n−i
i+1

)
Zi for all integer i ∈ {k, k + 1, . . . , 2k − 1} whenever k ≥ n−

⌊√
2n+1−1

2

⌋
.

Then it follows from Proposition 11 that Z1 ≤ n, which implies
∑

i∈E(G) xi ≤ n is valid for

SA′k+(P).
First, by symmetry of the complete graph, we may assume that

Y [S|1, T |1] = Y [S′|1, T ′|1]

whenever S∪T and S′∪T ′ are both matchings of G of the same size. Thus, if we letMi denote
the set of all matchings of size i in G, and S ∪ T is a matching of size ` in G, we may assume
that

Y [S|1, T |1] = yS∪T =
Z`
|M`|

.

The last equality follows from our observation that by symmetry, we may assume that yM
is identical for all M ∈ M`, and the definition of Z`. Next, by the fact that the maximum
cardinality matchings in G have cardinality n and the condition (SA′+ 4), Zi = 0, ∀i > n. Thus,
it suffices to verify the above claim for the case when k ≤ i ≤ n− 1. Let S be a matching of size
k that saturates the vertices {2n− 2k + 2, . . . , 2n+ 1}, let T be a matching of size i − k that
saturates vertices {2n− 2i+ 2, . . . , 2n− 2k + 1}, and let E′ be the set of edges in the subgraph
of G induced by the vertices {1, 2, . . . , 2n− 2i+ 1}. Note that E′ contains exactly the edges
that are not incident with vertices saturated by edges in S or T . Also, for each U ⊆ E′, we
define the vector fU ∈ R|E′|+1 (indexed by {0} ∪ E′) such that

(fU)i :=

{
Y [(T ∪ U)|1 ∩ (E′ \ U)|0, S|1] if i = 0 or if i ∈ U ;
0 otherwise.

Notice that k ≥ n −
√

2n+1−1
2 implies k ≥

(
2n+1−2k

2

)
≥ |E′| + |T |. Therefore, the above entries

in Y do exist, and the vectors fU are well-defined. Now notice that if U ⊆ E′ and e ∈ E′ \ U ,

(fU∪{e})0 + (fU)0

= Y [((T ∪ (U ∪ {e}))|1 ∩ (E′ \ (U ∪ {e}))|0, S|1] + Y [(T ∪ U)|1 ∩ (E′ \ U)|0, S|1]

= Y [(T ∪ U)|1 ∩ (E′ \ (U ∪ {e})|0, S|1],

where the last equality follows from (SA+ 3). Now if we apply this observation iteratively to
every edge in E′, we see that

(14)
∑
U⊆E′

(fU)0 =
∑
U⊆E′

Y [(T ∪ U)|1 ∩ (E′ \ U)|0, S|1] = Y [T |1, S|1].

Then we can extend (14) to the other entries of fU , and obtain

(15)
∑
U⊆E′

fU =
(
Y [T |1, S|1], Y [(T ∪ {e1})|1, S|1], . . . , Y [(T ∪

{
e|E′|

}
)|1, S|1]

)>
,

26 YU HIN AU AND LEVENT TUNÇEL

where e1, . . . , e|E′| are the edges in E′.

Moreover, observe that fU =

(
(fU)0

(fU)0χ
U

)
for all U ⊆ E′, and by (SA′+ 4) we know that

(fU)0 > 0 only if U ∪T ∪S is a matching of G, which implies that U is a matching contained in
E′. Since E′ spans 2n− 2i+ 1 vertices, such a U must have size at most n− i. Thus, for each
fU such that (fU)0 > 0, we know that

∑
i∈E′(fU)i ≤ (n− i)(fU)0. Therefore, by (15),(

2n− 2i+ 1

2

)
Zi+1

|Mi+1|
=
∑
i∈E′

Y [(T ∪ {ei})|1, S|1] ≤ (n− i)Y [T |1, S|1] = (n− i) Zi
|Mi|

.

Notice that

|Mj | =
1

j!

(
2n+ 1

2

)(
2n− 1

2

)
· · ·
(

2n− 2j + 3

2

)
=

(2n+ 1)!

2jj!(2n− 2j + 1)!
,

for all j ∈ {0, 1, . . . , n}. Thus, we obtain that

Zi+1 ≤
(n− i)|Mi+1|(
2n−2i+1

2

)
|Mi|

Zi =
n− i
i+ 1

Zi.

This concludes the proof, as we see that the facets of MT (G)I corresponding to smaller odd
cliques in G are also generated by SA′k+. �

Recall that, as shown in [ST99], the LS+-rank of MT (K2n+1) is exactly n. Thus, the tech-
niques we proposed prove that SA′+ performs strictly better on this family of polytopes.

Next, we show that the notion of `-established matrices can also be applied to provide an
upper bound on the BZ′+-rank of MT (K2n+1).

Theorem 14. The BZ′+-rank of MT (K2n+1) is at most
⌈√

2n+ 1
4 −

1
2

⌉
.

Proof. Let G = K2n+1 and P = MT (G). First, we show that every subset W ⊆ E of size up
to
⌊
k+1

2

⌋
is a wall generated by BZ′k+. Given any edge {i, j} ∈ W , take a vertex v 6∈ {i, j}.

Then {{i, v} , {i, j}} and {{j, v} , {i, j}} are both k-small obstructions for any k ≥ 1, and their
intersection contains {i, j}. If we do this for every edge in W , then we see that there is a set of
at most 2|W | ≤ k + 1 obstructions that generate W as a wall.

Therefore, every set S of size up to k
⌊
k+1

2

⌋
is a tier, and the variable S|1 is generated.

Since k ≥
⌈√

2n+ 1
4 −

1
2

⌉
implies k

⌊
k+1

2

⌋
≥ n, we see that every matrix Y ∈ B̃Z

′k
+(P) is n-

established. By (BZ′ 3), Y [S|1, S′|1] > 0 only if S∪S′ is a matching, which implies Zi = 0, ∀i > n.
Thus, we can apply Corollary 12 and deduce that Z1 ≤ n. Therefore,

∑
e∈E xe ≤ n is valid for

BZ′k+(P).
Again, since the facets ofMT (G)I corresponding to smaller odd cliques in G are also generated

by BZ′k+, we are finished. �

The above upper bound also applies to the slightly weaker BZ+ operator. Also, we can show
that the BZ′+-rank of MT (K2n+1) is at least

√
n− 1. This relies on the fact that the SA′+-rank

of MT (K2n+1) is at least n
2 , the detailed proof for which is rather substantial, and is planned

for a subsequent publication.

4.4. When strengthening SA by a PSD constraint does not help. We have seen cases
in which polyhedral operators and positive semidefinite operators do not gain any strength by
lifting a given set to a higher dimension. Here, we show some instances in which adding a
positive semidefiniteness constraint to a polyhedral operator does not help, extending a result

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 27

by Goemans and the second author in [GT01]. In this section, we will use v[i] to denote the ith

entry of a vector v. Given x ∈ [0, 1]n and two disjoint sets of indices I, J ⊆ [n], we define the
vector xIJ ∈ [0, 1]n where

xIJ [i] :=

 1 if i ∈ I;
0 if i ∈ J ;
x[i] otherwise.

In other words, xIJ is the vector obtained from x by setting all entries indexed by elements in
I to 1, and all entries indexed by elements in J to 0. Then we have the following.

Theorem 15. Let P ⊆ [0, 1]n and x ∈ [0, 1]n. If xIJ ∈ P for all I, J ⊆ [n] such that |I|+ |J | ≤ k,

then x ∈ SAk
+(P).

Proof. We prove our claim by constructing a matrix in RAk×Ak that certifies x ∈ SAk
+(P). Recall

that Ak = {S|1 ∩ T |0 : S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ k} and A+
k = {S|1 : |S| ≤ k}. For each

I ⊆ [n], |I| ≤ k, define y(I) ∈ A+
k such that

y(I)[S|1] :=

{ ∏
i∈S\I xi if I ⊆ S;

0 otherwise.

Note that in the case of y(I)[I|1], the empty product is defined to evaluate to 1.

Next, we define Y ∈ RA
+
k ×A

+
k as

Y :=
∑

S⊆[n],|S|≤k

(∏
i∈S

xi(1− xi)

)
y(S)(y(S))>.

Note that Y � 0. Now given S, T ⊆ [n], |S|, |T | ≤ k, observe that

Y [S|1, T |1] =
∑

U⊆S∩T

(∏
i∈U

xi(1− xi)

) ∏
i∈S\U

xi

 ∏
i∈T\U

xi

=

(∏
i∈S∪T

xi

) ∑
U⊆S∩T

(∏
i∈U

(1− xi)

) ∏
i∈(S∩T)\U

xi

=

∏
i∈S∪T

xi.

Next, define U ∈ RAk×A
+
k such that

U>(eS|1∩T |0) :=
∑

W :S⊆W⊆(S∪T)

(−1)|W\S|eW |1 ,

for all disjoint S, T ⊆ [n] such that |S|+ |T | ≤ k. Now consider the matrix Y ′ := UY U>. Then
given α, β ∈ Ak where α = S|1 ∩ T |0 and β = S′|1 ∩ T ′|0,

(16) Y ′[α, β] =
(
U>eα

)>
Y
(
U>eβ

)
=

∑
W⊆T∪T ′

(−1)|W |

 ∏
i∈(S∪S′)∪W

xi

 .

28 YU HIN AU AND LEVENT TUNÇEL

Now if α ∩ β = ∅, then there exists an index ` ∈ [n] where ` ∈ (S ∪ S′) ∩ (T ∪ T ′). In this case,
Y ′[α, β] evaluates to∑

W ′⊆((T∪T ′)\{`})

(−1)|W
′|

 ∏
i∈(S∪S′)∪W ′

xi

+ (−1)|W
′∪{`}|

 ∏
i∈(S∪S′)∪(W ′∪{`})

xi

 .

The latter expression leads to∑
W ′⊆(T∪T ′)\{`})

(−1)|W
′|

 ∏
i∈(S∪S′)∪W ′

xi

+ (−1)|W
′|+1

 ∏
i∈(S∪S′)∪W ′

xi

 = 0.(17)

Now, if α ∩ β 6= ∅, then S1 ∪ S2 and T1 ∪ T2 are disjoint, and we obtain that

(18) Y ′[α, β] =

(∏
i∈S∪S′

xi

) ∑
W⊆T∪T ′

(−1)|W |

(∏
i∈W

xi

) =

(∏
i∈S∪S′

xi

)(∏
i∈T∪T ′

(1− xi)

)
.

We claim that Y ′ ∈ S̃A
k
+(P). First, notice that Y ′[F ,F] = 1, so (SA+ 1) holds. Next, given

α = S|1 ∩ T |0 ∈ Ak,

x̂
(
Y ′eα

)
=

(
Y ′[F , α]
Y ′[F , α]xST

)
∈ K(P),

where we applied the assumption that xST ∈ P . We also see from (17) and (18) that Y ′′ ≥ 0,
and so (SA+ 2) is satisfied. It is also easy to verify from (17) and (18) that (SA+ 3), (SA+ 4)
and (SA+ 5) hold as well. Also, Y � 0 implies Y ′ � 0. Therefore, since x̂(Y ′eF) = x̂, it follows
that x ∈ SAk

+(P). �

From the above, we are able to characterize some convex sets for which SAk
+ does not produce

a tighter relaxation than an operator as weak as LSk0.

Corollary 16. Suppose P ⊆ [0, 1]n is a convex set such that, for all x ∈ P and for all
I, J, I ′, J ′ ⊆ [n] such that I ∪ J = I ′ ∪ J ′ and |I|+ |J | = k,

xIJ ∈ P ⇐⇒ xI
′
J ′ ∈ P.

Then
SAk

+(P) = LSk0(P) =
⋂

I⊆[n],|I|=k

{
x : xI∅ ∈ P

}
.

The two results above generalize Theorem 4.1 and Corollary 4.2 in [GT01], respectively. Since
SA+ dominates both LS+ and SA, Corollary 16 immediately implies the following:

Corollary 17. Given p ∈ R, let

P (p) :=

x ∈ [0, 1]n :
∑
i∈S

xi +
∑
i 6∈S

(1− xi) ≤ n−
p+ 1

2
, ∀S ⊆ [n]

 .

Then SAk
+(P (0)) = P (k), for all k ∈ {0, 1, . . . , n}. In particular, the SA+-rank of P (0) is n.

One can apply the same argument used in Proposition 2 to show that SA2k
+ (P) ⊆ SA′k+(P)

in general. Thus, the SA′+-rank of P (0) is at least
⌈
n
2

⌉
. On the other hand, the proof of

Proposition 23 (given in the Appendix) can be adapted to show that the SA′+-rank of any

polytope contained in [0, 1]n is at most
⌈
n+1

2

⌉
. Thus, we see that in this case, SA′+ requires

roughly n
2 fewer rounds than SA+ to show that P (0) has an empty integer hull.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 29

It was shown in [BZ04] that BZ2(P (0)) = ∅ = P (0)I (implying BZ′2(P (0)) = BZ′2+(P (0)) = ∅).
However, since the run-time of BZ depends on the size of the system of inequalities describing
P (which in this case is exponential in n), the relaxation generated by BZ2 is not tractable. In
contrast, note that it is easy to find an efficient separation oracle for P (0) (e.g. by observing
x ∈ P (0) if and only if

∑n
i=1 |xi−

1
2 | ≤

n−1
2), and thus one could optimize a linear function over,

say, SAk(P (0)) in polynomial time for any k = O(1). The reader may refer to Figure 1 for a
complete classification of operators that depend on the algebraic description of the input set P ,
as opposed to those that only require a weak separation oracle.

5. Integrality gaps of lift-and-project relaxations

So far, we have been using the rank of a relaxation with respect to a lift-and-project operator
as the measure of how far that relaxation is away from its integer hull. Another measure of the
“tightness” of a relaxation that is commonly used and well studied is the integrality gap. Again,
let P ⊆ [0, 1]n be a convex set such that PI 6= ∅, and suppose c ∈ Rn. Then

γc(P) :=
max

{
c>x : x ∈ P

}
max {c>x : x ∈ PI}

is the integrality gap of P with respect to c. Observe that, given P, P ′ such that PI = P ′I and
P ⊆ P ′, then γc(P) ≤ γc(P ′) for all c. Thus, our earlier results immediately imply the following:

Corollary 18. Suppose P ⊆ [0, 1]n, and two lift-and-project operators Γ1,Γ2 satisfy the condi-
tions in either Proposition 3 or Proposition 4. Then

γc(Γ1(P)) ≤ γc(Γ2(P)),

for all c ∈ Rn.

Next, we present another approach for obtaining an integrality gap result. Since in many
optimization problems we are interested in computing the largest or smallest cardinality of a
set among a given collection (e.g. the stable set problem and the max-cut problem), we are
often optimizing in the direction of ē. Moreover, we have seen that many hardness results
have been achieved by highly symmetric combinatorial objects (e.g. the complete graph), which
correspond to polytopes that have a lot of symmetries. These symmetries can significantly
simplify the analyses of lift-and-project relaxations. For instance, they could allow us to assume
that there are certificate matrices in the lifted space with very few distinct entries.

The idea of using symmetry and convexity to reduce the number of parameters involved in
a problem instance have been widely exploited in both computational work and theoretical re-
search. This at least goes back to Lovász’s seminal work on the theta function in [Lov79] and
related findings by Schrijver in [Sch79]. Also during the 1970s, Godsil used similar ideas in his
work in algebraic graph theory (see [CG97] for a more recent survey). More recently, these ideas
have also been proven useful in reducing SDP instances [GP04, dKPS07], bounding the cross-
ing number of graphs [dKMP+06], and obtaining SDP relaxations for polynomial optimization
problems [MWT13]. Thus, the following ideas have been useful in the past and could continue
to be useful.

We say that a compact convex set P ⊆ [0, 1]n is symmetric if there exists an n-by-n permu-
tation matrix Q such that {Qx : x ∈ P} ⊆ P , with the condition that the permutation on [n]
corresponding to Q has no cycles of length smaller than n. Note that the reverse containment
is implied by the definition, as Qn = I. Moreover, observe that if P is symmetric, so is PI .

Next, we say that a lift-and-project operator Γ is symmetry preserving if given any symmetric,
compact convex set P , Γ(P) is also symmetric, compact and convex. All named operators

30 YU HIN AU AND LEVENT TUNÇEL

mentioned in this paper are symmetry preserving. (In the case when Γ is one of the Bienstock–
Zuckerberg variants, a symmetric algebraic description of P is required.) Then we have the
following:

Theorem 19. Let P ⊆ [0, 1]n be a symmetric, compact and convex set, and let Γ be a symmetry
preserving operator. Then, the integrality gaps of γē(Γ(P)) are attained by a nonnegative multiple
of ē.

Proof. First, we show that for any y ∈ Γ(P),
(
y>ē
n

)
ē ∈ P . Let Q be a permutation matrix that

certifies the symmetry of P . Then given y ∈ Γ(P), we know that y,Qy, . . . , Qn−1y ∈ Γ(P), as Γ
preserves symmetry. Since Q essentially permutes the n coordinates of P around in an n-cycle,
we know that

∑n−1
i=0 Q

i = J , the all-ones matrix. By the convexity of Γ(P),

n−1∑
i=0

1

n

(
Qiy

)
=

1

n
Jy =

(
y>ē

n

)
ē ∈ Γ(P).

Now if y is a point that attains the maximum integrality gap in the direction of ē, then we could
use the above construction to obtain a multiple of ē that achieves the same objective value.
Hence, our claim follows. �

Note that Theorem 19 immediately implies the following:

Corollary 20. Suppose P ⊆ [0, 1]n is a symmetric, compact and convex set, and Γ is a symmetry
preserving operator. If ē>x < ` is valid for Γ(P) and PI 6= ∅, then

γē(Γ(P)) <
`

max {
∑n

i=1 xi : x ∈ PI}
.

Of course, the γ−ē analogs of Theorem 19 and Corollary 20 can be obtained by essentially
the same observations. Thus, we see that in many cases, it suffices to check whether a certain
multiple of ē belongs to Γ(P) to obtain a bound on γē(Γ(P)). This structure, when present,
makes the analysis significantly easier, as often times we can apply the above symmetry-convexity
argument to the certificate matrices in Γ̃(P) as well, and identify many of the variables in the
lifted space.

References

[ABN04] Néstor E. Aguilera, Silvia M. Bianchi, and Graciela L. Nasini. Lift and project relaxations for the
matching and related polytopes. Disc. Appl. Math., 134(1-3):193–212, 2004.

[AT11] Yu Hin Au and Levent Tunçel. Complexity analyses of Bienstock-Zuckerberg and Lasserre relaxations
on the matching and stable set polytopes. In Integer Programming and Combinatorial Optimization,
pages 14–26. Springer, Heidelberg, 2011.

[Au14] Yu Hin Au. A Comprehensive Analysis of Lift-and-Project Methods for Combinatorial Optimization.
PhD thesis, University of Waterloo, 2014.

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Program., 58(3, Ser. A):295–324, 1993.

[BCGM11] Siavosh Benabbas, Siu On Chan, Konstantinos Georgiou, and Avner Magen. Tight gaps for vertex
cover in the Sherali-Adams SDP hierarchy. In 31st International Conference on Foundations of
Software Technology and Theoretical Computer Science, volume 13 of LIPIcs. Leibniz Int. Proc.
Inform., pages 41–54. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2011.

[BGM10] Siavosh Benabbas, Konstantinos Georgiou, and Avner Magen. The Sherali-Adams system applied to
vertex cover: why Borsuk graphs fool strong LPs and some tight integrality gaps for SDPs. Extended
Abstract, 2010.

[BGMT12] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP gaps from
pairwise independence. Theory Comput., 8:269–289, 2012.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 31

[BM10] Siavosh Benabbas and Avner Magen. Extending SDP integrality gaps to Sherali-Adams with ap-
plications to quadratic programming and MaxCutGain. In Integer Programming and Combinatorial
Optimization, pages 299–312. Springer, Berlin, 2010.

[BZ04] Daniel Bienstock and Mark Zuckerberg. Subset algebra lift operators for 0-1 integer programming.
SIAM J. Optim., 15(1):63–95, 2004.

[CD01] William Cook and Sanjeeb Dash. On the matrix-cut rank of polyhedra. Math. Oper. Res., 26(1):19–
30, 2001.

[CG97] Ada Chan and Chris D. Godsil. Symmetry and eigenvectors. In Graph Symmetry, pages 75–106.
Springer, 1997.

[CGGS13] Joseph Cheriyan, Zhihan Gao, Konstantinos Georgiou, and Sahil Singla. On integrality ratios for
asymmetric TSP in the Sherali-Adams hierarchy. In Automata, Languages, and Programming, pages
340–351. Springer, 2013.

[Che05] Kevin K. H. Cheung. On Lovász-Schrijver lift-and-project procedures on the Dantzig-Fulkerson-
Johnson relaxation of the TSP. SIAM J. Optim., 16(2):380–399 (electronic), 2005.

[Che07] Kevin K. H. Cheung. Computation of the Lasserre ranks of some polytopes. Math. Oper. Res.,
32(1):88–94, 2007.

[CLRS13] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. In Foundations of Computer Science (FOCS), IEEE 54th
Annual Symposium on, pages 350–359. IEEE, 2013.

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for Sherali-Adams
relaxations. In Proceedings of the 41st annual ACM Symposium on Theory of Computing, pages
283–292. ACM, New York, 2009.

[CS08] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher levels of
SDP hierarchies. In Approximation, randomization and combinatorial optimization, volume 5171 of
Lecture Notes in Comput. Sci., pages 49–62. Springer, Berlin, 2008.

[dKMP+06] Etienne de Klerk, John Maharry, Dmitrii V. Pasechnik, R. Bruce Richter, and Gelasio Salazar.
Improved bounds for the crossing numbers of Km,n and Kn. SIAM J. Disc. Math., 20(1):189–202,
2006.

[dKP02] Etienne de Klerk and Dmitrii V Pasechnik. Approximation of the stability number of a graph via
copositive programming. SIAM J. Optim., 12(4):875–892, 2002.

[dKPS07] Etienne de Klerk, Dmitrii V. Pasechnik, and Alexander Schrijver. Reduction of symmetric semidefi-
nite programs using the regular ∗-representation. Math. Program., 109(2-3):613–624, 2007.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467, 1965.
[FKKK+14] Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shadravan, and

Madhur Tulsiani. Linear programming hierarchies suffice for Directed Steiner Tree. In Integer Pro-
gramming and Combinatorial Optimization, pages 285–296. Springer, 2014.

[FMP+12] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. Linear vs.
semidefinite extended formulations: exponential separation and strong lower bounds. In Proceedings
of the 44th symposium on Theory of Computing, pages 95–106. ACM, 2012.

[GL07] Neboǰsa Gvozdenović and Monique Laurent. Semidefinite bounds for the stability number of a graph
via sums of squares of polynomials. Math. Program., 110(1, Ser. B):145–173, 2007.

[GMPT10] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Integrality gaps of
2-o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. SIAM J. Comput., 39(8):3553–3570,
2010.

[Goe15] Michel X. Goemans. Smallest compact formulation for the permutahedron. Math. Program.,
153(1):5–11, 2015.

[GP04] Karin Gatermann and Pablo A. Parrilo. Symmetry groups, semidefinite programs, and sums of
squares. Journal of Pure and Applied Algebra, 192(1):95–128, 2004.

[GT01] Michel X. Goemans and Levent Tunçel. When does the positive semidefiniteness constraint help in
lifting procedures? Math. Oper. Res., 26(4):796–815, 2001.

[GTW13] Anupam Gupta, Kunal Talwar, and David Witmer. Sparsest cut on bounded treewidth graphs:
algorithms and hardness results. In Proceedings of the 45th annual ACM symposium on Theory of
Computing, pages 281–290. ACM, 2013.

[HT08] Sung-Pil Hong and Levent Tunçel. Unification of lower-bound analyses of the lift-and-project rank
of combinatorial optimization polyhedra. Disc. Appl. Math., 156(1):25–41, 2008.

32 YU HIN AU AND LEVENT TUNÇEL

[KMN11] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear and semi-definite
programming relaxations for knapsack. In Integer Programming and Combinatorial Optimization,
pages 301–314. Springer, 2011.

[Las01] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Integer Program-
ming and Combinatorial Optimization, pages 293–303. Springer, Berlin, 2001.

[Lau02] Monique Laurent. Tighter linear and semidefinite relaxations for max-cut based on the Lovász-
Schrijver lift-and-project procedure. SIAM J. Optim., 12(2):345–375 (electronic), 2001/02.

[Lau03] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

[Lov79] László Lovász. On the Shannon capacity of a graph. Information Theory, IEEE Transactions on,
25(1):1–7, 1979.

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim., 1(2):166–190, 1991.

[LT03] László Lipták and Levent Tunçel. The stable set problem and the lift-and-project ranks of graphs.
Math. Program., 98(1-3, Ser. B):319–353, 2003. Integer programming (Pittsburgh, PA, 2002).

[MS09] Claire Mathieu and Alistair Sinclair. Sherali-Adams relaxations of the matching polytope. In Pro-
ceedings of the 41st annual ACM Symposium on Theory of Computing, pages 293–302. ACM, 2009.

[MWT13] Masakazu Muramatsu, Hayato Waki, and Levent Tunçel. A perturbed sums of squares theorem for
polynomial optimization and its applications. arXiv preprint arXiv:1304.0065, 2013.

[PVZ07] Javier Peña, Juan Vera, and Luis F. Zuluaga. Computing the stability number of a graph via linear
and semidefinite programming. SIAM J. Optim., 18(1):87–105, 2007.

[Rot14] Thomas Rothvoß. The matching polytope has exponential extension complexity. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pages 263–272. ACM, 2014.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and convex
hull representations for zero-one programming problems. SIAM J. Disc. Math., 3(3):411–430, 1990.

[Sch79] Alexander Schrijver. A comparison of the Delsarte and Lovász bounds. Information Theory, IEEE
Transactions on, 25(4):425–429, 1979.

[Sch08] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Foundations of Com-
puter Science (FOCS). IEEE 49th Annual Symposium on, pages 593–602. IEEE, 2008.

[SL96] Hanif D. Sherali and Youngho Lee. Tighter representations for set partitioning problems. Discrete
Appl. Math., 68(1-2):153–167, 1996.

[ST99] Tamon Stephen and Levent Tunçel. On a representation of the matching polytope via semidefinite
liftings. Math. Oper. Res., 24(1):1–7, 1999.

[STT07] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound for Lovász-
schrijver SDP relaxations of vertex cover. In Computational Complexity, 2007. CCC’07. Twenty-
Second Annual IEEE Conference on, pages 205–216. IEEE, 2007.

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the 41st
annual ACM symposium on Theory of Computing, pages 303–312. ACM, 2009.

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J. Comput.
Syst. Sci., 43(3):441–466, 1991.

[Zuc03] Mark Zuckerberg. A Set Theoretic Approach to Lifting Procedures for 0,1 Integer Programming. PhD
thesis, Columbia University, 2003.

Appendix A. The Original BZ Operator

In this section, we state the original BZ operator in our unifying language, and show that it
is dominated by BZ′.

The refinement step of BZk coincides with BZ′k — both operators derive k-small obstructions
from the linear inequalities describing P , and use them to construct Ok(P). Then BZk defines
its set of walls to be

Wk :=

 ⋃
i,j∈[`],i 6=j

(Oi ∩Oj) : O1, . . . O` ∈ Ok, ` ≤ k + 1

 .

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 33

Note that unlike for BZ′k, BZk does not guarantee that the singleton sets are walls, and we will
see that this could make a difference in performance. As for the tiers, BZk defines them to be
the sets of indices that can be written as the union of up to k walls in Wk. Thus, BZk only
generates a polynomial size subset of the tiers used in BZ′k. Then the lifting step of BZk (and
BZk+) can be described as follows:

(1) Define A′ to be the set consisting of the following:
• F and i|1, i|0, ∀i ∈ [n].

• Suppose S :=
⋃`
i=1Wi is a tier. Then we do the following:

– For each `-tuple of sets, (T1, . . . , T`) such that Ti ⊆Wi, ∀i ∈ [`] and∑`
i=1 |Ti| ≤ k, include the set

(19)

(⋃̀
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(⋃̀
i=1

Ti

)∣∣∣∣∣
0

.

If
∑`

i=1 |Ti| = k and T` ⊂W`, then include the set

(20)

(
`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W`|<|W`|−|T`|.

(2) Let B̃Z
k
(P) denote the set of matrices Y ∈ SA′ that satisfy all of the following conditions:

(BZ 1) Y [F ,F] = 1.
(BZ 2) For any column x of the matrix Y ,

(i) 0 ≤ xα ≤ xF , for all α ∈ A′.
(ii) x̂(x) ∈ K(Ok(P)).
(iii) xi|1 + xi|0 = xF , for every i ∈ [n].
(iv) For each α ∈ A′ of the form S|1 ∩ T |0, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S;(21)

xi|0 ≥ xα, ∀i ∈ T ;(22) ∑
i∈S

xi|1 +
∑
i∈T

xi|0 − xα ≤ (|S|+ |T | − 1)xF .(23)

(v) For each α ∈ A′ of the form S|1 ∩ T |0 ∩ U |<r, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S;(24)

xi|0 ≥ xα, ∀i ∈ T ;(25) ∑
i∈U

xi|0 ≥ (|U | − (r − 1))xα.(26)

(vi) For each variable of the form (19), if |W`|+
∑`−1

i=1 |Ti| ≤ k, impose∑
U⊆W`

x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩(W`\U)|1∩U |0

= x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0

.(27)

34 YU HIN AU AND LEVENT TUNÇEL

Otherwise, define r := k − (
∑`−1

i=1 |Ti|), and impose∑
U⊆W`,|U |≤r

x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩(W`\U)|1∩U |0

+ x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩W`|<|W`|−r

= x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0

.(28)

(BZ 3) For all α, β ∈ A′ such that α ∩ β = ∅, or α ∩ β is contained in O|1 for some k-small
obstruction O ∈ Ok, Y [α, β] = 0.

(BZ 4) For all α1, β1, α2, β2 ∈ A′ such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].
(3) Define

BZk(P) :=
{
x ∈ Rn : ∃Y ∈ B̃Z

k
(P), x̂(Y eF) = x̂

}
,

and

BZk+(P) :=
{
x ∈ Rn : ∃Y ∈ B̃Z

k
+(P), x̂(Y eF) = x̂

}
,

where B̃Z
k
+(P) := B̃Z

k
(P) ∩ SA′+ .

In [BZ04], BZ was defined so that the first relaxation in the hierarchy is BZ2(P), with
BZn+1(P) being the nth relaxation that is guaranteed to be PI . We have modified their defini-
tions and presented their operators such that the relaxations are instead BZ1(P), . . . ,BZn(P),
to align them with the other named operators mentioned in this manuscript.

Appendix B. Relationships among Variants of the BZ Operator,
and some omitted Proofs

Next, we show that BZ′ and BZ′+ indeed dominate their original counterparts.

Proposition 21. For every polytope P ⊆ [0, 1]n and integer k ≥ 1, BZ′k(P) ⊆ BZk(P) and
BZ′k+(P) ⊆ BZk+(P).

Proof. It is apparent that every variable generated by BZk is also generated by BZ′k. The only
nontrivial case is when BZk generates a variable of the form

(29)

(
`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W`|<|W`|−|T`|

such that W` is not disjoint from
⋃`−1
i=1 Wi\Ti. In this case if we define W ′ := W`\

(⋃`−1
i=1 Wi \ Ti

)
,

then the above is equivalent to ∅ if |W ′| ≤ |T`|, and(
`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W ′|<|W ′|−|T`|

otherwise, which we know is generated by BZ′k. Also, note that in the case of
⋃`−1
i=1 Wi \ Ti and⋃`−1

i=1 Ti having a nonempty intersection, (29) evaluates to the empty set.
Also, the condition (BZ′ 3) is more easily triggered than (BZ 3), and thus BZ′ forces more

variables to be zero and is more restrictive. It is also not hard to see that the constraints (3)–(10)

imply their corresponding counterparts (21)–(28) in BZ. Hence, we have B̃Z
′k

(P) ⊆ B̃Z
k
(P),

and it follows readily that BZ′k(P) ⊆ BZk(P) and BZ′k+(P) ⊆ BZk+(P). �

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 35

As Bienstock and Zuckerberg proved in [BZ04], the original BZ operator can efficiently solve
many set covering type problems which require exponential effort to solve by previously used
operators such as SA. However, since BZk does not ensure that it generates walls of small sizes,
its tiers (which are unions of walls) could all be large, and the lifted set of variables A′ does
not necessarily contain Ak as in BZ′k. In fact, in some cases, BZk performs no better than one
round of LS.

Proposition 22. Let p, q be positive integers such that 1 ≤ q < p, and let

P :=

{
x ∈ [0, 1]p :

p∑
i=1

xi ≤ q +
1

2

}
.

If (k + 1)(k + 2) ≤ p− q and k + 1 ≤ q, then BZk(P) = LS(P) and BZk+(P) = LS+(P).

Proof. Since q+ 1
2 > k+ 1, there are no k-small obstructions of size k+ 1 or less. Thus, S ⊆ [n]

is a k-small obstruction if and only if |S| ≥ p− (k+1), which implies that every wall (and hence,
every tier) has size at least p− (k+ 1)2. If p− (k+ 1)2− (k+ 1) ≥ q, then we see that every tier
is P -useless. The only remaining non-useless variables are F , i|1 and i|0 for all i ∈ [n]. Thus,
BZk(P) = LS(Ok(P)) and BZk+(P) = LS+(Ok(P)).

Furthermore, Ok(P) = P whenever k+ 1 ≤ p− q, which is implied by (k+ 1)(k+ 2) ≤ p− q.
Thus, our claim follows. �

Since LS(P) ⊂ P whenever P 6= PI , the above implies that one can construct examples in
which LS2(P) ⊂ BZk(P) for arbitrarily large k. On the other hand, it is easy to obtain a lift-
and-project operator that has the unique strength of BZ, while also refining the earlier operators
(for instance, by simply taking Γk(P) = SAk(P) ∩ BZk(P)).

We can take this one step further. Recall that BZ′ generates exponentially many variables
in its lifted space, and thus does not admit a straightforward polynomial-time implementation.
However, the number of variables generated becomes polynomial in n if we instead use the
original BZ’s rule of generating tiers (i.e., defining S to be a tier if it is a union of up to k
walls). Let BZ′′ denote this new operator. Then BZ′′ is just like the original BZ, except it
has polynomially more variables, always ensures the singleton sets are walls, and imposes the
condition (BZ′ 3) instead of the weaker (BZ 3). Also, just like (SA′ 4) and (SA′+ 4), the condition
(BZ′ 3) can be efficiently verified, given we have an efficient separation oracle for P , and the
condition is only checked polynomially many times. Replacing (BZ 3) with (BZ′ 3) boasts the
advantage of eliminating the operator’s dependence on the set of obstructions in the lifting step,
and allows us state the operator as a two-step process. Thus. if k = O(1) and we have a compact
description of P , then BZ′′k(P) is tractable. It is also not hard to see that BZ′′ dominates both
SA′ and BZ. Moreover, the following is true:

Proposition 23. The BZ′′-rank of P is at most
⌈
n+1

2

⌉
, for all P ⊆ [0, 1]n.

Proof. Let Y ∈ B̃Z
′′k

(P) such that k ≥ n+1
2 . We show that x̂(Y eF) ∈ K(PI). Notice that BZ′′k

generates S := [k] as a tier (derived from k singleton-set walls), and we know by (5) and the
symmetry of Y that

(30) Y eF =
∑
T⊆S

Y eT |1∩(S\T)|0 .

In the remainder of this proof, we let YT denote Y eT |1∩(S\T)|0 to reduce cluttering. Note that

since |S| = k, BZ′′k does generate the variable T |1 ∩ (S \ T)|0 for all T ⊆ S, and so YT is well
defined.

36 YU HIN AU AND LEVENT TUNÇEL

Next, we prove that x̂(YT) ∈ K(PI) for every T ⊆ S. Then by (30), it follows that x̂(Y eF) ∈
K(PI). For convenience, we let S̄ denote [n] \ S. Notice that

(31) (YT)F =
∑
S′⊆S̄

(YT)S′|1∩(S̄\S′)|0

by (5). Also, since k ≥ n+1
2 , |S̄| = n− k ≤ k − 1. Hence, {j} ∪ S̄ is a tier for all j ∈ [n], and

(32) (YT)j|1 =
∑
S′⊆S̄

(YT)(j∪S′)|1∩(S̄\S′)|0 , ∀j ∈ [n].

Next, for all T ′ ⊆ S̄, we define YT,T ′ ∈ Rn+1 such that

(YT,T ′)i =

{
(YT)T ′|1∩(S̄\T ′)|0 if i = 0 or i ∈ T ∪ T ′;
0 otherwise.

From (31), (32), and the construction of YT,T ′ , we obtain that

x̂(YT) =
∑
T ′⊆S̄

YT,T ′ , ∀T ⊆ S.

Thus, it suffices to show that YT,T ′ ∈ K(PI), ∀T ⊆ S, T ′ ⊆ S̄. This is obviously true if
(YT,T ′)0 = 0. If (YT,T ′)0 > 0, then by (BZ′ 3) we know that (T ∪T ′)|1∩ ([n]\ (T ∪T ′))|0∩P 6= ∅.

Since YT,T ′ =

(
(YT,T ′)0

(YT,T ′)0χ
T∪T ′

)
, it follows that YT,T ′ ∈ K(PI), completing the proof. �

Likewise, we can define BZ′′+ to be the positive semidefinite counterpart of BZ′′, and obtain a
tractable operator that dominates both SA′+ and BZ+. Therefore, it follows that the BZ′′+-rank

of any P ⊆ [0, 1]n is also at most
⌈
n+1

2

⌉
. Moreover, observe that the essential ingredients used in

the above proof are the presence of the variables in Adn+1/2e in the lifted space and the condition

(BZ′ 3), which also applies for the SA′k+ relaxation for any k ≥ n+1
2 . Thus, the above proof can

be slightly modified to show that the SA′+-rank of any polytope contained in [0, 1]n is at most⌈
n+1

2

⌉
. In contrast, we have seen in Corollary 17 an example in which the SA+-rank is n.

Since BZ′′ dominates LS, we can deduce from Proposition 22 that there are examples where
BZ′′2(P) ⊂ BZ2(P). Next, we provide another instance in which BZ′′ outperforms BZ.

Proposition 24. Let P :=
{
x ∈ [0, 1]7 :

∑7
i=1 2xi ≤ 7

}
. Then

y := (0.76, 0.76, 0.76, 0.3, 0.3, 0.3, 0.3)> ∈ BZ(P) \ BZ′′(P).

Proof. First, it is easy to see that PI =
{
x ∈ [0, 1]7 :

∑7
i=1 xi ≤ 3

}
. Also, the 1-small obstruc-

tions of P is the collection of subsets of [7] of size at least 5, and it is not hard to see that
O1(P) = P .

We first show that BZ′′ cuts off y. Since each wall is an intersection of up to two obstructions,
every subset of [7] of size between 3 and 5 is a wall. These sets are also exactly the tiers, as
every tier consists of one wall in BZ′′. Suppose for a contradiction that there exists a certificate

matrix Y ∈ B̃Z
′′
(P) for y. Consider the tier S := {1, 2, 3}. By (10), we know that

(33) Y eF = Y eS|1 +
∑
i∈S

Y e(S\{i})|1∩i|0 + Y eS|<2
.

Since x̂(Y eα) ∈ K(O1(P)) = K(P) for all variables α ∈ A′, we know from (33) we can write
x̂(Y eF) as z + w, where z := x̂(Y eS|1), and w ∈ K(P).

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 37

Now, applying (6) of S|1 on the column Y eF , we obtain that

Y [1|1,F] + Y [2|1,F] + Y [3|1,F]− Y [S|1,F] ≤ (|S| − 1)Y [F ,F].

Hence, z0 = Y [F , S|1] = Y [S|1,F] ≥ 3(0.76)− 2 = 0.28, and w0 = 1− z0 ≥ 0.72. We also know

that
∑7

i=1wi ≤
7
2w0 (as w ∈ K(P)).

For j ∈ {4, 5, 6, 7}, since conv(j|1)∩ conv(S|1)∩P = ∅, our strengthened rule (BZ′ 3) requires
that Y [j|1, S|1] = 0 (this is what sets BZ′′ apart from BZ in this example). Therefore, we have

7∑
i=1

zi =

7∑
i=1

Y [i|1, S|1] ≤ 3Y [F , S|1] = 3z0.

This would imply that the inequality

7∑
i=1

xi =
7∑
i=1

(zi + wi) ≤ 3z0 +
7

2
w0 ≤ 3(0.28) +

7

2
(0.72) = 3.36,

is valid for BZ′′(P), which is a contradiction as
∑7

i=1 yi = 3.48. Hence, y 6∈ BZ′′(P).
Finally, it can be checked computationally that y ∈ BZ(P). This finishes the proof of our

claim. �

Note that the system of inequalities describing BZ(P) is already pretty large even for an
example as small as that in Proposition 24. Therein, any subset of [7] of size between 3 and 6
can be expressed as the intersection of two 1-small obstructions; so, each of them is a wall (and
hence a tier). For each of these tiers S, there are |S|+2 associating variables (S|1, (S \{i})|1∩ i|0
for all i ∈ S, and S|<|S|−2). Thus, we see that B̃Z(P) is a subset of 603-by-603 matrices, and
our straightforward formulation of BZ(P) has more than two million constraints.

Next, we remark that, in general, adding redundant inequalities to the system Ax ≤ b could
generate more obstructions and walls, and thus can improve the performance of BZ (and its
variants). An example of this phenomenon is the following:

Proposition 25. Let G be the graph in Figure 4. Furthermore, let P be the set defined by the
facets of FRAC(G) and P ′ be the system P with the additional (redundant) inequality

6∑
i=1

xi ≤ 3.

Then
BZ′+(P) ⊃ BZ(P ′) = PI .

1

2

3

4

56

Figure 4. A graph for which BZ performs better on FRAC(G) with a redundant inequality.

38 YU HIN AU AND LEVENT TUNÇEL

Proof. For the first claim, notice that the obstructions generated by BZ′+ are exactly the edge
sets, so Ok(P) = (P). This also implies that all walls and tiers have size 1, so

BZ′+(P) = LS+(Ok(P)) = LS+(P) 6= PI ,

as it is shown in [LT03] that P has LS+-rank 2.
For the second claim, notice that with the additional inequality in P ′, all sets of size at least

4 are 1-small obstructions, and thus all sets of size 2 are walls (and hence tiers). In this case,
BZ(P ′) ⊆ SA2(P ′) = PI . �

In fact, since BZ (and its variants) depends heavily on the algebraic description of the input
set, it does not share some of the more fundamental properties with the earlier lift-and-project
operators. For example, all other named operators mentioned in this paper preserves contain-
ment (i.e. P ⊆ P ′ implies Γ(P) ⊆ Γ(P ′)). We give an example where that is not the case for
BZ.

Proposition 26. Let G be the graph in Figure 5, and let P be the set defined by the facets of
FRAC(G). Moreover, let P ′ be the system as described in Proposition 25. Then

P ⊂ P ′ and BZ(P) 6⊆ BZ(P ′).

1

2

3

4

56

Figure 5. Illustrating when BZ does not preserve containment.

Proof. Let G′ be the graph in Figure 4. Since P = FRAC(G) and P ′ = FRAC(G′) and that
G′ is a proper subgraph of G, it is easy to see that P ⊂ P ′. We also showed in the proof
of Proposition 25 that BZ applied to the system P ′ yields P ′I .

Next, if we apply BZ to P , then every tier has size 1, and BZ(P) = LS(P). Observe that the

inequality
∑6

i=1 xi ≤ 2 is valid for P ′I = STAB(G′). On the other hand, y := 1
3(1, 1, 1, 1, 1, 2)>

is in LS(P), certified by the following matrix in the lifted space:

Y :=
1

3

3 1 1 1 1 1 2
1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 0 1 0 0 1
1 0 0 0 1 0 1
1 0 1 0 0 1 0
2 1 0 1 1 0 2

.

Since
∑6

i=1 yi = 7
3 > 2, we see that BZ(P) 6⊆ BZ(P ′). �

Finally, we provide the proof to Theorem 8.

A COMPREHENSIVE ANALYSIS OF POLYHEDRAL LIFT-AND-PROJECT METHODS 39

Proof of Theorem 8. Let P := FRAC(Kn). We first prove the lower bound, by showing that all
tiers generated by BZ′k of size greater than k+1 are P -useless. This, combined with Theorem 5,
implies that BZ′k(P) ⊇ SA′2k+2(Ok(P)).

Since the set of k-small obstructions of FRAC(Kn) is exactly E for every k ≥ 1, we see
that Wk = {W ⊆ [n] : |W | ≤ k + 1} and Tk = {S ⊆ [n] : |S| ≤ k(k + 1)}. Now if S is any tier
of size at least k + 2, we see that (S \ T)|1 ∩ T |0 ∩ P = ∅ for all T ⊆ S such that |T | ≤ k.
This is because in such cases |S \ T | ≥ 2, and there are no points in P which contain at least
two ones. Thus, the only variables α associated with S such that α ∩ P 6= ∅ take the form
(S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |). However, in this case we know that S \ (T ∪ U) has size
zero or one, and thus α ∩ P is equal to either F ∩ P or i|1 ∩ P for some i ∈ [n]. Therefore, all
variables associated with S are P -useless, and so the tier S is P -useless.

Also, observe that P = Ok(P) for any k ≥ 1, and P is known to have SA-rank n− 2. In fact,

the matrix that certifies 1
n−1 ē ∈ SAn−3(P) also belongs to S̃A

′n−3
(P). Hence, the SA′-rank of P

is n− 2 as well. Thus, it follows that the BZ′-rank of P is at least
⌈
n
2

⌉
− 2. Moreover, since BZ′

dominates BZ′′, it follows from Proposition 23 that FRAC(G) has BZ′-rank at most
⌈
n+1

2

⌉
.

Finally, we turn to the BZ-rank of FRAC(G). Again, Ok = E for all k ≥ 1. Therefore, in
this case the conditions (BZ 3) and (BZ′ 3) are equivalent. Since each vertex is incident with at
least two edges, BZ does generate all the singleton sets as walls. Thus, the BZ- and BZ′-rank of
FRAC(G) must coincide. �

	1. Introduction
	2. Preliminaries
	3. Identifying Unhelpful Variables in the Lifted Space
	3.1. A General Template
	3.2. Implications and Applications

	4. Tools for analyzing Lift-and-Project Operatorswith Positive Semidefiniteness
	4.1. Lift-and-Project Operators with Positive Semidefiniteness
	4.2. Unhelpful variables in PSD relaxations
	4.3. Utilizing -establishing variables
	4.4. When strengthening `39`42`"613A``45`47`"603ASA by a PSD constraint does not help

	5. Integrality gaps of lift-and-project relaxations
	References
	Appendix A. The Original `39`42`"613A``45`47`"603ABZ Operator
	Appendix B. Relationships among Variants of the `39`42`"613A``45`47`"603ABZ Operator, and some omitted Proofs

