Multi-row approaches to cutting plane generation

Laurent Poirrier

Montefiore Institute, ULg

Tuesday, December 18th, 2012
Example: The university is hiring

<table>
<thead>
<tr>
<th></th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching</td>
<td>40 hours</td>
<td>80 hours</td>
</tr>
<tr>
<td>Pay</td>
<td>$31</td>
<td>$45</td>
</tr>
<tr>
<td>Hire</td>
<td>at least one third</td>
<td></td>
</tr>
</tbody>
</table>

Have as many taught hours as possible, with a budget of $239.

\[
\begin{align*}
\text{max} & \quad 40 x_1 + 80 x_2 \\
\text{s.t.} & \quad 31 x_1 + 45 x_2 \leq 239 \\
& \quad x_1 \geq \frac{1}{2} x_2 \\
& \quad x_1, x_2 \geq 0 \\
& \quad x_1, x_2 \in \mathbb{Z}
\end{align*}
\]
Example: The university is hiring

<table>
<thead>
<tr>
<th></th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching</td>
<td>40 hours</td>
<td>80 hours</td>
</tr>
<tr>
<td>Pay</td>
<td>$31</td>
<td>$45</td>
</tr>
<tr>
<td>Hire</td>
<td>at least one third</td>
<td></td>
</tr>
</tbody>
</table>

Have as many taught hours as possible, with a budget of $239.

\[
\begin{align*}
\text{max} & \quad 40x_1 + 80x_2 \\
\text{s.t.} & \quad 31x_1 + 45x_2 \leq 239 \\
& \quad x_1 \geq \frac{1}{2}x_2 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0 \\
& \quad x_1, x_2 \in \mathbb{Z}
\end{align*}
\]
$x_1 \geq 0$

\geq

$x_2 \geq 0$
$31x_1 + 45x_2 \leq 239$
\[x_1 \geq \frac{1}{2} x_2 \]
Applications

- Scheduling (timetable building, machine tool switching, . . .)
- Bin-packing (chipset floor planning, . . .)
- Traveling Salesman Problem (ICs soldering and drilling)
- Discrete flow problems (power and energy distribution, . . .)
- Assignment
- Lot-sizing
- Transportation problems
- . . .

Most are NP-hard, and computationally difficult to solve.
Applications

- Scheduling (timetable building, machine tool switching, ...)
- Bin-packing (chipset floor planning, ...)
- Traveling Salesman Problem (ICs soldering and drilling)
- Discrete flow problems (power and energy distribution, ...)
- Assignment
- Lot-sizing
- Transportation problems
- ...

Most are NP-hard, and computationally difficult to solve.
A Mixed Integer linear Programming problem

\[(\text{MIP}) \quad \begin{align*}
\min \quad & c^T x \\
\text{s.t.} \quad & Ax \geq b \\
\quad & x_j \in \mathbb{Z}, \text{ for } j \in J
\end{align*}\]
Solving MIPs: branch and bound

\[
\begin{align*}
\text{(MIP)} & \quad \min & c^T x \\
\text{s.t.} & & Ax \geq b \\
& & x_j \in \mathbb{Z}, \text{ for } j \in J
\end{align*}
\]
Solving MIPs: branch and bound

\[(\text{MIP}) \quad \begin{align*}
\min \quad & c^T x \\
\text{s.t.} \quad & A x \geq b \\
& x_j \in \mathbb{Z}, \text{ for } j \in J
\end{align*}\]

\(x_i^* \notin \mathbb{Z}\)
Solving MIPs: branch and bound

\[(MIP1)\]
\[\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad A x \geq b \\
& \quad x_i \leq \lfloor x^*_i \rfloor \\
& \quad x_j \in \mathbb{Z}, \text{ for } j \in J
\end{align*}\]

\[(MIP2)\]
\[\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad A x \geq b \\
& \quad x_i \geq \lceil x^*_i \rceil \\
& \quad x_j \in \mathbb{Z}, \text{ for } j \in J
\end{align*}\]
Solving MIPs: branch and bound

\begin{align*}
\text{(MIP1)} & \quad \min & c^T x \\
& \text{s.t.} & Ax \geq b \\
& & x_i \leq \lceil x_i^* \rceil \\
& & x_j \in \mathbb{Z}, \text{for } j \in J
\end{align*}

\begin{align*}
\text{(MIP2)} & \quad \min & c^T x \\
& \text{s.t.} & Ax \geq b \\
& & x_i \geq \lfloor x_i^* \rfloor \\
& & x_j \in \mathbb{Z}, \text{for } j \in J
\end{align*}
Cuts / Valid inequalities

(MIP) \(\min \ c^T x \) \\
\text{s.t.} \ A x \geq b \\
\text{for } x_j \in \mathbb{Z}, \text{ for } j \in J \\
\alpha x \geq 1
Cuts / Valid inequalities

(MIP) \[\min \quad c^T x \]
\[\text{s.t.} \quad A x \geq b \]
\[x_j \in \mathbb{Z}, \text{for } j \in J \]

(cut) \[\alpha x \geq 1 \]
Why cut?

Most often, no cuts ↔ more cuts computing cuts each b&b node b&b nodes

<table>
<thead>
<tr>
<th>no cuts</th>
<th>more cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>more time</td>
</tr>
<tr>
<td>faster</td>
<td>slower</td>
</tr>
<tr>
<td>more</td>
<td>less</td>
</tr>
</tbody>
</table>

In practice, disabling cuts → $54 \times$ slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007])
Why cut?

Most often,

<table>
<thead>
<tr>
<th>Computing cuts</th>
<th>no cuts</th>
<th>↔</th>
<th>more cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>each b&b node</td>
<td>0</td>
<td></td>
<td>more time</td>
</tr>
<tr>
<td>b&b nodes</td>
<td>faster</td>
<td></td>
<td>slower</td>
</tr>
<tr>
<td></td>
<td>more</td>
<td></td>
<td>less</td>
</tr>
</tbody>
</table>

In practice,

disabling cuts → 54× slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).
Why cut?

Most often,

<table>
<thead>
<tr>
<th></th>
<th>no cuts</th>
<th>⇔</th>
<th>more cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>computing cuts</td>
<td>0</td>
<td></td>
<td>more time</td>
</tr>
<tr>
<td>each b&b node</td>
<td>faster</td>
<td></td>
<td>slower</td>
</tr>
<tr>
<td>b&b nodes</td>
<td>more</td>
<td></td>
<td>less</td>
</tr>
</tbody>
</table>

In practice,

disabling cuts $\rightarrow 54\times$ slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).
Example of cut

Let $x \in \mathbb{Z}_+^3$,

$$3x_1 + 4x_2 - 5x_3 \leq 4.5$$

\[\Downarrow \]

$$3x_1 + 4x_2 - 5x_3 \leq 4$$
Example of cut

Let \(x \in \mathbb{Z}_+^3 \),

\[
3x_1 + 4x_2 - 5x_3 \leq 4.5
\]

\[
\downarrow
\]

\[
3x_1 + 4x_2 - 5x_3 \leq 4
\]
Example of cut

Let $x \in \mathbb{Z}_+^3$,

$$3.4x_1 + 4.2x_2 - 4.6x_3 \leq 4.5$$

⇓

$$3x_1 + 4x_2 - 5x_3 \leq 4.5$$

⇓

$$3x_1 + 4x_2 - 5x_3 \leq 4$$

Chvátal-Gomory cut
Example of cut

Let $x \in \mathbb{Z}_+^3$,

$$3.4x_1 + 4.2x_2 - 4.6x_3 \leq 4.5$$

\[\Downarrow \]

$$3x_1 + 4x_2 - 5x_3 \leq 4.5$$

\[\Downarrow \]

$$3x_1 + 4x_2 - 5x_3 \leq 4$$

Chvátal-Gomory cut
Example of cut

Let $x \in \mathbb{Z}^3_+$,

\[3.4 \, x_1 + 4.2 \, x_2 - 4.6 \, x_3 \leq 4.5\]

\[\Downarrow\]

\[3x_1 + 4x_2 - 5x_3 \leq 4.5\]

\[\Downarrow\]

\[3x_1 + 4x_2 - 5x_3 \leq 4\]
Example of cut

Let $x \in \mathbb{Z}_+^3$,

$$3.4x_1 + 4.2x_2 - 4.6x_3 \leq 4.5$$

\Downarrow

$$3x_1 + 4x_2 - 5x_3 \leq 4.5$$

\Downarrow

$$3x_1 + 4x_2 - 5x_3 \leq 4$$

Chvátal-Gomory cut
What cuts?

<table>
<thead>
<tr>
<th>Disabled cut</th>
<th>Performance degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gomory mixed-integer</td>
<td>2.52 ×</td>
</tr>
<tr>
<td>Mixed-integer rounding</td>
<td>1.83 ×</td>
</tr>
<tr>
<td>Knapsack cover</td>
<td>1.40 ×</td>
</tr>
<tr>
<td>Flow cover</td>
<td>1.22 ×</td>
</tr>
<tr>
<td>Implied bound</td>
<td>1.19 ×</td>
</tr>
<tr>
<td>Flow path</td>
<td>1.04 ×</td>
</tr>
<tr>
<td>Clique</td>
<td>1.02 ×</td>
</tr>
<tr>
<td>GUB cover</td>
<td>1.02 ×</td>
</tr>
</tbody>
</table>

(geometric mean over 106 medium-sized instances [Bixby, Rothberg, 2007]).
A. Two-row cuts
A.1. Background
Single-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\text{(MIP)} \quad \min & \quad \bar{c}^T x \\
\text{s.t.} & \quad \bar{A} x \geq \bar{b} \\
& \quad x_j \in \mathbb{Z}
\end{align*}
\]

we extract one constraint \(\bar{A}_i x \geq \bar{b}_i \).

- Knowing that \(x_j \in \mathbb{Z} \), we construct a stronger inequality.
- In some cases, the cut can separate a specific point \(x^* \).
Single-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\text{(MIP)} & \quad \min c^T x \\
\text{s.t.} & \quad Ax \geq \bar{b} \\
& \quad x_J \in \mathbb{Z}
\end{align*}
\]

we extract one constraint \(\bar{A}_i x \geq \bar{b}_i \).

- Knowing that \(x_j \in \mathbb{Z} \), we construct a stronger inequality.
- In some cases, the cut can separate a specific point \(x^* \).
Single-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\text{(MIP)} \quad \min & \quad c^T x \\
\text{s.t.} & \quad Ax \geq b \ \\
& \quad x_J \in \mathbb{Z}
\end{align*}
\]

we extract one constraint \(\overline{A}_i x \geq \overline{b}_i \).

- Knowing that \(x_j \in \mathbb{Z} \), we construct a stronger inequality.
- In some cases, the cut can separate a specific point \(x^* \).
Two-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\min & \quad \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \quad \mathbf{A} \mathbf{x} = \mathbf{b} \\
& \quad \mathbf{x} \geq 0 \\
& \quad \mathbf{x}_j \in \mathbb{Z}
\end{align*}
\]

(MIP)

we extract two constraints

\[
\begin{align*}
x_1 + \sum_j a_{1j} s_j &= f_1 + x_2 + \sum_j a_{2j} s_j = f_2, \quad x_1, x_2 \in \mathbb{Z} \\
& \quad s_j \in \mathbb{R}_+
\end{align*}
\]

As a vector equation,

\[
(PI) \quad x = f + \sum_j r^j s_j, \quad x \in \mathbb{Z}^2, \quad s \in \mathbb{R}_+^n
\]

In case (MIP) describes a simplex tableau, \((x_{LP}^*, s_{LP}^*) = (f, 0)\).
Two-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\text{min} \quad & c^T x \\
\text{s.t.} \quad & Ax = b \\
& x \geq 0 \\
& x_j \in \mathbb{Z}
\end{align*}
\]

(MIP)

we extract \textbf{two} constraints

\[
\begin{align*}
x_1 + \sum_j \bar{a}_{1j} s_j &= f_1 \\
+ x_2 + \sum_j \bar{a}_{2j} s_j &= f_2,
\end{align*}
\]

\[x_1, x_2 \in \mathbb{Z}, \quad s_j \in \mathbb{R}_+\]

As a vector equation,

\[
\begin{align*}
(P_I) \quad x &= f + \sum_j r^j s_j, \\
x &\in \mathbb{Z}^2 \\
s &\in \mathbb{R}_+^n
\end{align*}
\]

In case (MIP) describes a simplex tableau, \((x^*_{LP}, s^*_{LP}) = (f, 0)\).
Two-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\min & \quad \bar{c}^T x \\
\text{s.t.} & \quad \bar{A} x = \bar{b} \\
& \quad x \geq 0 \\
& \quad x \in \mathbb{Z}
\end{align*}
\]

(MIP)

we extract two constraints

\[
\begin{align*}
x_1 + \sum_j \bar{a}_{1j} s_j &= f_1 \quad x_1, x_2 \in \mathbb{Z} \\
x_2 + \sum_j \bar{a}_{2j} s_j &= f_2 \quad s_j \in \mathbb{R}_+
\end{align*}
\]

As a vector equation,

\[
(P_I) \quad x = f + \sum_j r^j s_j, \quad x \in \mathbb{Z}^2 \\
s \in \mathbb{R}^n
\]

In case (MIP) describes a simplex tableau, \((x_{LP}^*, s_{LP}^*) = (f, 0)\).
Two-row cuts

From one (re)formulation of the problem

\[
\begin{align*}
\text{min} & \quad \bar{c}^T x \\
\text{s.t.} & \quad \bar{A} x = \bar{b} \\
& \quad x \geq 0 \\
& \quad x_j \in \mathbb{Z}
\end{align*}
\]

(MIP)

we extract two constraints

\[
\begin{align*}
x_1 + x_2 + \sum_j \bar{a}_{1j} s_j &= f_1, & x_1, x_2 \in \mathbb{Z} \\
+ x_2 + \sum_j \bar{a}_{2j} s_j &= f_2, & s_j \in \mathbb{R}_+
\end{align*}
\]

As a vector equation,

\[(P_I) \quad x = f + \sum_j r^j s_j, \quad x \in \mathbb{Z}^2 \quad s \in \mathbb{R}_+^n\]

In case (MIP) describes a simplex tableau, \((x_{LP}^{*}, s_{LP}^{*}) = (f, 0)\).
A.2. Problem statement
The two-row model

\[x = f + \sum_j r^j s_j \]
\[x \in \mathbb{Z}^2 \]
\[s_j \geq 0 \]
The two-row model

\[x = f + \sum_j r^j s_j \]

\[x \in \mathbb{Z}_2 \]

\[s_j \geq 0 \]

Example:

\[s = \left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \]

\[x = f + \frac{1}{2} r^1 + \frac{1}{2} r^5 + \frac{1}{2} r^4 + \frac{1}{2} r^3 \]

\[x = f + \frac{1}{2} r^4 + \frac{1}{12} r^2 \]
The two-row model

\[x = f + \sum_{j} r^j s_j \]
\[x \in \mathbb{Z}^2 \]
\[s_j \geq 0 \]

Example:

\[s = \left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \]

\[x = f + \frac{1}{2} r^1 + \frac{1}{2} r^5 + \frac{1}{2} r^4 + \frac{1}{2} r^3 \]

\[x = f + \frac{1}{2} r^4 + \frac{1}{12} r^2 \]
The two-row model

\[x = f + \sum_j r^j s_j \]
\[x \in \mathbb{Z}^2 \]
\[s_j \geq 0 \]

An inequality of the form

\[\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1 \]

with \(\alpha_i \geq 0 \), cuts off

\[\text{interior}(L_\alpha) \]

in the \(x \) space

where \(v^i = f + \frac{1}{\alpha_i} r^i \).
The two-row model

\[x = f + \sum_j r^j s_j \]
\[x \in \mathbb{Z}^2 \]
\[s_j \geq 0 \]

An inequality of the form

\[\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1 \]

with \(\alpha_i \geq 0 \), cuts off

\(\text{interior}(L_\alpha) \)

in the \(x \) space

where \(v^i = f + \frac{1}{\alpha_i} r^i \).
The two-row model

\[x = f + \sum_j r^j s_j \]
\[x \in \mathbb{Z}^2 \]
\[s_j \geq 0 \]

An inequality of the form

\[\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1 \]

with \(\alpha_i \geq 0 \), cuts off

\[\text{interior}(L_\alpha) \]

in the \(x \) space

where \(v^i = f + \frac{1}{\alpha_i} r^i \).
Validity: The linear programming intuition

Given $\bar{x} \in \mathbb{Z}^2$, we want that

$$\forall s \in \mathbb{R}^n_+ : \bar{x} = f + Rs, \quad \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$$

i.e. we want

$$\min \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$$
$$\text{s.t. } Rs = \bar{x} - f$$
$$s \geq 0$$

therefore we need

$$\forall i, j, s_i^{\bar{x}}, s_j^{\bar{x}} : \bar{x} = f + s_i^{\bar{x}} r^i + s_j^{\bar{x}} r^j,$$
$$s_i^{\bar{x}} \alpha_i + s_j^{\bar{x}} \alpha_j \geq 1.$$
Validity: The linear programming intuition

Given $\bar{x} \in \mathbb{Z}^2$, we want that

$$\forall s \in \mathbb{R}^n_+ : \bar{x} = f + Rs, \quad \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$$

i.e. we want

$$\min \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$$

s.t. $Rs = \bar{x} - f$

$s \geq 0$

therefore we need

$$\forall i, j, s^x_i, s^x_j : \bar{x} = f + s^x_i r^i + s^x_j r^j, \quad s^x_i \alpha_i + s^x_j \alpha_j \geq 1.$$
Validity: The linear programming intuition

Given \(\overline{x} \in \mathbb{Z}^2 \), we want that

\[
\forall s \in \mathbb{R}^n_+ : \overline{x} = f + Rs, \quad \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1
\]

i.e. we want

\[
\min \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1
\]

s.t. \(Rs = \overline{x} - f \)

\(s \geq 0 \)

therefore we need

\[
\forall i, j, s_i^\overline{x}, s_j^\overline{x} : \overline{x} = f + s_i^\overline{x} r^i + s_j^\overline{x} r^j, \quad s_i^\overline{x} \alpha_i + s_j^\overline{x} \alpha_j \geq 1.
\]
Given $\bar{x} \in \mathbb{Z}^2$,

for all $i, j : \bar{x} \in f + \text{cone}(r^i, r^j),$

$$s_{i}^{\bar{x}} \alpha_i + s_{j}^{\bar{x}} \alpha_j \geq 1,$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}} : \bar{x} = f + s_{i}^{\bar{x}} r^i + s_{j}^{\bar{x}} r^j.$
Lattice-free sets – the geometrical intuition

Given $\overline{x} \in \mathbb{Z}^2$,

for all i, j:

$$\overline{x} \in f + \text{cone}(r^i, r^j),$$

$$s^\overline{x}_i \alpha_i + s^\overline{x}_j \alpha_j \geq 1,$$

with $s^\overline{x}_i, s^\overline{x}_j : \overline{x} = f + s^\overline{x}_i r^i + s^\overline{x}_j r^j$.
Lattice-free sets – the geometrical intuition

Given $\overline{x} \in \mathbb{Z}^2$, for all $i, j : \overline{x} \in f + \text{cone}(r^i, r^j)$,

$$s^x_i \alpha_i + s^x_j \alpha_j \geq 1,$$

with $s^x_i, s^x_j : \overline{x} = f + s^x_i r^i + s^x_j r^j$.

Given $\bar{x} \in \mathbb{Z}^2$, for all $i, j : \bar{x} \in f + \text{cone}(r^i, r^j)$,

$$s_i^{\bar{x}} \alpha_i + s_j^{\bar{x}} \alpha_j \geq 1,$$

with $s_i^{\bar{x}}, s_j^{\bar{x}} : \bar{x} = f + s_i^{\bar{x}} r^i + s_j^{\bar{x}} r^j$.

Lattice-free sets – the geometrical intuition
Given \(\bar{x} \in \mathbb{Z}^2 \),

for all \(i, j : \bar{x} \in f + \text{cone}(r^i, r^j) \),

\[s_i^{\bar{x}} \alpha_i + s_j^{\bar{x}} \alpha_j \geq 1, \]

with \(s_i^{\bar{x}}, s_j^{\bar{x}} : \bar{x} = f + s_i^{\bar{x}} r^i + s_j^{\bar{x}} r^j \).
Lattice-free sets – the intuition, for all x

For all $x \in \mathbb{Z}^2$,

for all $i, j : x \in f + \text{cone}(r^i, r^j)$,

$$s^x_i \alpha_i + s^x_j \alpha_j \geq 1,$$

with $s^x_i, s^x_j : x = f + s^x_i r^i + s^x_j r^j$.
Lattice-free sets – the intuition, for every cone

For all i, j,

for all $x \in \mathbb{Z}^2 \cap (f + \text{cone}(r^i, r^j))$,

$$s_i^x \alpha_i + s_j^x \alpha_j \geq 1,$$

with $s_i^x, s_j^x : x = f + s_i^x r^i + s_j^x r^j$.

x_2

x_1
Lattice-free sets – the set \mathcal{X}_{ij}

For all i, j,

for all $x \in \mathcal{X}_{ij}$,

$$s^x_i \alpha_i + s^x_j \alpha_j \geq 1,$$

with $s^x_i, s^x_j : x = f + s^x_i r^i + s^x_j r^j$.

▶ we can restrict $x \in \mathbb{Z}^2$ to

$x \in \mathcal{X}_{ij}$ where \mathcal{X}_{ij} is the set of the vertices of

$\mathbb{Z}^2 \cap (f + \text{conv}(r^i, r^j))$.
Let $P \subseteq \mathbb{R}^N$ be a radial polyhedron and $Q \subseteq \mathbb{R}^N$ its polar. There is a correspondance between

- Extreme point $\overline{x} \in P$ and Facet of Q: $\overline{x}^T a \geq 1$
- Extreme ray $\overline{x} \in P$ and Facet of Q: $\overline{x}^T a \geq 0$
- Facet of P: $\overline{a}^T x \geq 1$ and Extreme point $\overline{a} \in Q$
- Facet of P: $\overline{a}^T x \geq 0$ and Extreme ray $\overline{a} \in Q$
Polarity, applied

- We have a polyhedron
 \[\text{conv} (P_I) = \text{conv} \left(\left\{ (x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j \right\} \right) . \]
- \(\text{conv} (P_I) \subseteq \mathbb{R}^{2+n} \) is of dimensionality \(n \).
- We know the extreme points and rays of \(\text{conv} (P_I) \).
- We can build the polar \(Q \subseteq \mathbb{R}^n \) of \(\text{conv} (P_I) \).
- We can optimize over \(Q \) to find facets \(\text{conv} (P_I) \).

Extreme point \(\bar{x} \in \text{conv} (P_I) \)	Facet of \(Q \): \(\bar{x}^T \alpha \geq 1 \)
Extreme ray \(\bar{x} \in \text{conv} (P_I) \)	Facet of \(Q \): \(\bar{x}^T \alpha \geq 0 \)
Facet of \(\text{conv} (P_I) \): \(\bar{\alpha}^T x \geq 1 \)	Extreme point \(\bar{\alpha} \in Q \)
Facet of \(\text{conv} (P_I) \): \(\bar{\alpha}^T x \geq 0 \)	Extreme ray \(\bar{\alpha} \in Q \)
Polarity, applied

- We have a polyhedron
 \[\text{conv}(P_I) = \text{conv} \left(\left\{ (x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s^j \right\} \right). \]
- \(\text{conv}(P_I) \subseteq \mathbb{R}^{2+n} \) is of dimensionality \(n \).
- We know the extreme points and rays of \(\text{conv}(P_I) \).
- We can build the polar \(Q \subseteq \mathbb{R}^n \) of \(\text{conv}(P_I) \).
- We can optimize over \(Q \) to find facets \(\text{conv}(P_I) \).

<table>
<thead>
<tr>
<th>Extreme point (\bar{x} \in \text{conv}(P_I))</th>
<th>(\bar{x}^T \alpha \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme ray (\bar{x} \in \text{conv}(P_I))</td>
<td>(\bar{x}^T \alpha \geq 0)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 1)</td>
<td>(\bar{\alpha} \in Q)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 0)</td>
<td>(\bar{\alpha} \in Q)</td>
</tr>
</tbody>
</table>
Polarity, applied

- We have a polyhedron
 \[\text{conv}(P_I) = \text{conv} \left(\left\{ (x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j \right\} \right). \]
- \(\text{conv}(P_I) \subseteq \mathbb{R}^{2+n} \) is of dimensionality \(n \).
- We know the extreme points and rays of \(\text{conv}(P_I) \).
- We can build the polar \(Q \subseteq \mathbb{R}^n \) of \(\text{conv}(P_I) \).
- We can optimize over \(Q \) to find facets \(\text{conv}(P_I) \).

<table>
<thead>
<tr>
<th>Extreme point (\bar{x} \in \text{conv}(P_I))</th>
<th>(\rightarrow) Facet of (Q): (\bar{x}^T \alpha \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme ray (\bar{x} \in \text{conv}(P_I))</td>
<td>(\rightarrow) Facet of (Q): (\bar{x}^T \alpha \geq 0)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 1)</td>
<td>(\leftarrow) Extreme point (\bar{\alpha} \in Q)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 0)</td>
<td>(\leftarrow) Extreme ray (\bar{\alpha} \in Q)</td>
</tr>
</tbody>
</table>
Polarity, applied

- We have a polyhedron
 \[\text{conv}(P_I) = \text{conv} \left(\left\{ (x, s) \in \mathbb{Z}^2 \times \mathbb{R}_+^n \mid x = f + \sum_j r^j s_j \right\} \right) \].
- \(\text{conv}(P_I) \subseteq \mathbb{R}^{2+n} \) is of dimensionality \(n \).
- We know the extreme points and rays of \(\text{conv}(P_I) \).
- We can build the polar \(Q \subseteq \mathbb{R}^n \) of \(\text{conv}(P_I) \).
- We can optimize over \(Q \) to find facets \(\text{conv}(P_I) \).

<table>
<thead>
<tr>
<th>Extreme point (\bar{x} \in \text{conv}(P_I))</th>
<th>(\rightarrow)</th>
<th>Facet of (Q): (\bar{x}^T \alpha \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme ray (\bar{x} \in \text{conv}(P_I))</td>
<td>(\rightarrow)</td>
<td>Facet of (Q): (\bar{x}^T \alpha \geq 0)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 1)</td>
<td>(\downarrow \downarrow)</td>
<td>Extreme point (\bar{\alpha} \in Q)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 0)</td>
<td>(\leftrightarrow)</td>
<td>Extreme ray (\bar{\alpha} \in Q)</td>
</tr>
</tbody>
</table>
Polarity, applied

- We have a polyhedron
 \[\text{conv}(P_I) = \text{conv} \left(\left\{ (x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s^j \right\} \right) . \]
- \(\text{conv}(P_I) \subseteq \mathbb{R}^{2+n} \) is of dimensionality \(n \).
- We know the extreme points and rays of \(\text{conv}(P_I) \).
- We can build the polar \(Q \subseteq \mathbb{R}^n \) of \(\text{conv}(P_I) \).
- We can optimize over \(Q \) to find facets \(\text{conv}(P_I) \).

<table>
<thead>
<tr>
<th>Extreme point (\bar{x} \in \text{conv}(P_I))</th>
<th>(\longrightarrow)</th>
<th>Facet of (Q): (\bar{x}^T \alpha \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme ray (\bar{x} \in \text{conv}(P_I))</td>
<td>(\longrightarrow)</td>
<td>Facet of (Q): (\bar{x}^T \alpha \geq 0)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 1)</td>
<td>(\longleftarrow)</td>
<td>Extreme point (\bar{\alpha} \in Q)</td>
</tr>
<tr>
<td>Facet of (\text{conv}(P_I)): (\bar{\alpha}^T x \geq 0)</td>
<td>(\longleftarrow)</td>
<td>Extreme ray (\bar{\alpha} \in Q)</td>
</tr>
</tbody>
</table>
Finding facets of $\text{conv } P_I$

The polar of $\text{conv}(P_I)$ is

$$Q = \{ \alpha \in \mathbb{R}^n_+ | \forall i, j, \forall x \in X_{ij}, \ s^x_i \alpha_i + s^x_j \alpha_j \geq 1 \}.$$

We find facets of $\text{conv}(P_I)$ by choosing an objective function $c^T \alpha$ and optimizing over Q:

$$\begin{align*}
\text{min} & \quad c^T \alpha \\
\text{s.t.} & \quad s^x_i \alpha_i + s^x_j \alpha_j \geq 1, \ \forall i, j, \forall x \in X_{ij} \\
& \quad \alpha \geq 0
\end{align*}$$
Finding facets of $\text{conv } P_I$

The polar of $\text{conv}(P_I)$ is

$$Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in X_{ij}, \ s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \}.$$

We find facets of $\text{conv}(P_I)$ by choosing an objective function $c^T \alpha$ and optimizing over Q:

$$\begin{align*}
\min & \quad c^T \alpha \\
\text{s.t.} & \quad s_i^x \alpha_i + s_j^x \alpha_j \geq 1, \quad \forall i, j, \forall x \in X_{ij} \\
& \quad \alpha \geq 0
\end{align*}$$
A.3. New developments
For each cone, compute integer hull.
For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
The complexity of the polar – the intuition

\[Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in X_{ij}, \]
\[s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \}\]

\[Q' = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, \forall x \in X_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \}\]

\[\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \]
\[\forall i, \forall x \in X_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]
\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \]
\[\alpha_i \leq \lambda_i^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}\]
The complexity of the polar – the intuition

\[Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in X_{ij}, \]
\[s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[Q' = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, \forall x \in X_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \]
\[\forall i, \forall x \in X_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]
\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \]
\[\alpha_i \leq \lambda_i^{i-1} \alpha_{i-1} + \lambda_i^{i+1} \alpha_{i+1} \} \]
The complexity of the polar – the intuition

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \]
\[s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[Q' = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \]
\[\forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]
\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \]
\[\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \} \]
The complexity of the polar – the intuition

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \]
\[s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[Q' = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \]
\[\forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]
\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \]
\[\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \} \]

Note: \(r^j = \lambda_j^i r^i + \lambda_k^j r^k \)
The complexity of the polar – the intuition

$$Q = \{ \alpha \in \mathbb{R}^n_+ | \forall i, j, \forall x \in \mathcal{X}_{ij}, s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \}$$

$$Q' = \{ \alpha \in \mathbb{R}^n_+ | \forall i, \forall x \in \mathcal{X}_{i,i+1}, s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \}$$

$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ | \forall i, \forall x \in \mathcal{X}_{i,i+1}, s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \}$$

Note: $$r^j = \lambda^j_i r^i + \lambda^j_k r^k$$
The complexity of the polar – the intuition

\[Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \]
\[s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[Q' = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \]
\[\forall i, \forall x \in \mathcal{X}_{i,i+1}, \]
\[s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]
\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \]
\[\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \} \]

▶ What is \(Q \setminus \overline{Q} \)?
The complexity of the polar – the theory

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in X_{ij}, \quad s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in X_{i,i+1}, \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]

\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \} \].

Theorem

\(\overline{Q} \subseteq Q \), and all vertices of \(Q \) are in \(\overline{Q} \).

Corollary

If \(c > 0 \), \[\min_{\text{s.t. } \alpha \in Q} c^T \alpha \] and \[\min_{\text{s.t. } \alpha \in \overline{Q}} c^T \alpha \] share the same set of optimal solutions.

If \(c_i < 0 \), then \[\min_{\text{s.t. } \alpha \in Q} c^T \alpha \] is unbounded.
The complexity of the polar – the theory

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in X_{ij}, \quad s^x_i \alpha_i + s^x_j \alpha_j \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in X_{i,i+1}, \quad s^x_i \alpha_i + s^x_{i+1} \alpha_{i+1} \geq 1 \]

\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \leq \lambda^i_{i-1} \alpha_{i-1} + \lambda^i_{i+1} \alpha_{i+1} \}. \]

Theorem

\(\overline{Q} \subseteq Q \), and all vertices of \(Q \) are in \(\overline{Q} \).

Corollary

If \(c > 0 \), \(\min_{\alpha \in Q} c^T \alpha \) and \(\min_{\alpha \in \overline{Q}} c^T \alpha \) share the same set of optimal solutions.

If \(c_i < 0 \), then \(\min_{\alpha \in Q} c^T \alpha \) is unbounded.
The complexity of the polar – the theory

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in X_{ij}, \quad s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in X_{i,i+1}, \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]

\[\forall i : r_i \in \text{cone}(r_{i-1}, r_{i+1}), \quad \alpha_i \leq \lambda_i^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}. \]

Theorem

\(\overline{Q} \subseteq Q, \text{ and all vertices of } Q \text{ are in } \overline{Q}. \)

Corollary

If \(c > 0, \quad \min \limits_{\text{s.t. } \alpha \in Q} c^T \alpha \text{ and } \min \limits_{\text{s.t. } \alpha \in \overline{Q}} c^T \alpha \) share the same set of optimal solutions.

If \(c_i < 0, \text{ then } \min \limits_{\text{s.t. } \alpha \in Q} c^T \alpha \text{ is unbounded.} \)
The complexity of the polar – the theory

\[Q = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s_i^x \alpha_i + s_j^x \alpha_j \geq 1 \} \]

\[\overline{Q} = \{ \alpha \in \mathbb{R}_+^n \mid \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1 \]

\[\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}. \]

Theorem

\(\overline{Q} \subseteq Q \), and all vertices of \(Q \) are in \(\overline{Q} \).

Corollary

If \(c > 0 \), \(\min_{\text{s.t. } \alpha \in Q} c^T \alpha \) and \(\min_{\text{s.t. } \alpha \in \overline{Q}} c^T \alpha \) share the same set of optimal solutions.

If \(c_i < 0 \), then \(\min_{\text{s.t. } \alpha \in Q} c^T \alpha \) is unbounded.
Complexity of writing the polar (2)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
3. In practice, generate the constraints of \overrightarrow{Q} by row generation.
Complexity of writing the polar (2)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
3. In practice, generate the constraints of \overline{Q} by row generation.
A.4. Results
Computational results

<table>
<thead>
<tr>
<th></th>
<th>Average iter. per cut</th>
<th>Average time (ms) per cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPLIB 3</td>
<td>3.1</td>
<td>1.8 ms</td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>15.6</td>
<td>24.3 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>one-row</th>
<th>two-row (split sets)</th>
<th>two-row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average sep. cuts</td>
<td>Average %gc</td>
<td>Average sep. cuts</td>
</tr>
<tr>
<td>MIPLIB 3</td>
<td>695.0</td>
<td>29.4 %</td>
<td>39.7</td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>4465.3</td>
<td>31.3 %</td>
<td>465.5</td>
</tr>
</tbody>
</table>
Computational results

<table>
<thead>
<tr>
<th></th>
<th>Average iter. per cut</th>
<th>Average time (ms) per cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPLIB 3</td>
<td>3.1</td>
<td>1.8 ms</td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>15.6</td>
<td>24.3 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>one-row</th>
<th>two-row (split sets)</th>
<th>two-row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average sep. cuts</td>
<td>Average %gc</td>
<td>Average sep. cuts</td>
</tr>
<tr>
<td>MIPLIB 3</td>
<td>695.0</td>
<td>29.4 %</td>
<td>39.7</td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>4465.3</td>
<td>31.3 %</td>
<td>465.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computational results

<table>
<thead>
<tr>
<th></th>
<th>Average iter. time (ms) per cut</th>
<th>MIPLIB 3</th>
<th>MIPLIB 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPLIB 3</td>
<td>3.1</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>1.8 ms</td>
<td>24.3 ms</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>one-row</th>
<th>two-row (split sets)</th>
<th>two-row</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPLIB 3</td>
<td>695.0</td>
<td>39.7</td>
<td>232.7</td>
</tr>
<tr>
<td>MIPLIB 2003</td>
<td>4465.3</td>
<td>465.5</td>
<td>600.7</td>
</tr>
</tbody>
</table>
Conclusions

- We have a fast separation for two-row cuts.
 - These cuts are the strongest for the two-row model.
 - They close more gap than one-row (intersection) cuts.

But

- they do not close much more gap than two-row intersection cuts from split sets.
Conclusions

▶ We have a fast separation for two-row cuts.
▶ These cuts are the strongest for the two-row model.
▶ They close more gap than one-row (intersection) cuts.

But

▶ they do not close much more gap than two-row intersection cuts from split sets.
Conclusions

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- They close more gap than one-row (intersection) cuts.

But

- they do not close much more gap than two-row intersection cuts from split sets.
Conclusions

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- They close more gap than one-row (intersection) cuts.

But

- they do not close much more gap than two-row intersection cuts from split sets.
B. Separation over arbitrary mixed-integer sets
Motivations

- We want to test stronger relaxations
- We still want exact separation
B.1. Separation method
Problem

Given

- a relaxation P of mixed-integer set in \mathbb{R}^n,
- a point $x^* \in \mathbb{R}^n$,

find $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$ such that

$$\alpha^T x \geq \alpha_0$$

is a valid inequality for P that separates x^*,

or show that $x^* \in \text{conv}(P)$.
Problem

Given

- a relaxation P of mixed-integer set in \mathbb{R}^n,
- a point $x^* \in \mathbb{R}^n$,

find $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$ such that

$$\alpha^T x \geq \alpha_0$$

is a valid inequality for P that separates x^*,

or show that $x^* \in \text{conv}(P)$.

Solve the optimization problem

\[
\begin{align*}
\min & \quad x^* T \alpha \\
\text{s.t.} & \quad x^T \alpha \geq \alpha_0 \quad \text{for all} \ x \in P \\
& \quad \langle \text{norm.} \rangle
\end{align*}
\]

(Sep. LP)

Let \((\bar{\alpha}, \bar{\alpha}_0)\) be an optimal solution.

If \(x^T \bar{\alpha} < \bar{\alpha}_0\), then \((\bar{\alpha}, \bar{\alpha}_0)\) separates \(x^*\).

If \(x^T \bar{\alpha} \geq \bar{\alpha}_0\), then \(x^* \in \text{conv}(P)\).
General framework

Solve the optimization problem

\[
\begin{align*}
\min & \quad x^T \alpha \\
\text{s.t.} & \quad x^T \alpha \geq \alpha_0 \quad \text{for all } x \in P \\
& \quad \langle \text{norm.} \rangle
\end{align*}
\]

(Sep. LP)

Let \((\bar{\alpha}, \bar{\alpha}_0)\) be an optimal solution.

If \(x^T \bar{\alpha} < \bar{\alpha}_0\), then \((\bar{\alpha}, \bar{\alpha}_0)\) separates \(x^*\).

If \(x^T \bar{\alpha} \geq \bar{\alpha}_0\), then \(x^* \in \text{conv}(P)\).
Row generation

1. Consider the relaxation of the separation problem

\[
\begin{align*}
\min & \quad x^T \alpha \\
\text{s.t.} & \quad x^T \alpha \geq \alpha_0 \quad \text{for all } x \in S \subseteq P \\
\end{align*}
\] \text{ (master)}

Let \((\bar{\alpha}, \bar{\alpha}_0)\) be an optimal solution.

2. Now solve the MIP

\[
\begin{align*}
\min & \quad \bar{x}^T x \\
\text{s.t.} & \quad x \subseteq P \\
\end{align*}
\] \text{ (slave)}

and let \(x^p\) be a finite optimal solution.

If \(\bar{x}^T x^p \geq \bar{\alpha}_0\), then \((\bar{\alpha}, \bar{\alpha}_0)\) is valid for \(P\).

If \(\bar{x}^T x^p < \bar{\alpha}_0\), then \(S := S \cup \{x^p\}\).
Row generation

1. Consider the relaxation of the separation problem

\[
\begin{align*}
\min & \quad x^* T \alpha \\
\text{s.t.} & \quad x^T \alpha \geq \alpha_0 \quad \text{for all } x \in S \subseteq P \quad \text{(master)} \\
\end{align*}
\]

Let \((\bar{\alpha}, \bar{\alpha}_0)\) be an optimal solution.

2. Now solve the MIP

\[
\begin{align*}
\min & \quad \bar{\alpha}^T x \\
\text{s.t.} & \quad x \subseteq P \quad \text{(slave)} \\
\end{align*}
\]

and let \(x^p\) be a finite optimal solution.

If \(\bar{\alpha}^T x^p \geq \bar{\alpha}_0\), then \((\bar{\alpha}, \bar{\alpha}_0)\) is valid for \(P\).
If \(\bar{\alpha}^T x^p < \bar{\alpha}_0\), then \(S := S \cup \{x^p\}\).
Row generation

1. Consider the relaxation of the separation problem

\[
\begin{align*}
\text{min} & \quad x^T \alpha \\
\text{s.t.} & \quad x^T \alpha \geq \alpha_0 \quad \text{for all } x \in S \subseteq P \\
\end{align*}
\]

(master)

\(<\text{norm.}>\)

Let \((\bar{\alpha}, \bar{\alpha}_0)\) be an optimal solution.

2. Now solve the MIP

\[
\begin{align*}
\text{min} & \quad \bar{\alpha}^T x \\
\text{s.t.} & \quad x \subseteq P \\
\end{align*}
\]

(slave)

and let \(x^p\) be a finite optimal solution.

If \(\bar{\alpha}^T x^p \geq \bar{\alpha}_0\), then \((\bar{\alpha}, \bar{\alpha}_0)\) is valid for \(P\).

If \(\bar{\alpha}^T x^p < \bar{\alpha}_0\), then \(S := S \cup \{x^p\}\).
Computational example

Instance: bell13a
Constraints: 123
Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau

Cuts: 37 (17 tight at the end)
Gap closed: 59.02% (from 39.03% by GMIs)

| Time: | 1615.70s |
| Iterations: | 107647 |
Two-phases: Phase one

x^* between bounds

$x : \begin{cases} x_B \\ x_N \end{cases}$

fix to bound

x^* at bounds

$\alpha : \begin{cases} \alpha_B \\ \alpha_N \end{cases}$
Two-phases: Phase one

Two phases:

1. \(x^* \) between bounds
2. \(x^* \) at bounds

\[x : \begin{cases} x_B & \text{fix to bound} \\ x_N \end{cases} \]

\[\alpha : \begin{cases} \alpha_B \\ \alpha_N \end{cases} \]
Two-phases: Phase two

x^* between bounds

$x : \begin{cases} x_B & x^* \text{ at bounds} \\ x_N & \end{cases}$

x^* at bounds

$\alpha : \begin{cases} \alpha_B & \text{fixed} \\ \alpha_N & \text{lift} \end{cases}$

fix to bound
Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02% gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
</tr>
</tbody>
</table>
Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02\% gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
</tr>
</tbody>
</table>
Lifting binary variables

\[x^* \text{ between bounds} \quad \quad x^* \text{ at bounds} \]

\[
\begin{array}{c}
 x : \\
 x_B \quad x_{\text{Nbin}} \quad x_{\text{N'}}
\end{array}
\]

\[
\begin{array}{c}
 \alpha : \\
 \alpha_B \quad \alpha_{\text{Nbin}} \quad \alpha_{\text{N'}}
\end{array}
\]

\[\text{fixed} \]
Lifting binary variables

\[\begin{align*}
 x^* \text{ between bounds} & \quad x^* \text{ at bounds} \\
 \{ & \text{binary} \\
 x : & x_B \quad x_{N\text{bin}} \quad x_{N'} \\
 \alpha : & \alpha_B \quad \alpha_{N\text{bin}} \quad \alpha_{N'} \\
 \{ & \text{fixed} \quad \text{lift}
\end{align*} \]
Lifting binary variables

\[x^* \text{ between bounds} \quad x^* \text{ at bounds} \]

\[x : \quad x_B \quad x_{Nbin} \quad x_N' \]

\[\alpha : \quad \alpha_B \quad \alpha_{Nbin} \quad \alpha_N' \]

binary

fixed

fixed
Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
</tr>
</tbody>
</table>
Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02\%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
</tr>
</tbody>
</table>
Sequential phase-2 ("phase-S")

x^* between bounds

x^* at bounds

\[
\begin{array}{c}
\text{binary} \\
\hline
x : \\
\hline
x_B & x_{N\text{bin}} & x_k & x_{N''}
\end{array}
\]

\[
\begin{array}{c}
\text{fixed} \\
\hline
\alpha : \\
\hline
\alpha_B & \alpha_{N\text{bin}} & \alpha_k & \alpha_{N''}
\end{array}
\]

(fixed to bnd)

zero
Sequential phase-2 ("phase-S")

\[x^* \text{ between bounds} \quad \text{and} \quad x^* \text{ at bounds} \]

\[
\begin{align*}
x & : \\
& \quad x_B \quad x_{Nbin} \quad x_k \quad x_{N''}
\end{align*}
\]

\[
\begin{align*}
\alpha & : \\
& \quad \alpha_B \quad \alpha_{Nbin} \quad \alpha_k \quad \alpha_{N''}
\end{align*}
\]

\(\text{binary} \)

(fixed to bnd)

\(\text{fixed} \)

\(\text{zero} \)
Sequential phase-2 ("phase-S")

\[x^* \text{ between bounds} \quad \{ \text{binary} \} \quad x^* \text{ at bounds} \]

\[x : \begin{array}{c} \alpha_B \\ \alpha_{N_{bin}} \\ \alpha_k \\ \alpha_{N''} \end{array} \]

\[(\text{fixed to bnd}) \]

\[\alpha : \begin{array}{c} \alpha_B \\ \alpha_{N_{bin}} \\ \alpha_k \\ \alpha_{N''} \end{array} \]

\[\{ \text{fixed} \} \quad \{ \text{lift} \} \quad \{ \text{zero} \} \]
Sequential phase-2 ("phase-S")

\[x^* \text{ between bounds} \quad \begin{array}{c}
\alpha^* \text{ at bounds} \\
\text{binary}
\end{array} \]

\[x : \begin{array}{c}
\alpha \quad \alpha_N bin \quad \alpha_k \quad \alpha_N''
\end{array} \]

\[x : \begin{array}{c}
\alpha \quad \alpha_N bin \quad \alpha_k \quad \alpha_N''
\end{array} \]

\[\begin{array}{c}
\alpha \text{ fixed} \\
\alpha_N'' \text{ fixed}
\end{array} \]

\[x \text{ fixed} \quad \alpha_N'' \text{ fixed} \quad \text{zero} \]
Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02% gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
<th>phase S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
<td>5.84s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
<td>2497</td>
</tr>
</tbody>
</table>
Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
<th>phase S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
<td>5.84s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
<td>2497</td>
</tr>
</tbody>
</table>
Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
<th>phase S</th>
<th>cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
<td>5.84s</td>
<td>4.65s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
<td>2497</td>
<td>2497</td>
</tr>
</tbody>
</table>
Computational example (solver tricks)

(bell13a, 82 five-row models, 37 cuts, 59.02\%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
<th>phase S</th>
<th>cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
<td>5.84s</td>
<td>4.65s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
<td>2497</td>
<td>2497</td>
</tr>
</tbody>
</table>
Computational example (summary)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>2-phases</th>
<th>lifting</th>
<th>phase S</th>
<th>cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>347×</td>
<td>35×</td>
<td>29×</td>
<td>1.26×</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1615.70s</td>
<td>161.15s</td>
<td>136.54s</td>
<td>5.84s</td>
<td>4.65s</td>
</tr>
<tr>
<td>Iterations:</td>
<td>107647</td>
<td>23822</td>
<td>23231</td>
<td>2497</td>
<td>2497</td>
</tr>
<tr>
<td></td>
<td>43×</td>
<td>10×</td>
<td>9×</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
B.2. Application to two-row relaxations
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic</th>
<th>nonbasic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\in \mathbb{Z}) bnd.</td>
<td>(\in \mathbb{Z}) bnd.</td>
<td></td>
</tr>
<tr>
<td>(P_I)</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(S)-free</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>lifting</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(P_{IU})</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>full 2-row</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\(✓ \): keep

\(B \): keep binding

\(× \): drop
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic</th>
<th>nonbasic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\in \mathbb{Z}$</td>
<td>bnd.</td>
</tr>
<tr>
<td>P_I</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>S-free</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>lifting</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>full 2-row</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

\checkmark: keep
B: keep binding
\times: drop
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic</th>
<th>nonbasic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\in \mathbb{Z}$</td>
<td>bnd.</td>
<td>$\in \mathbb{Z}$</td>
</tr>
<tr>
<td>P_I</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>S-free</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>lifting</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>full 2-row</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

- **√**: keep
- **B**: keep binding
- **×**: drop
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic</th>
<th>nonbasic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\in \mathbb{Z}$</td>
<td>bnd.</td>
</tr>
<tr>
<td>P_I</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>S-free</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>lifting</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>full 2-row</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

\checkmark: keep
B: keep binding
\times: drop
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic</th>
<th>nonbasic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∈ ℤ bnd.</td>
<td>∈ ℤ bnd.</td>
</tr>
<tr>
<td>P_I</td>
<td>√ ×</td>
<td>× B</td>
</tr>
<tr>
<td>S-free</td>
<td>√ √</td>
<td>× B</td>
</tr>
<tr>
<td>lifting</td>
<td>√ ×</td>
<td>√ B</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>√ ×</td>
<td>× √</td>
</tr>
</tbody>
</table>

- **√**: keep
- **B**: keep binding
- **×**: drop
Two-row intersection cuts + strengthening

<table>
<thead>
<tr>
<th></th>
<th>basic $\in \mathbb{Z}$</th>
<th>basic bnd.</th>
<th>nonbasic $\in \mathbb{Z}$</th>
<th>nonbasic bnd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_I</td>
<td>\surd</td>
<td>\times</td>
<td>\times</td>
<td>B</td>
</tr>
<tr>
<td>S-free</td>
<td>\surd</td>
<td>\surd</td>
<td>\times</td>
<td>B</td>
</tr>
<tr>
<td>lifting</td>
<td>\surd</td>
<td>\times</td>
<td>\surd</td>
<td>B</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>\surd</td>
<td>\times</td>
<td>\times</td>
<td>\surd</td>
</tr>
<tr>
<td>full 2-row</td>
<td>\surd</td>
<td>\surd</td>
<td>\surd</td>
<td>\surd</td>
</tr>
</tbody>
</table>

\surd: keep
B: keep binding
\times: drop
Two-row intersection cuts and strengthenings

51 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>28.240</td>
<td>22.46%</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>29.420</td>
<td>27.65%</td>
<td>42</td>
</tr>
<tr>
<td>S-free</td>
<td>38.380</td>
<td>30.22%</td>
<td>29</td>
</tr>
<tr>
<td>lifting</td>
<td>22.700</td>
<td>27.35%</td>
<td>10</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>42.640</td>
<td>28.56%</td>
<td>25</td>
</tr>
<tr>
<td>full 2-row</td>
<td>55.500</td>
<td>35.66%</td>
<td>22</td>
</tr>
</tbody>
</table>
Two-row intersection cuts and strengthenings

51 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>28.240</td>
<td>22.46%</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>29.420</td>
<td>27.65%</td>
<td>42</td>
</tr>
<tr>
<td>S-free</td>
<td>38.380</td>
<td>30.22%</td>
<td>29</td>
</tr>
<tr>
<td>lifting</td>
<td>22.700</td>
<td>27.35%</td>
<td>10</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>42.640</td>
<td>28.56%</td>
<td>25</td>
</tr>
<tr>
<td>full 2-row</td>
<td>55.500</td>
<td>35.66%</td>
<td>22</td>
</tr>
</tbody>
</table>
Two-row intersection cuts and strengthenings

51 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>28.240</td>
<td>22.46%</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>29.420</td>
<td>27.65%</td>
<td>42</td>
</tr>
<tr>
<td>S-free</td>
<td>38.380</td>
<td>30.22%</td>
<td>29</td>
</tr>
<tr>
<td>lifting</td>
<td>22.700</td>
<td>27.35%</td>
<td>10</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>42.640</td>
<td>28.56%</td>
<td>25</td>
</tr>
<tr>
<td>full 2-row</td>
<td>55.500</td>
<td>35.66%</td>
<td>22</td>
</tr>
</tbody>
</table>
Two-row intersection cuts and strengthenings

51 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>28.240</td>
<td>22.46%</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>29.420</td>
<td>27.65%</td>
<td>42</td>
</tr>
<tr>
<td>S-free</td>
<td>38.380</td>
<td>30.22%</td>
<td>29</td>
</tr>
<tr>
<td>lifting</td>
<td>22.700</td>
<td>27.35%</td>
<td>10</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>2.640</td>
<td>28.56%</td>
<td>25</td>
</tr>
<tr>
<td>full 2-row</td>
<td>55.500</td>
<td>35.66%</td>
<td>22</td>
</tr>
</tbody>
</table>
Two-row intersection cuts and strengthenings

15 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>20.667</td>
<td>26.541</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>20.933</td>
<td>33.535</td>
<td>all</td>
</tr>
<tr>
<td>S-free</td>
<td>25.400</td>
<td>35.229</td>
<td>all</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>36.600</td>
<td>36.257</td>
<td>all</td>
</tr>
<tr>
<td>full 2-row</td>
<td>57.267</td>
<td>43.956</td>
<td>all</td>
</tr>
</tbody>
</table>
Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>25.571</td>
<td>24.744</td>
<td>all</td>
</tr>
<tr>
<td>P_I</td>
<td>25.143</td>
<td>33.641</td>
<td>all</td>
</tr>
<tr>
<td>S-free</td>
<td>28.714</td>
<td>33.836</td>
<td>all</td>
</tr>
<tr>
<td>lifting</td>
<td>25.571</td>
<td>33.716</td>
<td>all</td>
</tr>
<tr>
<td>P_{IU}</td>
<td>47.857</td>
<td>37.531</td>
<td>all</td>
</tr>
<tr>
<td>full 2-row</td>
<td>48.000</td>
<td>37.583</td>
<td>all</td>
</tr>
</tbody>
</table>
Bases

- We depend on a specific optimal basis
- Will the gap closed by two-row cuts survive more GMIs?
Bases

- We depend on a specific optimal basis
- Will the gap closed by two-row cuts survive more GMIs?
Bases

- We depend on a specific optimal basis
- Will the gap closed by two-row cuts survive more GMIs?
Relax and cut: results

43 common instances:

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
<th>exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.814</td>
<td>23.282</td>
<td>all</td>
</tr>
<tr>
<td>2-row i.c.</td>
<td>31.884</td>
<td>28.838</td>
<td>42</td>
</tr>
<tr>
<td>full 2-row</td>
<td>62.140</td>
<td>36.080</td>
<td>22</td>
</tr>
<tr>
<td>relax&cut GMI</td>
<td>60.372</td>
<td>34.970</td>
<td>all</td>
</tr>
<tr>
<td>relax&cut 2-row i.c.</td>
<td>63.163</td>
<td>41.951</td>
<td>37</td>
</tr>
<tr>
<td>relax&cut full 2-row</td>
<td>76.767</td>
<td>47.277</td>
<td>12</td>
</tr>
</tbody>
</table>
More rows: Computing time

instances with result, and instances with exact separation

geometric mean of time (on 42 common instances)
More rows: Gap closed

number of cuts generated (on 42 common instances)

average %gc (on 42 common instances)
Overall summary

- a (quick) two-row intersection cut separator
 - assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
 - assessment: strength of multi-row model and variants
Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants
Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants
Overall summary

- a (quick) two-row intersection cut separator
 - assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
 - assessment: strength of multi-row model and variants
Conclusions

Multi-row cuts:

- Number of rows: few or almost all
- Intersection cuts: need to apply all strengthenings
Conclusions

Multi-row cuts:

- Number of rows: few or almost all

- Intersection cuts: need to apply all strengthenings
The integer hull

Adding all valid inequalities for (MIP), we obtain:

\[
\text{conv}\{x : x \in (\text{MIP})\}
\]

In theory: as hard as solving (MIP)

In practice: much harder
The integer hull

Adding all valid inequalities for (MIP), we obtain:

\[\text{conv}\{x : x \in (MIP)\} \]

In theory: as hard as solving (MIP)

In practice: much harder
The integer hull

Adding all valid inequalities for (MIP), we obtain:

\[\text{conv}\{x : x \in (MIP)\} \]

In theory: as hard as solving \((MIP)\)

In practice: much harder
Can we avoid the integer hulls X_{ij}?

$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, \forall x \in X_{i,i+1}, \forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}),$$

$$s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1,$$

$$\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}$$

$$\overline{Q}(S) = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, \forall x \in S \cap (f + \text{cone}(r^i, r^{i+1})), \forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}),$$

$$s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1,$$

$$\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}$$,

with $S \subset \mathbb{Z}^2$.
Can we avoid the integer hulls X_{ij}?

$$\bar{Q} = \{ \alpha \in \mathbb{R}_+^n \mid$$
$$\forall i, \forall x \in X_{i,i+1}, \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1$$
$$\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \leq \lambda_{i-1} \alpha_{i-1} + \lambda_{i+1} \alpha_{i+1} \}$$

$$\bar{Q}(S) = \{ \alpha \in \mathbb{R}_+^n \mid$$
$$\forall i, \forall x \in S \cap (f + \text{cone}(r^i, r^{i+1})), \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \geq 1$$
$$\forall i : r^i \in \text{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \leq \lambda_{i-1} \alpha_{i-1} + \lambda_{i+1} \alpha_{i+1} \}$$,

with $S \subset \mathbb{Z}^2$.
Separation algorithm

\[S := S_0 \]

\[
\text{do \{ \\
\quad \alpha := \arg\min \ c^T \alpha \\
\quad \text{s.t. } \alpha \in \overline{Q}(S) \\
\}} \]

if \(\alpha \in \overline{Q} \)

OK, valid cut, exit.

else

Find a constraint of \(\overline{Q} \) violated by \(\alpha \).

Add constraints to \(S \).
Separation algorithm

\[S := S_0 \]
\begin{align*}
&\text{do } \{ \\
&\qquad \alpha := \text{argmin } c^T \alpha \\
&\quad \text{s.t. } \alpha \in \overline{Q}(S) \\
&\quad \text{if } L_\alpha \text{ is lattice-free} \\
&\quad \quad \text{OK, valid cut, exit.} \\
&\quad \text{else} \\
&\quad \quad \text{Find } x \in \mathbb{Z}^2 \cap \text{interior}(L_\alpha). \\
&\quad \quad \text{Add } x \text{ to } S.
&\}\end{align*}
Separation algorithm

\[S := S_0 \]
\[
\text{do } \{
\quad \alpha := \arg\min \ c^T \alpha \\
\quad \text{s.t. } \alpha \in \overline{Q}(S)
\}
\]

if \(L_\alpha \) is lattice-free

OK, valid cut, exit.

else

Find \(x \in \mathbb{Z}^2 \cap \text{interior}(L_\alpha) \).

Add \(x \) to \(S \).
Separation algorithm

\[S := S_0 \]
\[
\text{do } \{ \\
\quad \alpha := \arg\min \ c^T \alpha \\
\quad \text{s.t. } \alpha \in \overline{Q}(S) \\
\}
\]

if \(L_\alpha \) is lattice-free

OK, valid cut, exit.

else

Find \(x \in \mathbb{Z}^2 \cap \text{interior}(L_\alpha) \).

Add \(x \) to \(S \).
Separation algorithm

\[S := S_0 \]
\[
do \{
\begin{align*}
\alpha &:= \text{argmin} \; c^T \alpha \\
\text{s.t.} \; \alpha &\in \overline{Q}(S)
\end{align*}
\]
if \(L_\alpha \) is lattice-free
OK, valid cut, exit.
else
Find \(x \in \mathbb{Z}^2 \cap \text{interior}(L_\alpha) \).
Add \(x \) to \(S \).
\}
Separation algorithm

\[S := S_0 \]

\[\text{do } \{
\begin{align*}
\alpha & := \text{argmin } c^T \alpha \\
& \text{s.t. } \alpha \in \overline{Q}(S)
\end{align*}
\]

if \(L_\alpha \) is lattice-free

OK, valid cut, exit.

else

Find \(x \in \mathbb{Z}^2 \cap \text{interior}(L_\alpha) \).

Add \(x \) to \(S \).

\} \]
Integer pair extension
Integer pair extension
Integer pair extension
Integer pair extension
The oracle

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_\alpha$
- closed-form formula?
Find an integer point in $\text{interior}(L_{\alpha})$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_{\alpha}$
- closed-form formula?
The oracle

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_\alpha$
- closed-form formula?
The oracle

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_\alpha$
- closed-form formula?
The oracle

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_\alpha$
- closed-form formula?
Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

- possible in polynomial time for any fixed dimension d
 (Barvinok’s algorithm)
- but $d = 2$
- we know $S \cap L_\alpha$
- closed-form formula?
The oracle: $\text{conv}(T)$

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

1. Consider the convex hull $\text{conv}(T)$ where $T := S \cap \text{boundary}(L_\alpha)$.
 - triangularize $\text{conv}(T)$
 - find integer points on integer segments and integer triangles
The oracle: $\text{conv}(T)$

Find an integer point in $\text{interior}(L_\alpha)$ or prove that L_α is lattice-free.

1. Consider the convex hull $\text{conv}(T)$ where $T := S \cap \text{boundary}(L_\alpha)$.
 - **triangularize** $\text{conv}(T)$
 - find integer points on integer segments and integer triangles
The oracle: \(\text{conv}(T) \)

Find an integer point in \(\text{interior}(L_\alpha) \) or prove that \(L_\alpha \) is lattice-free.

1. Consider the convex hull \(\text{conv}(T) \) where \(T := S \cap \text{boundary}(L_\alpha) \).
 - triangularize \(\text{conv}(T) \)
 - find integer points on integer segments and integer triangles
The oracle: \(\text{conv}(T) \), continued

Let \(\Delta \) be \(\text{conv}(0, u, v) \) with \(u, v \in \mathbb{Z} \) and \(\gcd(u_1, u_2) = \gcd(v_1, v_2) = 1 \).

\[
\left\{ \begin{array}{l}
\frac{\lambda}{\det([u|v])} u + \frac{\mu}{\det([u|v])} v : \lambda, \mu \in \mathbb{Z}_+, 0 < \lambda + \mu < \det([u|v])
\end{array} \right\}
\]

Prop.: \(\Delta \) has an interior lattice point with \(\mu = 1 \), or is lattice-free.

It is enough to solve the diophantine system

\[
\left\{ \begin{array}{l}
\lambda u_1 + v_1 = k_1 \det([u|v]) \\
\lambda u_2 + v_2 = k_2 \det([u|v])
\end{array} \right\}, \lambda, k_1, k_2 \in \mathbb{Z}
\]
The oracle: \(\text{conv}(T) \), continued

Let \(\Delta \) be \(\text{conv}(0, u, v) \) with \(u, v \in \mathbb{Z} \) and \(\gcd(u_1, u_2) = \gcd(v_1, v_2) = 1 \).

\[
\left\{ \frac{\lambda}{\det([u|v])} u + \frac{\mu}{\det([u|v])} v : \lambda, \mu \in \mathbb{Z}_+, \ 0 < \lambda + \mu < \det([u|v]) \right\}
\]

Prop.: \(\Delta \) has an interior lattice point with \(\mu = 1 \), or is lattice-free.

It is enough to solve the diophantine system

\[
\begin{align*}
\lambda u_1 + v_1 &= k_1 \det([u|v]) \quad \lambda, k_1, k_2 \in \mathbb{Z} \\
\lambda u_2 + v_2 &= k_2 \det([u|v])
\end{align*}
\]
The oracle: $\text{conv}(T)$, continued

Let Δ be $\text{conv}(0, u, v)$ with $u, v \in \mathbb{Z}$ and $\gcd(u_1, u_2) = \gcd(v_1, v_2) = 1$. Then

$$\left\{ \frac{\lambda}{\det([u|v])} u + \frac{\mu}{\det([u|v])} v : \lambda, \mu \in \mathbb{Z}_+, \ 0 < \lambda + \mu < \det([u|v]) \right\}$$

Prop.: Δ has an interior lattice point with $\mu = 1$, or is lattice-free.

It is enough to solve the diophantine system

$$\left\{ \begin{array}{l}
\lambda u_1 + v_1 = k_1 \det([u|v]) \\
\lambda u_2 + v_2 = k_2 \det([u|v])
\end{array} \right., \ \lambda, k_1, k_2 \in \mathbb{Z}$$
The oracle: \(\text{interior}(L_\alpha) \)

2. Assuming \(\text{conv}(T) \) lattice-free,

Prop.: It is enough to check 2 or 3 specific integer points:
Solver tricks: callbacks

Solving slave MIPs

\[
\begin{align*}
\min & \quad \tilde{\alpha}^T x \\
\text{s.t.} & \quad x \subseteq P,
\end{align*}
\]

- Feasible solution \(\hat{x} \) with \(\tilde{\alpha}^T \hat{x} < \tilde{\alpha}_0 \)
 \(\rightarrow \hat{x} \) can be added to \(S \).

- Dual bound \(\bar{z} \) reaches \(\tilde{\alpha}_0 \),
 \(\rightarrow (\tilde{\alpha}, \tilde{\alpha}_0) \) is valid for \(P \).
Solver tricks: callbacks

Solving slave MIPs

\[
\begin{aligned}
\text{min} & \quad \bar{\alpha}^T x \\
\text{s.t.} & \quad x \subseteq P,
\end{aligned}
\]

- Feasible solution \(\hat{x} \) with \(\bar{\alpha}^T \hat{x} < \bar{\alpha}_0 \)
 \[\rightarrow \hat{x} \text{ can be added to } S.\]

- Dual bound \(z \) reaches \(\bar{\alpha}_0 \),
 \[\rightarrow (\bar{\alpha}, \bar{\alpha}_0) \text{ is valid for } P.\]
Solver tricks: callbacks

Solving slave MIPs

\[
\begin{align*}
\min & \quad \bar{\alpha}^T x \\
\text{s.t.} & \quad x \subseteq P,
\end{align*}
\]

- Feasible solution \(\hat{x} \) with \(\bar{\alpha}^T \hat{x} < \bar{\alpha}_0 \)
 \[\rightarrow \text{\(\hat{x} \) can be added to} \ S.\]
- Dual bound \(z \) reaches \(\bar{\alpha}_0 \),
 \[\rightarrow \text{\((\bar{\alpha}, \bar{\alpha}_0) \) is valid for} \ P.\]
Two-row relaxation: which models?

- We are still far from a closure
 - What reasonable set of two-models can we select?
 - All models read from a simplex tableau
 - $O(m^2)$ two-row models
Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
 - All models read from a simplex tableau
 - $O(m^2)$ two-row models
Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
 - All models read from a simplex tableau
 - $O(m^2)$ two-row models
“all” two-row models: separation loop

Let \(x^* \leftarrow \) LP optimum
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

\[
\text{do } \{
\quad \text{Let } x^* \leftarrow \text{new LP optimum.}
\quad \text{Separate } x^* \text{ with the two-row models.}
\}\quad \text{while (cuts were found).}
\]
“all” two-row models: separation loop

Let $x^* \leftarrow$ LP optimum
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

do
 Let $x^* \leftarrow$ new LP optimum.
 Separate x^* with the two-row models.
} while (cuts were found).
“all” two-row models: separation loop

Let $x^* \leftarrow$ LP optimum
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

\begin{verbatim}
 do {
 Let $x^* \leftarrow$ new LP optimum.
 Separate x^* with the two-row models.
 } while (cuts were found).
\end{verbatim}
“all” two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for which

(a). the integrality gap is not zero, and
(b). an optimal MIP solution is known.
“all” two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
</tbody>
</table>

For 13 instances, the separation is exact.
“all” two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
</tbody>
</table>

For 13 instances, the separation is exact.
“all” two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
</tbody>
</table>

For 13 instances, the separation is exact.
Heuristic selection of two-row models

Issue:
- $O(m^2)$ is already a large number of models

Hypothesis:
- Not all models are necessary to achieve good separation

Rationale:
- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts
Heuristic selection of two-row models

Issue:

- $O(m^2)$ is already a large number of models

Hypothesis:

- Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts
Heuristic selection of two-row models

Issue:

▶ $O(m^2)$ is already a large number of models

Hypothesis:

▶ Not all models are necessary to achieve good separation

Rationale:

▶ MIPLIB models are mostly sparse
▶ Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts
Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
<tr>
<td>Heuristic</td>
<td>57.418</td>
<td>35.19%</td>
</tr>
</tbody>
</table>

For 25 instances, the separation is exact.
Heuristic selection of two-row models: results

With an arbitrary limit of \(m \) two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
<tr>
<td>Heuristic</td>
<td>57.418</td>
<td>35.19%</td>
</tr>
</tbody>
</table>

For 25 instances, the separation is exact.
Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

<table>
<thead>
<tr>
<th></th>
<th>cuts</th>
<th>gc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI</td>
<td>24.800</td>
<td>22.60%</td>
</tr>
<tr>
<td>All 2-row</td>
<td>72.382</td>
<td>37.49%</td>
</tr>
<tr>
<td>Heuristic</td>
<td>57.418</td>
<td>35.19%</td>
</tr>
</tbody>
</table>

For 25 instances, the separation is exact.
<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>Polyhedral cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P^+</td>
</tr>
<tr>
<td>vertex v</td>
<td>extreme ray $(v, -1)$</td>
</tr>
<tr>
<td>extreme ray r</td>
<td>extreme ray $(r, 0)$</td>
</tr>
<tr>
<td>l in the lineality space</td>
<td>$(l, 0)$ in the lineality space</td>
</tr>
</tbody>
</table>

facet-defining $\alpha^T x \geq \alpha_0$ \iff facet-defining $\alpha^T x + \alpha_0 x_0 \geq 0$
valid $\alpha^T x = \alpha_0$ \iff valid $\alpha^T x + \alpha_0 x_0 = 0$
Polarity for general polyhedra: Conify

<table>
<thead>
<tr>
<th>Polyhedron P</th>
<th>Polyhedral cone P^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertex v</td>
<td>extreme ray $(v, -1)$</td>
</tr>
<tr>
<td>extreme ray r</td>
<td>extreme ray $(r, 0)$</td>
</tr>
<tr>
<td>l in the lineality space</td>
<td>$(l, 0)$ in the lineality space</td>
</tr>
</tbody>
</table>

facet-defining $\alpha^T x \geq \alpha_0$ ⇔ facet-defining $\alpha^T x + \alpha_0 x_0 \geq 0$
valid $\alpha^T x = \alpha_0$ ⇔ valid $\alpha^T x + \alpha_0 x_0 = 0$
Polarity for general polyhedra: Conify

<table>
<thead>
<tr>
<th>Polyhedron (P)</th>
<th>Polyhedral cone (P^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertex (v)</td>
<td>extreme ray ((v, -1))</td>
</tr>
<tr>
<td>extreme ray (r)</td>
<td>extreme ray ((r, 0))</td>
</tr>
<tr>
<td>(l) in the lineality space</td>
<td>((l, 0)) in the lineality space</td>
</tr>
<tr>
<td>facet-defining (\alpha^T x \geq \alpha_0)</td>
<td>facet-defining (\alpha^T x + \alpha_0 x_0 \geq 0)</td>
</tr>
<tr>
<td>valid (\alpha^T x = \alpha_0)</td>
<td>valid (\alpha^T x + \alpha_0 x_0 = 0)</td>
</tr>
</tbody>
</table>
Conify: P is a polytope

Note: $P = \text{proj}_x(P^+ \cap \{x_0 = -1\})$.

$P^+ = \{(x, x_0) \in \mathbb{R}^{n+1} : x_0 \leq 0, \ x \in -x_0P\}$
Conify: P is a general polyhedron

Note: $P = \text{proj}_x(P^+ \cap \{x_0 = -1\})$.

$P^+ = \{(x, x_0) \in \mathbb{R}^{n+1} : x_0 \leq 0, \text{ "} x \in -x_0P + \text{recc}(P)\text{"} \}$
<table>
<thead>
<tr>
<th>P^+</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>extreme ray r</td>
<td>facet-defining $r^T \alpha \geq 0$</td>
</tr>
<tr>
<td>l in the lineality space</td>
<td>valid $l^T \alpha = 0$</td>
</tr>
</tbody>
</table>

Q is the polar of P^+ ⇔ P^+ is the polar of Q

facet-defining $\beta^T x \geq 0$ ⇔ extreme ray β
valid $\gamma^T x = 0$ ⇔ γ in the lineality space
Polarity for full-dimensional polyhedral cones

<table>
<thead>
<tr>
<th>P^+</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>extreme ray r</td>
<td>facet-defining $r^T \alpha \geq 0$</td>
</tr>
<tr>
<td>l in the lineality space</td>
<td>$l^T \alpha = 0$</td>
</tr>
</tbody>
</table>

Q is the polar of P^+ \iff P^+ is the polar of Q

| facet-defining $\beta^T x \geq 0$ | extreme ray β |
| valid $\gamma^T x = 0$ | γ in the lineality space |
Polarity for full-dimensional polyhedral cones

<table>
<thead>
<tr>
<th>P^+</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>extreme ray r</td>
<td>facet-defining $r^T \alpha \geq 0$</td>
</tr>
<tr>
<td>l in the lineality space</td>
<td>valid $l^T \alpha = 0$</td>
</tr>
</tbody>
</table>

Q is the polar of P^+ \iff P^+ is the polar of Q

facet-defining $\beta^T x \geq 0$ \iff extreme ray β

valid $\gamma^T x = 0$ \iff γ in the linearity space
Going back to general (full-dimensional) polyhedra

<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>Polyhedral cone</th>
<th>Polar of P^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P^+</td>
<td>Q</td>
</tr>
<tr>
<td>vert. v</td>
<td>ray $(v, -1)$</td>
<td>$v^T\alpha - \alpha_0 \geq 0$</td>
</tr>
<tr>
<td>ray r</td>
<td>ray $(v, 0)$</td>
<td>$r^T\alpha \geq 0$</td>
</tr>
<tr>
<td>l in lin.sp.</td>
<td>$(l, 0)$ in lin.sp.</td>
<td>$l^T\alpha = 0$</td>
</tr>
</tbody>
</table>

$$\alpha^T x \geq \alpha_0$$ \quad $$\alpha^T x + \alpha_0 x_0 \geq 0$$ \quad $$\mathrm{ray} \ (\alpha, \alpha_0)$$

$$\alpha^T x = \alpha_0$$ \quad $$\alpha^T x + \alpha_0 x_0 = 0$$ \quad $$(\alpha, \alpha_0) \ \mathrm{in \ lin.sp.}$$