Previous lecture

Consider

\[
\begin{align*}
\min & \quad \bar{c}^T x \\
\text{s.t.} & \quad A x = b \\
& \quad x \geq 0.
\end{align*}
\] (P)

Given a basis \(B \), (P) is equivalent to

\[
\begin{align*}
\min & \quad \bar{c}^T x \\
\text{s.t.} & \quad \bar{A} x = \bar{b} \\
& \quad x \geq 0,
\end{align*}
\] (tableau)

where

\[
\begin{align*}
B &= A_B \\
\bar{c}^T &= c^T - c_B^T B^{-1} A \\
\bar{A} &= B^{-1} A \\
\bar{b} &= B^{-1} b
\end{align*}
\]
properties of tableau:

\[
\begin{align*}
\mathbf{c}^T &= \begin{bmatrix} 0^T & 1 \end{bmatrix} \\
\mathbf{A} &= \begin{bmatrix} I & \mathbf{A}_N \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{array}{c}
\mathbf{B} \\
\end{array}
\]

corresponding basic solution:

\[
\begin{align*}
\mathbf{x} &= 0 \\
\mathbf{A}_N \mathbf{x} &= \begin{bmatrix} I & \mathbf{A}_N \end{bmatrix} \begin{bmatrix} \frac{x_B}{x_N} \end{bmatrix} = \mathbf{b}
\end{align*}
\]

yields

\[
\begin{align*}
I \mathbf{x}_B &= \mathbf{b}
\end{align*}
\]

i.e.,

\[
\mathbf{x} = \begin{bmatrix} \mathbf{b} \\
\mathbf{0}
\end{bmatrix}
\]

note: basic feasible solutions \(\iff\) vertices of \(\mathbf{P}\)
We want to go from a feasible basis to a better feasible basis (without enumerating all bases)

Def. Let \(l \in B \), \(e \in N \).

A pivot is the action of creating

\[B' = B \setminus \{el\} \cup \{e\}. \]

\(x_e \) is the entering variable.

\(x_l \) is the leaving variable.
If we pivot away from current basis,

- one nonbasic variable, \(x_e \) (currently = 0) will become basic (hence \(\geq 0 \)).
- the value of the basic variables will change to preserve feasibility (\(\geq 0 \)).
- how will the objective value change?

- \(\forall j \in B, \bar{c}_j = 0 \) so \(x_j \) has no impact.
- \(\forall j \in N \setminus \{e\}, \bar{x}_j = 0 \) and stays zero so no impact.
- \(x_e \) can increase, so objective can decrease if \(\bar{c}_e < 0 \).
Example tableau

\[\text{min} \]

\[3x_4 - 2x_5 \]

\[x_1 + 2x_4 - x_5 = 2 \]

\[x_2 - x_4 + x_5 = 1 \]

\[x_3 + 2x_5 = 1 \]

\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]

basic solution: \(\bar{x} = (2, 1, 1, 0, 0) \)
In the example,

\[x_5 \] enters the basis \(\Rightarrow \)

(all other nonbasics, i.e. \(x_4 \), are fixed to 0)

\[
\begin{align*}
 x_1 &= 2 + x_5 \geq 0 \\
 x_2 &= 1 - x_5 \geq 0 \quad \Rightarrow \quad 0 < x_5 \leq 1 \\
 x_3 &= 1 - 2x_5 \geq 0 \quad \Rightarrow \quad -2x_5 \leq 1
\end{align*}
\]

\(\Rightarrow \quad x_5 \) will increase to \(\frac{1}{2} \)

\(x_3 \) become zero, can leave

the basis
When x_e increases:

if $\bar{a}_{ie} \leq 0$, x_j increases or stays unchanged.

if $\bar{a}_{ie} > 0$, x_j decreases:

\[
\text{when } x_e \text{ reaches } \frac{\bar{b}_i}{\bar{a}_{ie}}, \text{ } x_j \text{ reaches } 0
\]

\Rightarrow Ratio test:

by how much can x_e increase?

\[
\lambda = \min_i \left\{ \frac{\bar{b}_i}{\bar{a}_{ie}} \mid \bar{a}_{ie} > 0 \right\}
\]

Leaving variable: any i-th basic variable such that $\bar{a}_{ie} > 0$ and $\lambda = \frac{\bar{b}_i}{\bar{a}_{ie}}$.
More formally,

Let x_e enter the basis (with $\bar{c}_e < 0$).

Consider x_j where $j \in B$, j is the i-th basic variable.

$$
\bar{b}_i - \overline{\bar{a}_{ie}} \cdot x_e = \bar{b}_i
$$

So $x_j = \bar{b}_i - \overline{\bar{a}_{ie}} \cdot x_e$
Simplex method

Given a basis B such that $\overline{b} \geq 0$,

- choose entering variable x_e: $\overline{c}_e < 0$

- choose pivot row

$$i = \text{argmin}_i \left\{ \frac{\overline{b}_i}{\overline{a}_{i e}} \mid \overline{a}_{i e} > 0 \right\}$$

- leaving variable x_i is the basic variable in row i.

- pivot (x_e enters, x_i leaves)
The algorithm ends when
- there is no entering variable (optimality)
- there is no leaving variable (unboundedness)
Duality

Consider: \[z = \max 2x_1 + x_2 \]

s.t. \[x_1 + 2x_2 \leq 2 \]
\[x_1 + x_2 \leq 2 \]
\[x_1 - x_2 \leq 0.5 \]

Consider: \(\bar{x} = (1, 0.5), \quad \bar{z} = 2.5 \)

Q: Is \(\bar{x} \) optimal?

A: It is optimal if \[2x_1 + x_2 \leq 2.5 \] for all feasible \(x \).

Q: Could we show \[2x_1 + x_2 \leq U \] for some \(U \)?

A: Take linear combinations of constraints (with \(\geq 0 \) coefficients).
\[
\begin{align*}
 x_1 + 2x_2 & \leq 2 \quad (x \frac{1}{3}) \\
 x_1 + x_2 & \leq 2 \quad (x \frac{1}{3}) \\
 x_1 - x_2 & \leq 0.5 \quad (x \frac{2}{3}) \\
 \hline
 2x_1 + x_2 & \leq 3 \\
\end{align*}
\]

(still not sure if \(x \) is optimal)
General approach:

\[x_1 + 2x_2 \leq 2 \]
\[x_1 + x_2 \leq 2 \]
\[x_1 - x_2 \leq 0.5 \]

\[(y_1 + y_2 + y_3) x_1 + (2y_1 + y_2 - y_3) x_2 \leq 2y_1 + 2y_2 + 0.5y_3 \]

We want:
\[2x_1 + x_2 \leq 2y_1 + 2y_2 + 0.5y_3 \]

It will work as long as:
\[y_1 + y_2 + y_3 = 2 \]
\[2y_1 + y_2 - y_3 = 1 \]
\[y_1, y_2, y_3 \geq 0 \]

In which case it gives
\[U = 2y_1 + 2y_2 + 0.5y_3 \]
We want the strongest possible upper bound U.

$$U = \min \ 2y_1 + 2y_2 + 0.5y_3$$

$$y_1 + y_2 + y_3 = 2$$

$$2y_1 + y_2 - y_3 = 1$$

$$y_1, y_2, y_3 \geq 0$$

(D) is the dual of (P)

Note: $y^* = (1, 0, 1)$ feasible for (D) gives $U = 2.5 \Rightarrow x$ optimal for (P)