Sample Exam
 PMath 360, 2005

1. Homogeneous coordinates

(a) Three lines are given with coordinates $[1,1,1],[2,3, a]$, and $[5, a+6, a+3]$. For which values of a are the three lines coincident?
(b) Given three distinct lines $L:\left[l_{1}, l_{2}, l_{3}\right], M:\left[m_{1}, m_{2}, m_{3}\right]$ and $N:\left[n_{1}, n_{2}, n_{3}\right]$, prove that L, M and N meet at some point P if and only if the coordinate vectors satisfy an equation of the form

$$
c_{1}\left[l_{1}, l_{2}, l_{3}\right]+c_{2}\left[m_{1}, m_{2}, m_{3}\right]+c_{3}\left[n_{1}, n_{2}, n_{3}\right]=0
$$

2. Matrix of a conic

Three points are given by $A:(1,0,0), B:(0,0,1)$ and $C:(1,1,1)$.
Two lines are given by $T 1:[0,2,5]$ and $T 2:[5,4,0]$.
Find the matrix of the conic that satisfies all three of these conditions:
(a) $T 1$ is tangent to the conic at A
(b) $T 2$ is tangent to the conic at B
(c) The point C is on the conic.

3. Tangents to a conic

A conic is given by the matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(a) Verify that for all t, the point $T:\left(1,-t^{2}, t\right)$ is on the conic.
(b) The point $B:(b, 0,1)$ is outside (exterior to) the conic.

For what values of t is the line $B T$ tangent to the conic?

4. Inversion, Orthogonal circle

A circle Σ and a point P are given.
(a) List the construction steps for the inverse of P with respect to Σ. The construction is to be one that works for P inside or outside or on Σ. Include a labeled figure that shows your steps.
(b) Given that the point P is outside Σ, give a construction for the circle whose centre is P and is orthogonal to Σ. Again list your steps and show a sketch.

5. Hermitian Matrices and Circles

(a) Prove that the three circles represented by
$H_{1}=\left[\begin{array}{rr}1 & 0 \\ 0 & -100\end{array}\right], \quad H_{2}=\left[\begin{array}{rr}1 & -\bar{\gamma} \\ -\gamma & 0\end{array}\right]$ and $H_{3}=\left[\begin{array}{rr}0 & \bar{\gamma} \\ \gamma & -100\end{array}\right]$
lie in a common pencil, regardless of the value of γ.
(b) Find the cosine of the angle determined by H_{1} and H_{2}.
(c) Classify the pencil formed by H_{1} and H_{2}.

6. Stereographic Projection

Let \mathcal{S} be the sphere with centre $(0,0,0)$ and radius 1 . Let $N:(0,0,1)$.
(a) Given $P:(u, v, w) \in \mathcal{S}$, with $w \neq 1$, find $Q:(x, y, 0)$ so that P, Q and N are collinear.
(b) Given $R:(x, y, 0)$, find $T:(u, v, w) \in \mathcal{S}$, so that R, T and N are collinear.
(c) Show that the plane $3 x+4 y+5 z=1$ meets the sphere \mathcal{S} in a real circle.
(d) Find the Hermitian matrix of the circle in the complex plane that is the projection of the circle that is the intersection of \mathcal{S} with the plane given in (c).

