1. Collineation

Let four points in the Cartesian plane be given:

$$
A:(0,0), B:(1,0), C:\left(\frac{9}{10}, \frac{7}{10}\right), \text { and } D:\left(0, \frac{8}{10}\right)
$$

(a) Find the homogeneous coordinates of A, B, C, D and the two points $A B \cap C D$ and $B C \cap D A$.
(b) Find the 3 by 3 matrix of the collineation that maps the homogeneous coordinates of the four points of the unit square $A, B,(1,1)$ and $(0,1)$ to the homogeneous coordinates of A, B, C and D respectively. (Hint: Use the answers to (a).)

2. Straight edge and compass constructions

(a) Give the best straight edge and compass construction you know for the inverse of a point P with respect to a circle C.
(b) Give a straight edge and compass construction for the circle through three points P, Q and R (not collinear).

3. Orthogonal circle construction

You are given two circles C_{1} and C_{2} and a point X not on either circle. You are also given that X is not on the line of centres of C_{1} and C_{2}. Present a step by step construction for the circle through X that is orthogonal to both C_{1} and C_{2}. (You may use the results of question 2 , if you wish to.)

4. Hermitian matrices

Consider the pencil of circles formed by the circles given by the two Hermitian matrices

$$
H_{1}=\left[\begin{array}{cc}
1 & -1+2 i \\
-1-2 i & 4
\end{array}\right] \text { and } H_{2}=\left[\begin{array}{cc}
1 & -3+2 i \\
-3-2 i & 4
\end{array}\right] .
$$

Calculate:
(a) \triangle_{1}
(b) \triangle_{2}
(c) \triangle_{12}
(d) the cosine of the angle between the two circles.

5. Stereographic projection

Consider the sphere \mathcal{S} with centre $(0,0,0)$ and radius 1 and the stereographic projection from \mathcal{S} to the complex plane, as developed in class, given by this correspondence $(u, v, w) \leftrightarrow \frac{u+i v}{1+w}$.
(a) From the plane to the sphere

A circle in the complex plane is given with centre $2+3 i$ and radius 4 . Find the plane that contains the circle on the sphere that corresponds to this circle.
(b) From the sphere to the plane

A certain circle on the sphere lies in the plane $2 u+4 v+3 w=1$. Find the circle in the complex plane that corresponds to this.

6. Tangent circle

Two circles with the same radius r are tangent to each other at a point P. They are also tangent to a common line L at Q and R as in the figure below. Give the steps that will allow you to construct the circle in the region bounded by these three objects that is tanget to all three objects.

7. Orthogonal Circles

Let C_{1} and C_{2} be any two circles with centres O_{1} and O_{2}, respectively. Let X be any point not on the line of centres. In question 3, a circle was created to pass through X and to be orthogonal to both C_{1} and C_{2}. Call that circle $K(X)$.

Suppose further that C_{1} and C_{2} are disjoint and that $K(X)$ meets $O_{1} O_{2}$, the line of centres, in two points. Let Z be one of the intersection points. Let Σ be any circle whose centre is Z. Let C_{1}^{\prime} and C_{2}^{\prime} be the inverses with respect to Σ of C_{1} and C_{2}, respectively. Prove that C_{1}^{\prime} and C_{2}^{\prime} are concentric.

8. Poincaré model of the Hyperbolic plane

(a) Given A and B, two P-points interior to a base circle Ω. State the steps in the construction for the P-line on A and B.
(b) Given two P-points A and B and the P-line L_{1} on A and B, find the P-line L_{2} that reflects (inverts) A into B.

